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PREFACE

This book provides a modern and self-contained introduction to digital signal processing (DSP) and is written
with several audiences in mind. First and foremost, it is intended to serve as a textbook suitable for a one-
semester junior or senior level undergraduate course. To this extent, it includes the relevant topics covered
in a typical undergraduate curriculum and is supplemented by a vast number of worked examples, drill
exercises and problems. It also attempts to provide a broader perspective by introducing useful applications
and additional special topics in each chapter. These form the background for more advanced graduate courses
in this area and also allow the book to be used as a source of basic reference for professionals across various
disciplines interested in DSP.

Scope

The text stresses the fundamental principles and applications of digital signal processing. The relevant con-
cepts are explained and illustrated by worked examples and applications are introduced where appropriate.
Since many applications of DSP relate to the processing of analog signals, some familiarity with basic analog
theory, at the level taught in a typical undergraduate signals and systems course, is assumed and expected.
In order to make the book self-contained, the key concepts and results from analog theory that are relevant
to a study of DSP are outlined and included in an appendix. The topics covered in this book may be grouped
into the following broad areas:

1. The first chapter starts with a brief overview. An introduction to discrete signals, their representation
and their classification is provided in Chapter 2.

2. Chapter 3 details the analysis of digital filters in the time-domain using the solution of difference
equations or the process of convolution that also serves to link the time domain and the frequency
domain.

3. Chapter 4 covers the analysis in the transformed domain using the z-transform that forms a powerful
tool for studying discrete-time signals and systems.

4. Chapter 5 describes the analysis of discrete signals and digital filters in the frequency domain using
the discrete-time Fourier transform (DTFT) that arises as a special case of the z-transform.

5. Chapter 6 introduces the jargon, terminology and variety of digital filters and studies and compares
the various methods of studying them.

6. Chapter 7 discusses the digital processing of analog signals based on the concepts of sampling and
quantization and the spectral representation of sampled signals.

7. Chapter 8 and Chapter 9 describe the the design of FIR and IIR filters for various applications using
well established techniques.

8. Chapter 10 provides an introduction to the spectral analysis of both analog and discrete signals based
on numerical computation of the DFT and the FFT and its applications.
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xvi Preface

One of the concerns often voiced about undergraduate textbooks is the level of mathematical detail. This
book takes the approach that even though mathematical rigor need not be sacrificed, it does not have to get
in the way of understanding and applying useful DSP concepts. To this extent, the book attempts to preserve
a rational approach and include all the necessary mathematical details. However, whenever possible, the
results are also described and then applied to problem solving on the basis of simple heuristic explanations.

In each chapter, a short opening section outlines the objectives and topical coverage. Central concepts
are highlighted in review panels, illustrated by worked examples and followed by drill exercises with answers.
Many figures have been included to help the student grasp and visualize critical concepts. Results are
tabulated and summarized for easy reference and access. End-of-chapter problems include a variety of drills
and exercises. Application oriented problems require the use of computational resources such as Matlab.
Since our primary intent is to present the principles of digital signal processing, not software, we have made
no attempt to integrate Matlab into the text. This approach maintains the continuity and logical flow of
the textual material. However, for those interested, a suite of Matlab-based routines that may be used
to illustrate the principles and concepts presented in the book are available on the author’s website. We
hasten to add two disclaimers. First, the choice of Matlab is not to be construed as an endorsement of
this product. Second, the routines are supplied in good faith and the author is not responsible for any
consequences arising from their use! A solutions manual for instructors is available from the publisher.

Acknowledgments
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Chapter 1

OVERVIEW

1.0 Introduction
Few other technologies have revolutionized the world as profoundly as those based on digital signal processing.
For example, the technology of recorded music was, until recently, completely analog from end to end, and
the most important commercial source of recorded music used to be the LP (long-playing) record. The
advent of the digital compact disc changed all that in the span of just a few short years and made the
long-playing record practically obsolete. with the advent and proliferation of high speed, low cost computers
and powerful, user-friendly software packages, digital signal processing (DSP) has truly come of age. This
chapter provides an overview of the terminology of digital signal processing and of the connections between
the various topics and concepts covered in the text.

1.1 Signals
Our world is full of signals, both natural and man-made. Examples are the variation in air pressure when we
speak, the daily highs and lows in temperature, and the periodic electrical signals generated by the heart.
Signals represent information. Often, signals may not convey the required information directly and may
not be free from disturbances. It is in this context that signal processing forms the basis for enhancing,
extracting, storing, or transmitting useful information. Electrical signals perhaps offer the widest scope for
such manipulations. In fact, it is commonplace to convert signals to electrical form for processing.

The signals we encounter in practice are often very difficult to characterize. So, we choose simple
mathematical models to approximate their behavior. Such models also give us the ability to make predictions
about future signal behaviour. Of course, an added advantage of using models is that they are much easier
to generate and manipulate. What is more, we can gradually increase the complexity of our model to obtain
better approximations, if needed. The simplest signal models are a constant variation, an exponential decay
and a sinusoidal or periodic variation. Such signals form the building blocks from which we can develop
representations for more complex forms.

This book starts with a quick overview of discrete signals, how they arise and how they are modeled.
We review some typical measures (such as power and energy) used to characterize discrete signals and the
operations of interpolation and decimation which are often used to change the sampling rate of an already
sampled signal.
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2 Chapter 1 Overview

1.2 Digital Filters
The processing of discrete signals is accomplished by discrete-time systems, also called digital filters. In
the time domain, such systems may be modeled by difference equations in much the same way that analog
systems are modeled by differential equations. We concentrate on models of linear time-invariant (LTI)
systems whose difference equations have constant coefficients. The processing of discrete signals by such
systems can be achieved by resorting to the well known mathematical techniques. For input signals that can
be described as a sum of simpler forms, linearity allows us to find the response as the sum of the response
to each of the simpler forms. This is superposition. Many systems are actually nonlinear. The study of
nonlinear systems often involves making simplifying assumptions, such as linearity. The system response can
also be obtained using convolution, a method based on superposition: if the response of a system is known
to a unit sample (or impulse) input, then it is also known to any arbitrary input which can be expressed as
a sum of such impulses.

Two important classes of digital filters are FIR (finite impulse response) filters whose impulse response
(response to an impulse input) is a finite sequence (lasts only for finite time) and IIR (infinite impulse
response) filters whose response to an impulse input lasts forever.

1.2.1 The z-Transform

The z-transform is a powerful method of analysis for discrete signals and systems. It is analogous to the
Laplace transform used to study analog systems. The transfer function of an LTI system is a ratio of
polynomials in the complex variable z. The roots of the numerator polynomial are called zeros and of the
denominator polynomial are called poles. The pole-zero description of a transfer function is quite useful if
we want a qualitative picture of the frequency response. For example, the frequency response goes to zero if
z equals one of the zero locations and becomes unbounded if z equals one of the pole locations.

1.2.2 The Frequency Domain

It turns out that discrete sinusoids and harmonic signals differ from their analog cousins in some striking
ways. A discrete sinusoid is not periodic for any choice of frequency. Yet it has a periodic spectrum. An
important consequence of this result is that if the spectrum is periodic for a sampled sinusoid, it should also
be periodic for a sampled combination of sinusoids. This concept forms the basis for the frequency domain
description of discrete signals called the Discrete-Time Fourier Transform (DTFT). And since analog
signals can be described as a combination of sinusoids (periodic ones by their Fourier series and others by
their Fourier transform), their sampled combinations (and consequently any sampled signal) have a periodic
spectrum in the frequency domain. The central period corresponds to the true spectrum of the analog signal
if the sampling rate exceeds the Nyquist rate.

1.2.3 Filter Concepts

The term filter is often used to denote systems that process the input in a specified way. In this context,
filtering describes a signal-processing operation that allows signal enhancement, noise reduction, or increased
signal-to-noise ratio. Systems for the processing of discrete-time signals are also called digital filters.
Depending on the requirements and application, the analysis of a digital filter may be carried out in the time
domain, the z-domain or the frequency domain. A common application of digital filters is to modify the
frequency response in some specified way. An ideal lowpass filter passes frequencies up to a specified value
and totally blocks all others. Its spectrum shows an abrupt transition from unity (perfect transmission) in
the passband to zero (perfect suppression) in the stopband. An important consideration is that a symmetric
impulse response sequence possesses linear phase (in its frequency response) which results only in a constant
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1.3 Signal Processing 3

delay with no amplitude distortion. An ideal lowpass filter possesses linear phase because its impulse response
happens to be a symmetric sequence but unfortunately, it cannot be realized in practice.

One way to approximate an ideal lowpass filter is by symmetric truncation of its impulse response (which
ensures linear phase). Truncation is equivalent to multiplying (windowing) the impulse response by a finite
duration sequence (window) of unit samples. The abrupt truncation imposed by such a window results in
an overshoot and oscillation in the frequency response that persists no matter how large the truncation
index. To eliminate overshoot and reduce the oscillations, we use tapered windows. The impulse response
and frequency response of highpass, bandpass and bandstop filters may be related to those of a lowpass filter
using frequency transformations based on the properties of the DTFT.

Filters that possess constant gain but whose phase varies with frequencies are called allpass filters and
may be used to modify the phase characteristics of a system. A filter whose gain is zero at a selected
frequency is called a notch filter and may be used to remove the unwanted frequency from a signal. A filters
whose gain is zero at multiples of a selected frequency is called a comb filter and may be used to remove an
unwanted frequency and its harmonics from a signal.

1.3 Signal Processing
Two conceptual schemes for the processing of signals are illustrated in Figure 1.2. The digital processing
of analog signals requires that we use an analog-to-digital converter (ADC) for sampling the analog signal
prior to processing and a digital-to-analog converter (DAC) to convert the processed digital signal back to
analog form.

processor
signal

Analog Digital
signal

processor

Analog signal processing

Analog
signal

Analog
signal

Digital signal processing of analog signals

Digital
signal

Digital
signal

ADC
Analog
signal

DAC
Analog
signal

Figure 1.1 Analog and digital signal processing

1.3.1 Digital Processing of Analog Signals

Many DSP applications involve the processing of digital signals obtained by sampling analog signals and
the subsequent reconstruction of analog signals from their samples. For example, the music you hear from
your compact disc (CD) player is due to changes in the air pressure caused by the vibration of the speaker
diaphragm. It is an analog signal because the pressure variation is a continuous function of time. However,
the information stored on the compact disk is in digital form. It must be processed and converted to analog
form before you can hear the music. A record of the yearly increase in the world population describes time
measured in increments of one (year) while the population increase is measured in increments of one (person).
It is a digital signal with discrete values for both time and population.

For digital signal processing we need digital signals. To process an analog signal by digital means, we
must convert it to a digital signal in two steps. First, we must sample it, typically at uniform intervals
ts (every 2 ms, for example). The discrete quantity nts is related to the integer index n. Next, we must
quantize the sample values (amplitudes) (by rounding to the nearest millivolt, for example). The central
concept in the digital processing of analog signals is that the sampled signal must be a unique representation
of the underlying analog signal. Even though sampling leads to a potential loss of information, all is not lost!
Often, it turns out that if we choose the sampling interval wisely, the processing of an analog signal is entirely
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equivalent to the processing of the corresponding digital signal; there is no loss of information! This is one of
the wonders of the sampling theorem that makes digital signal processing such an attractive option. For a
unique correspondence between an analog signal and the version reconstructed from its samples, the sampling
rate S must exceed twice the highest signal frequency f0. The value S = 2f0 is called the Nyquist sampling
rate. If the sampling rate is less than the Nyquist rate, a phenomenon known as aliasing manifests itself.
Components of the analog signal at high frequencies appear at (alias to) lower frequencies in the sampled
signal. This results in a sampled signal with a smaller highest frequency. Aliasing effects are impossible to
undo once the samples are acquired. It is thus commonplace to band-limit the signal before sampling (using
lowpass filters).

Numerical processing using digital computers requires finite data with finite precision. We must limit
signal amplitudes to a finite number of levels. This process, called quantization, produces nonlinear effects
that can be described only in statistical terms. Quantization also leads to an irreversible loss of information
and is typically considered only in the final stage in any design.

A typical system for the digital processing of analog signals consists of the following:
An analog lowpass pre-filter or anti-aliasing filter which limits the highest signal frequency to ensure
freedom from aliasing.
A sampler which operates above the Nyquist sampling rate.
A quantizer which quantizes the sampled signal values to a finite number of levels. Currently, 16-bit
quantizers are quite commonplace.
An encoder which converts the quantized signal values to a string of binary bits or zeros and ones (words)
whose length is determined by the number of quantization levels of the quantizer.
The digital processing system itself (hardware or software) which processes the encoded digital signal (or
bit stream) in a desired fashion.
A decoder which converts the processed bit stream to a DT signal with quantized signal values.
A reconstruction filter which reconstructs a staircase approximation of the discrete time signal.
A lowpass analog anti-imaging filter which extracts the central period from the periodic spectrum, removes
the unwanted replicas and results in a smoothed reconstructed signal.

1.3.2 Filter Design

The design of filters is typically based on a set of specifications in the frequency domain corresponding to
the magnitude spectrum or filter gain. The design of IIR filters typically starts with a lowpass prototype
from which other forms may be readily developed using frequency transformations.

1.3.3 The Design of IIR Filters

The design of IIR filters starts with an analog lowpass prototype based on the given specifications. Classical
analog filters include Butterworth (maximally flat passband), Chebyshev I (rippled passband), Chebyshev
II (rippled stopband) and elliptic (rippled passband and stopband). The analog lowpass prototype is then
converted to a lowpass digital filter using an appropriate mapping, and finally to the required form using
an appropriate spectral transformation. Practical mappings are based on response-invariance or equivalence
of ideal operations such as integration and their numerical counterparts. Not all of these avoid the effects
of aliasing. The most commonly used mapping is based on the trapezoidal rule for numerical integration
and is called the bilinear transformation. It compresses the entire infinite analog frequency range into a
finite range and thus avoids aliasing at the expense of warping (distorting) the analog frequencies. We can
compensate for this warping if we prewarp (stretch) the analog frequency specifications before designing
the analog filter.
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1.3.4 The Design of FIR filters

FIR filters are inherently stable and can be designed with linear phase leading to no phase distortion but
their realization often involves a large filter length to meet given requirements. Their design is typically
based on selecting a symmetric (linear phase) impulse response sequence of the smallest length that meets
design specifications and involves iterative techniques. Even though the spectrum of the truncated ideal
filter is, in fact, the best approximation (in the mean square sense) compared to the spectrum of any other
filter of the same length, it shows the undesirable oscillations and overshoot which can be eliminated by
modifying (windowing) the impulse response sequence using tapered windows. The smallest length that
meets specifications depends on the choice of window and is often estimated by empirical means.

1.4 The DFT and FFT
The periodicity of the DTFT is a consequence of the fundamental result that sampling a signal in one
domain leads to periodicity in the other. Just as a periodic signal has a discrete spectrum, a discrete-time
signal has a periodic spectrum. This duality also characterizes several other transforms. If the time signal
is both discrete and periodic, its spectrum is also discrete and periodic and describes the discrete Fourier
transform (DFT). The DFT is essentially the DTFT evaluated at a finite number of frequencies and is
also periodic. The DFT can be used to approximate the spectrum of analog signals from their samples,
provided the relations are understood in their proper context using the notion of implied periodicity. The
Fast Fourier Transform (FFT) is a set of fast practical algorithms for computing the DFT. The DFT and
FFT find extensive applications in fast convolution, signal interpolation, spectrum estimation, and transfer
function estimation.

1.5 Advantages of DSP
In situations where signals are encountered in digital form, their processing is performed digitally. In other
situations that relate to the processing of analog signals, DSP offers many advantages.

Processing

DSP offers a wide variety of processing techniques that can be implemented easily and efficiently. Some
techniques (such as processing by linear phase filters) have no counterpart in the analog domain.

Storage

Digital data can be stored and later retrieved with no degradation or loss of information. Data recorded by
analog devices is subject to the noise inherent in the recording media (such as tape) and degradation due to
aging and environmental effects.

Transmission

Digital signals are more robust and offer much better noise immunity during transmission as compared to
analog signals.

Implementation

A circuit for processing analog signals is typically designed for a specific application. It is sensitive to
component tolerances, aging, and environmental effects (such as changes in the temperature and humidity)
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and not easily reproducible. A digital filter, on the other hand, is extremely easy to implement and highly
reproducible. It may be designed to perform a variety of tasks without replacing or modifying any hardware
but simply by changing the filter coefficients on the fly.

Cost

With the proliferation of low-cost, high-speed digital computers, DSP offers effective alternatives for a wide
variety of applications. High-frequency analog applications may still require analog signal processing but their
number continues to shrink. As long as the criteria of the sampling theorem are satisfied and quantization
is carried out to the desired precision (using the devices available), the digital processing of analog signals
has become the method of choice unless compelling reasons dictate otherwise.

In the early days of the digital revolution, DSP did suffer form disadvantages such as speed, cost, and
quantization effects but these continue to pale into insignificance with advances in semiconductor technology
and processing and computing power.

1.5.1 Applications of DSP

Digital signal processing finds applications in almost every conceivable field. Its impact on consumer electron-
ics is evidenced by the proliferation of digital communication, digital audio, digital (high-definition) television
and digital imaging (cameras). Its applications to biomedical signal processing include the enhancement and
interpretation of tomographic images and analysis of ECG and EEG signals. Space applications include
satellite navigation and guidance systems and analysis of satellite imagery obtained by various means. And,
the list goes on and continues to grow.
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Chapter 2

DISCRETE SIGNALS

2.0 Scope and Objectives
This chapter begins with an overview of discrete signals. It starts with various ways of signal classification,
shows how discrete signals can be manipulated by various operations, and quantifies the measures used to
characterize such signals. It introduces the concept of sampling and describes the sampling theorem as the
basis for sampling analog signals without loss of information. It concludes with an introduction to random
signals.

2.1 Discrete Signals
Discrete signals (such as the annual population) may arise naturally or as a consequence of sampling con-
tinuous signals (typically at a uniform sampling interval ts). A sampled or discrete signal x[n] is just an
ordered sequence of values corresponding to the integer index n that embodies the time history of the signal.
It contains no direct information about the sampling interval ts, except through the index n of the sample
locations. A discrete signal x[n] is plotted as lines against the index n. When comparing analog signals with
their sampled versions, we shall assume that the origin t = 0 also corresponds to the sampling instant n = 0.
We need information about ts only in a few situations such as plotting the signal explicitly against time t
(at t = nts) or approximating the area of the underlying analog signal from its samples (as ts

∑
x[n]).

REVIEW PANEL 2.1
Notation for a Numeric Sequence x[n]

A marker (⇓) indicates the origin n = 0. Example: x[n] = {1, 2,
⇓
4, 8, . . .}.

Ellipses (. . .) denote infinite extent on either side. Example: x[n] = {2, 4,
⇓
6, 8, . . .}

A discrete signal x[n] is called right-sided if it is zero for n < N (where N is finite), causal if it is zero
for n < 0, left-sided if it is zero for n > N , and anti-causal if it is zero for n ≥ 0.

REVIEW PANEL 2.2
Discrete Signals Can Be Left-Sided, Right-Sided, Causal, or Anti-Causal

>n 0 )(zero for n>N )(zero for n<N )(zero for n< 0 )(zero for 

n

Anti-causal

N
n

Left-sided

N
n

Right-sided

n

Causal
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8 Chapter 2 Discrete Signals

A discrete periodic signal repeats every N samples and is described by

x[n] = x[n± kN ], k = 0, 1, 2, 3, . . . (2.1)

The period N is the smallest number of samples that repeats. Unlike its analog counterpart, the period N of
discrete signals is always an integer. The common period of a linear combination of periodic discrete signals
is given by the least common multiple (LCM) of the individual periods.

REVIEW PANEL 2.3
The Period of a Discrete Periodic Signal Is the Number of Samples per Period
The period N is always an integer. For combinations, N is the LCM of the individual periods.

DRILL PROBLEM 2.1

(a) Let x[n] = {. . . , ⇓1, 2, 0, 0, 4, 1, 2, 0, 0, 4, 1, 2, 0, 0, 4, 1, 2, 0, 0, 4, . . .}. What is its period?

(b) Let x[n] = {. . . , ⇓1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .} and

y[n] = {. . . , ⇓1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, . . .}.
Let g[n] = x[n] + y[n]. What is the period of g[n]? What are the sample values in one period of g[n]?

Answers: (a) 5 (b) 6, {⇓2, 4, 4, 3, 3, 5}

2.1.1 Signal Measures

Signal measures for discrete signals are often based on summations. Summation is the discrete-time equiv-
alent of integration. The discrete sum SD, the absolute sum SA, and the cumulative sum (running sum)
sC [n] of a signal x[n] are defined by

SD =
∞∑

n=−∞
x[n] SA =

∞∑
n=−∞

|x[n]| sC [n] =
n∑

k=−∞
x[k] (2.2)

Signals for which the absolute sum |x[n]| is finite are called absolutely summable. For nonperiodic signals,
the signal energy E is a useful measure. It is defined as the sum of the squares of the signal values

E =
∞∑

n=−∞
|x[n]|2 (2.3)

The absolute value allows us to extend this relation to complex-valued signals. Measures for periodic signals
are based on averages since their signal energy is infinite. The average value xav and signal power P of a
periodic signal x[n] with period N are defined as the average sum per period and average energy per period,
respectively:

xav =
1
N

N−1∑
n=0

x[n] P =
1
N

N−1∑
n=0

|x[n]|2 (2.4)

Note that the index runs from n = 0 to n = N − 1 and includes all N samples in one period. Only for
nonperiodic signals is it useful to use the limiting forms

xav = lim
M→∞

1
2M + 1

M∑

n=−M

x[n] P = lim
M→∞

1
2M + 1

M∑

n=−M

|x[n]|2 (2.5)
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2.1 Discrete Signals 9

Signals with finite energy are called energy signals (or square summable). Signals with finite power are called
power signals. All periodic signals are power signals.

REVIEW PANEL 2.4
Energy and Power in Discrete Signals

Energy: E =
∞∑

n=−∞
|x[n]|2 Power (if periodic with period N): P =

1
N

N−1∑
n=0

|x[n]|2

EXAMPLE 2.1 (Signal Energy and Power)
(a) Find the energy in the signal x[n] = 3(0.5)n, n ≥ 0.

This describes a one-sided decaying exponential. Its signal energy is

E =
∞∑

n=−∞
x2[n] =

∞∑
n=0

|3(0.5)n|2 =
∞∑

n=0

9(0.25)n =
9

1− 0.25
= 12 J

(
Note:

∞∑
n=0

αn =
1

1− α

)

(b) Consider the periodic signal x[n] = 6 cos(2πn/4) whose period is N = 4.

One period of this signal is x1[n] = {⇓6, 0, −6, 0}. The average value and signal power of x[n] is

xav =
1
4

3∑
n=0

x[n] = 0 P =
1
4

3∑
n=0

x2[n] =
1
4

(
36 + 36

)
= 18 W

(c) Consider the periodic signal x[n] = 6ej2πn/4 whose period is N = 4.

This signal is complex-valued, with |x[n]| = 6. One period of this signal is x1[n] = {⇓6, 6, 6, 6}.
The signal power of x[n] is

P =
1
4

3∑
n=0

|x[n]|2 =
1
4

(
36 + 36 + 36 + 36

)
= 36 W

DRILL PROBLEM 2.2

(a) Let x[n] = {⇓1, 2, 0, 0, 4}. What is the energy in x[n]?

(b) Let x[n] = {. . . , ⇓1, 2, 0, 0, 4, 1, 2, 0, 0, 4, 1, 2, 0, 0, 4, 1, 2, . . .}. What is the power in x[n]?

(c) Let x[n] = {. . . , ⇓1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .} and

y[n] = {. . . , ⇓1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, . . .}.
Let g[n] = x[n] + y[n]. What is the power in x[n], y[n] and g[n]? What is the average value of g[n]?
Answers: (a) 21 (b) 4.2 (c) 2.5, 3, 10, 3
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10 Chapter 2 Discrete Signals

2.2 Operations on Discrete Signals
Common operations on discrete signals include element-wise addition and multiplication. Two other useful
operations are shifting and folding (or time reversal).

Time Shift: The signal y[n] = x[n−α] describes a delayed version of x[n] for α > 0. In other words, if x[n]
starts at n = N , then its shifted version y[n] = x[n−α] starts at n = N +α. Thus, the signal y[n] = x[n−2]
is a delayed (shifted right by 2) version of x[n], and the signal g[n] = x[n + 2] is an advanced (shifted left
by 2) version of x[n]. A useful consistency check for sketching shifted signals is based on the fact that if
y[n] = x[n − α], a sample of x[n] at the original index n gets relocated to the new index nN based on the
operation n = nN − α.

Folding: The signal y[n] = x[−n] represents a folded version of x[n], a mirror image of the signal x[n] about
the origin n = 0. The signal y[n] = x[−n− α] may be obtained from x[n] in one of two ways:

(a) x[n] −→ delay (shift right) by α −→ x[n− α] −→ fold −→ x[−n− α].

(b) x[n] −→ fold −→ x[−n] −→ advance (shift left) by α −→ x[−n− α].

In either case, a sample of x[n] at the original index n will be plotted at a new index nN given by
n = −nN − α, and this can serve as a consistency check in sketches.

REVIEW PANEL 2.5
Time delay means x[n] ⇒ x[n−M ], M > 0, and folding means x[n] ⇒ x[−n]
You can generate x[−n−M ] from x[n] in one of two ways:
1. Shift right M units: x[n] ⇒ x[n−M ]. Then fold: x[n−M ] ⇒ x[−n−M ].
2. Fold: x[n] ⇒ x[−n]. Then shift left M units: x[−n] ⇒ x[−(n + M)] = x[−n−M ].
Check: Use n ⇒−nN−M to confirm new locations nN for the origin n = 0 and end points of x[n].

EXAMPLE 2.2 (Operations on Discrete Signals)

Let x[n] = {2, 3,
⇓
4, 5, 6, 7}. Find and sketch the following:

y[n] = x[n− 3], f [n] = x[n + 2], g[n] = x[−n], h[n] = x[−n + 1], s[n] = x[−n− 2]

Here is how we obtain the various signals:

y[n] = x[n− 3] = {⇓0, 2, 3, 4, 5, 6, 7} (shift x[n] right 3 units)

f [n] = x[n + 2] = {2, 3, 4, 5,
⇓
6, 7} (shift x[n] left 2 units)

g[n] = x[−n] = {7, 6, 5,
⇓
4, 3, 2} (fold x[n] about n = 0)

h[n] = x[−n + 1] = {7, 6,
⇓
5, 4, 3, 2} (fold x[n], then delay by 1)

s[n] = x[−n− 2] = {7, 6, 5, 4, 3,
⇓
2} (fold x[n], then advance by 2)

Refer to Figure E2.2 for the sketches.
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2.2 Operations on Discrete Signals 11

[n]x [nx −3] [nx +2] [−nx ] [−nx +1] [−nx −2]

−2 3 6 −4 1 −3 2 −2 3 −5

2

7

n
2

7

n
2

7

n
2

7

n
2

7

n n
2

7

Figure E2.2 The signals for Example 2.2

DRILL PROBLEM 2.3

(a) Let x[n] = {⇓1, 4, 2, 3}. Express g[n] = x[−n + 2] as a sequence and sketch.

(b) Let x[n] = {3,
⇓
1, 4}. Express y[n] = x[n + 2] and f [n] = x[−n− 1] as sequences and sketch?

Answers: (a) g[n] = {3,
⇓
2, 4, 1} (b) y[n] = {3, 1, 4,

⇓
0} f [n] = {4, 1,

⇓
3}.

2.2.1 Symmetry

If a signal x[n] is identical to its mirror image x[−n], it is called an even symmetric signal. If x[n]
differs from its mirror image x[−n] only in sign, it is called an odd symmetric or antisymmetric signal.
Mathematically,

xe[n] = xe[−n] xo[n] = −xo[−n] (2.6)

In either case, the signal extends over symmetric limits −N ≤ n ≤ N . For an odd symmetric signal, note
that xo[0] = 0 and the sum of samples in xo[n] over symmetric limits (−α, α) equals zero:

M∑

k=−M

xo[k] = 0 (2.7)

REVIEW PANEL 2.6
Characteristics of Symmetric Signals

xe n[− ]xe [n] = x o [0] = 0andx o [n] x o n[− ]= −

xe [n] x o [n]

Even symmetry: Odd symmetry:

n n

2.2.2 Even and Odd Parts of Signals

Even symmetry and odd symmetry are mutually exclusive. Consequently, if a signal x[n] is formed by
summing an even symmetric signal xe[n] and an odd symmetric signal xo[n], it will be devoid of either
symmetry. Turning things around, any signal x[n] may be expressed as the sum of an even symmetric part
xe[n] and an odd symmetric part xo[n]:

x[n] = xe[n] + xo[n] (2.8)

To find xe[n] and xo[n] from x[n], we fold x[n] and invoke symmetry to get

x[−n] = xe[−n] + xo[−n] = xe[n]− xo[n] (2.9)
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12 Chapter 2 Discrete Signals

Adding and subtracting the two preceding equations, we obtain

xe[n] = 0.5x[n] + 0.5x[−n] xo[n] = 0.5x[n]− 0.5x[−n] (2.10)

This means that the even part xe[n] equals half the sum of the original and folded version and the odd part
xo[n] equals half the difference between the original and folded version. Naturally, if a signal x[n] has even
symmetry, its odd part xo[n] will equal zero, and if x[n] has odd symmetry, its even part xe[n] will equal
zero.

REVIEW PANEL 2.7
Any Discrete Signal Is the Sum of an Even Symmetric and an Odd Symmetric Part

x[n] = xe[n] + xo[n] where xe[n] = 0.5x[n] + 0.5x[−n] and xo[n] = 0.5x[n]− 0.5x[−n]
How to implement: Graphically, if possible. How to check: Does xe[n] + xo[n] give x[n]?

EXAMPLE 2.3 (Signal Symmetry)
(a) Let x[n] = {4, −2,

⇓
4, −6}. Find and sketch its odd and even parts.

We zero-pad the signal to x[n] = {4, −2,
⇓
4, −6, 0} so that it covers symmetric limits. Then

0.5x[n] = {2, −1,
⇓
2, −3, 0} 0.5x[−n] = {0, −3,

⇓
2, −1, 2}

Zero-padding, though not essential, allows us to perform element-wise addition or subtraction with
ease to obtain

xe[n] = 0.5x[n] + 0.5x[−n] = {2, −4,
⇓
4, −4, 2}

xo[n] = 0.5x[n]− 0.5x[−n] = {2, 2,
⇓
0, −2, −2}

The various signals are sketched in Figure E2.3A. As a consistency check you should confirm that
xo[0] = 0,

∑
xo[n] = 0, and that the sum xe[n] + xo[n] recovers x[n].

[n]x
[n]x0.5 x [−n]0.5

xe [n] x o [n]
4

−2

4

−6

n

−3

2 2

−1

n

−3

2 2

−1

n

4

−4 −4

2 2
n

2

−2
−2

2
n

Figure E2.3A The signal x[n] and its odd and even parts for Example 2.3(a)

(b) Let x[n] = u[n]− u[n− 5]. Find and sketch its odd and even parts.
The signal x[n] and the genesis of its odd and even parts are shown in Figure E2.3B. Note the value
of xe[n] at n = 0 in the sketch.

[n]x [n]x0.5 x [−n]0.5 xe [n] x o [n]
2

4
n

1

4
n

1

−4
n

1
2

−4 4
n

1

4
−4

−1

n

Figure E2.3B The signal x[n] and its odd and even parts for Example 2.3(b)
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2.3 Decimation and Interpolation 13

DRILL PROBLEM 2.4

(a) Find and sketch the even and odd parts of x[n] = {⇓8, 4, 2}.
(b) Find and sketch the odd part of y[n] = {8,

⇓
4, 2}.

Answers: (a) xe[n] = {1, 2,
⇓
8, 2, 1} xo[n] = {−1, −2,

⇓
0, 2, 1} (b) yo[n] = {3,

⇓
0, −3}.

2.3 Decimation and Interpolation
The time scaling of discrete-time signals must be viewed with care. For discrete-time signals, time scaling is
equivalent to decreasing or increasing the signal length. The problems that arise in time scaling are not in
what happens but how it happens.

2.3.1 Decimation

Decimation refers to a process of reducing the signal length by discarding signal samples. Suppose x[n]
corresponds to an analog signal x(t) sampled at intervals ts. The signal y[n] = x[2n] then corresponds to
the compressed signal x(2t) sampled at ts and contains only alternate samples of x[n] (corresponding to
x[0], x[2], x[4], . . .). We can also obtain y[n] directly from x(t) (not its compressed version) if we sample it
at intervals 2ts (or at a sampling rate S = 1/2ts). This means a twofold reduction in the sampling rate.
Decimation by a factor of N is equivalent to sampling x(t) at intervals Nts and implies an N-fold reduction
in the sampling rate. The decimated signal x[Nn] is generated from x[n] by retaining every Nth sample
corresponding to the indices k = Nn and discarding all others.

2.3.2 Interpolation

If x[n] corresponds to x(t) sampled at intervals ts, then y[n] = x[n/2] corresponds to x(t) sampled at ts/2
and has twice the length of x[n] with one new sample between adjacent samples of x[n]. If an expression for
x[n] (or the underlying analog signal) were known, it would be no problem to determine these new sample
values. If we are only given the sample values of x[n] (without its analytical form), the best we can do is
interpolate between samples. For example, we may choose each new sample value as zero (zero interpolation),
a constant equal to the previous sample value (step interpolation), or the average of adjacent sample values
(linear interpolation). Zero interpolation is referred to as up-sampling and plays an important role in
practical interpolation schemes. Interpolation by a factor of N is equivalent to sampling x(t) at intervals
ts/N and implies an N-fold increase in both the sampling rate and the signal length.

Some Caveats

It may appear that decimation (discarding signal samples) and interpolation (inserting signal samples) are
inverse operations but this is not always the case. Consider the two sets of operations shown below:

x[n] −→ decimate by 2 −→ x[2n] −→ interpolate by 2 −→ x[n]

x[n] −→ interpolate by 2 −→ x[n/2] −→ decimate by 2 −→ x[n]

On the face of it, both sets of operations start with x[n] and appear to recover x[n], suggesting that interpo-
lation and decimation are inverse operations. In fact, only the second sequence of operations (interpolation

followed by decimation) recovers x[n] exactly. To see why, let x[n] = {⇓1, 2, 6, 4, 8}. Using step interpolation,
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14 Chapter 2 Discrete Signals

for example, the two sequences of operations result in

{⇓1, 2, 6, 4, 8}decimate
n → 2n

→ {⇓1, 6, 8} interpolate
n → n/2

→ {⇓1, 1, 6, 6, 8, 8}

{⇓1, 2, 6, 4, 8} interpolate
n → n/2

→ {⇓1, 1, 2, 2, 6, 6, 4, 4, 8, 8} decimate
n → 2n

→ {⇓1, 2, 6, 4, 8}

We see that decimation is indeed the inverse of interpolation, but the converse is not necessarily true.
After all, it is highly unlikely for any interpolation scheme to recover or predict the exact value of the
samples that were discarded during decimation. In situations where both interpolation and decimation are
to be performed in succession, it is therefore best to interpolate first. In practice, of course, interpolation or
decimation should preserve the information content of the original signal, and this imposes constraints on
the rate at which the original samples were acquired.

2.3.3 Fractional Delays

Fractional (typically half-sample) delays are sometimes required in practice and can be implemented using
interpolation and decimation. If we require that interpolation be followed by decimation and integer shifts,
the correct result is obtained by using interpolation followed by an integer shift and decimation. To generate
the signal y[n] = x[n− M

N ] = x[Nn−M
N ] from x[n], we use the following sequence of operations.

x[n] −→ interpolate by N −→ x[ n
N ] −→ delay by M −→ x[n−M

N ] −→ decimate by N −→ x[Nn−M
N ] = y[n]

The idea is to ensure that each operation (interpolation, shift, and decimation) involves integers.

REVIEW PANEL 2.8
Decimation by N , Interpolation by N , and Fractional Delay by M/N

Decimation: Keep only every Nth sample (at n = kN). This leads to potential loss of information.
Interpolation: Insert N−1 new values after each sample. The new sample values may equal
zero (zero interpolation), or the previous value (step interpolation), or linearly interpolated values.
Fractional Delay (y[n] = x[n− M

N ]): Interpolate x[n] by N , then delay by M , then decimate by N .

EXAMPLE 2.4 (Decimation and Interpolation)

(a) Let x[n] = {1,
⇓
2, 5, −1}. Generate x[2n] and various interpolated versions of x[n/3].

To generate y[n] = x[2n], we remove samples at the odd indices to obtain x[2n] = {⇓2, −1}.

The zero-interpolated signal is g[n] = x[n
3 ] = {1, 0, 0,

⇓
2, 0, 0, 5, 0, 0, −1, 0, 0}.

The step-interpolated signal is h[n] = x[n
3 ] = {1, 1, 1,

⇓
2, 2, 2, 5, 5, 5, −1, −1, −1}.

The linearly interpolated signal is s[n] = x[n
3 ] = {1, 4

3 , 5
3 ,

⇓
2, 3, 4, 5, 3, 1, −1, − 2

3 , − 1
3}.

In linear interpolation, note that we interpolated the last two values toward zero.
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2.4 Common Discrete Signals 15

(b) Let x[n] = {3, 4,
⇓
5, 6}. Find g[n] = x[2n− 1] and the step-interpolated signal h[n] = x[0.5n− 1].

In either case, we first find y[n] = x[n− 1] = {3,
⇓
4, 5, 6}. Then

g[n] = y[2n] = x[2n− 1] = {⇓4, 6}.

h[n] = y[n
2 ] = x[0.5n− 1] = {3, 3,

⇓
4, 4, 5, 5, 6, 6}.

(c) Let x[n] = {3, 4,
⇓
5, 6}. Find y[n] = x[2n/3] assuming step interpolation where needed.

Since we require both interpolation and decimation, we first interpolate and then decimate to get

After interpolation: g[n] = x[n
3 ] = {3, 3, 3, 4, 4, 4,

⇓
5, 5, 5, 6, 6, 6}.

After decimation: y[n] = g[2n] = x[ 23n] = {3, 3, 4,
⇓
5, 5, 6}.

(d) Let x[n] = {2, 4,
⇓
6, 8}. Find the signal y[n] = x[n− 0.5] assuming linear interpolation where needed.

We first interpolate by 2, then delay by 1, and then decimate by 2 to get

After interpolation: g[n] = x[n
2 ] = {2, 3, 4, 5,

⇓
6, 7, 8, 4} (last sample interpolated to zero).

After delay: h[n] = g[n− 1] = x[n−1
2 ] = {2, 3, 4,

⇓
5, 6, 7, 8, 4}.

After decimation: y[n] = h[2n] = x[ 2n−1
2 ] = x[n− 0.5] = { 3,

⇓
5, 7, 4}.

DRILL PROBLEM 2.5

Let x[n] = {⇓8, 4, 2, 6}. Find y[n] = x[2n], g[n] = x[2n + 1], h[n] = x[0.5n], and f [n] = x[n + 0.5].
Assume linear interpolation where required.

Answers: y[n] = {⇓8, 2} g[n] = {⇓4, 6} h[n] = {⇓8, 6, 4, 3, 2, 4, 6, 3} f [n] = {⇓6, 3, 4, 3}.

2.4 Common Discrete Signals
The unit impulse (or unit sample) δ[n], the unit step u[n], and the unit ramp are defined as

δ[n] =
{

0, n 6= 0
1, n = 0 u[n] =

{
0, n < 0
1, n ≥ 0 r[n] = nu[n] =

{
0, n < 0
n, n ≥ 0 (2.11)

The discrete impulse is just a unit sample at n = 0. It is completely free of the kind of ambiguities associated
with the analog impulse δ(t) at t = 0. The discrete unit step u[n] also has a well-defined, unique value of
u[0] = 1 (unlike its analog counterpart u(t)). The signal x[n] = Anu[n] = Ar[n] describes a discrete ramp
whose “slope” A is given by x[k]− x[k − 1], the difference between adjacent sample values.
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16 Chapter 2 Discrete Signals

REVIEW PANEL 2.9
The Discrete Impulse, Step, and Ramp Are Well Defined at n = 0

[n]δ [n]u [n]r

1

n n

1

n
12

3 4 5

2.4.1 Properties of the Discrete Impulse

The product of a signal x[n] with the impulse δ[n− k] results in

x[n]δ[n− k] = x[k]δ[n− k] (2.12)

This is because δ[n− k] is nonzero only at n = k where the value of x[n] corresponds to x[k]. The result is
an impulse with strength x[k]. The product property leads directly to

∞∑
n=−∞

x[n]δ[n− k] = x[k] (2.13)

This is the sifting property. The impulse extracts (sifts out) the value x[k] from x[n] at the impulse
location n = k.

2.4.2 Signal Representation by Impulses

A discrete signal x[n] may be expressed as a sum of shifted impulses δ[n−k] whose sample values correspond
to x[k], the values of x[n] at n = k. Thus,

x[n] =
∞∑

k=−∞
x[k]δ[n− k] (2.14)

For example, the signals u[n] and r[n] may be expressed as a train of shifted impulses:

u[n] =
∞∑

k=0

δ[n− k] r[n] =
∞∑

k=0

kδ[n− k] (2.15)

The signal u[n] may also be expressed as the cumulative sum of δ[n], and the signal r[n] may be described
as the cumulative sum of u[n]:

u[n] =
n∑

k=−∞
δ[k] r[n] =

n∑

k=−∞
u[k] (2.16)

2.4.3 Discrete Pulse Signals

The discrete rectangular pulse rect(n/2N) and the discrete triangular pulse tri(n/N) are defined by

rect
( n

2N

)
=

{
1, |n| ≤ N
0, elsewhere tri

( n

N

)
=

{
1− |n|

N , |n| ≤ N
0, elsewhere

(2.17)
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2.4 Common Discrete Signals 17

The signal rect( n
2N ) has 2N + 1 unit samples over −N ≤ n ≤ N . The factor 2N in rect( n

2N ) gets around
the problem of having to deal with half-integer values of n when N is odd. The signal x[n] = tri(n/N) also
has 2N + 1 samples over −N ≤ n ≤ N , with its end samples x[N ] and x[−N ] being zero. It is sometimes
convient to express pulse-like signals in terms of these standard forms.

REVIEW PANEL 2.10
The Discrete rect and tri Functions

(N = 5) [n /N ][n /2N ]rect(N = 5)

n
N

1

-N

tri

N

1

-N
n

EXAMPLE 2.5 (Describing Sequences and Signals)

(a) Let x[n] = (2)n and y[n] = δ[n− 3]. Find z[n] = x[n]y[n] and evaluate the sum A =
∑

z[n].

The product, z[n] = x[n]y[n] = (2)3δ[n− 3] = 8δ[n− 3], is an impulse.

The sum, A =
∑

z[n], is given by
∑

(2)nδ[n− 3] = (2)3 = 8.

(b) Mathematically describe the signals of Figure E2.5B in at least two different ways.

[n]x [n]y

−3 −2 −1 1 2 3

[n]h

−1 −1
2

n

4
2

6

2
4

2
4

6

nn

4

2 3
1

2 3 4 61 5

Figure E2.5B The signals for Example 2.5(b)

1. The signal x[n] may be described as the sequence x[n] = {4,
⇓
2, −1, 3}.

It may also be written as x[n] = 4δ[n + 1] + 2δ[n]− δ[n− 1] + 3δ[n− 2].

2. The signal y[n] may be represented variously as
A numeric sequence: y[n] = {0, 0, 2, 4, 6, 6, 6}.
A sum of shifted impulses: y[n] = 2δ[n− 2] + 4δ[n− 3] + 6δ[n− 4] + 6δ[n− 5] + 6δ[n− 6].
A sum of steps and ramps: y[n] = 2r[n− 1]− 2r[n− 4]− 6u[n− 7].
Note carefully that the argument of the step function is [n− 7] (and not [n− 6]).

3. The signal h[n] may be described as h[n] = 6 tri(n/3) or variously as

A numeric sequence: h[n] = {0, 2, 4,
⇓
6, 4, 2, 0}.

A sum of impulses: h[n] = 2δ[n + 2] + 4δ[n + 1] + 6δ[n] + 4δ[n− 1] + 2δ[n− 2].
A sum of steps and ramps: h[n] = 2r[n + 3]− 4r[n] + 2r[n− 3].
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18 Chapter 2 Discrete Signals

DRILL PROBLEM 2.6
(a) Sketch the signals x[n] = δ[n + 2] + 2δ[n− 1] and y[n] = 2u[n + 1]− u[n− 3].

(b) Express the signal h[n] = {3, 3,
⇓
3, 5, 5, 5} using step functions.

(c) Express the signal g[n] = {⇓2, 4, 6, 4, 2} using tri functions.
Answers: (b) h[n] = 3u[n + 2] + 2u[n− 1]− 5u[n− 4] (c) g[n] = 6 tri(n−2

3 )

2.4.4 The Discrete Sinc Function

The discrete sinc function is defined by

sinc
( n

N

)
=

sin(nπ/N)
(nπ/N)

, sinc(0) = 1 (2.18)

The signal sinc(n/N) equals zero at n = kN , k = ±1,±2, . . .. At n = 0, sinc(0) = 0/0 and cannot be
evaluated in the limit since n can take on only integer values. We therefore define sinc(0) = 1. The envelope
of the sinc function shows a mainlobe and gradually decaying sidelobes. The definition of sinc(n/N) also
implies that sinc(n) = δ[n].

2.4.5 Discrete Exponentials

Discrete exponentials are often described using a rational base. For example, the signal x[n] = 2nu[n] shows
exponential growth while y[n] = (0.5)nu[n] is a decaying exponential. The signal f [n] = (−0.5)nu[n] shows
values that alternate in sign. The exponential x[n] = αnu[n], where α = rejθ is complex, may be described
using the various formulations of a complex number as

x[n] = αnu[n] =
(
rejθ

)n
u[n] = rnejnθu[n] = rn[cos(nθ) + j sin(nθ)]u[n] (2.19)

This complex-valued signal requires two separate plots (the real and imaginary parts, for example) for a
graphical description. If 0 < r < 1, x[n] describes a signal whose real and imaginary parts are exponentially
decaying cosines and sines. If r = 1, the real and imaginary parts are pure cosines and sines with a peak
value of unity. If r > 1, we obtain exponentially growing sinusoids.

2.5 Discrete-Time Harmonics and Sinusoids
If we sample an analog sinusoid x(t) = cos(2πf0t) at intervals of ts corresponding to a sampling rate of
S = 1/ts samples/s (or S Hz), we obtain the sampled sinusoid

x[n] = cos(2πfnts + θ) = cos(2πn f
S + θ) = cos(2πnF + θ) (2.20)

The quantities f and ω = 2πf describe analog frequencies. The normalized frequency F = f/S is called the
digital frequency and has units of cycles/sample. The frequency Ω = 2πF is the digital radian frequency
with units of radians/sample. The various analog and digital frequencies are compared in Figure 2.1. Note
that the analog frequency f = S (or ω = 2πS) corresponds to the digital frequency F = 1 (or Ω = 2π).

More generally, we find it useful to deal with complex valued signals of the form

x̄[n] = ej(2πnF+θ) = cos(2πnF + θ) + j sin(2πnF + θ) (2.21)

This allows us to regard the real sinusoid x[n] = cos(2πnF + θ) as the real part of the complex-valued signal
x̄[n].
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ω = 2π f

Ω = 2π F
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Analog frequency

Digital frequency

Connection between analog and digital frequencies

Figure 2.1 Comparison of analog and digital frequencies

REVIEW PANEL 2.11
The Digital Frequency Is the Analog Frequency Normalized by Sampling Rate S

F (cycles/sample) =
f(cycles/sec)

S(samples/sec)
Ω(radians/sample) =

ω(radians/sec)
S(samples/sec)

= 2πF

2.5.1 Discrete-Time Harmonics Are Not Always Periodic in Time

An analog sinusoid x(t) = cos(2πf0t + θ) has two remarkable properties. It is unique for every frequency.
And it is periodic in time for every choice of the frequency f0. Its sampled version, however, is a beast of a
different kind.

Are all discrete-time sinusoids and harmonics periodic in time? Not always! To understand this idea,
suppose x[n] is periodic with period N such that x[n] = x[n + N ]. This leads to

cos(2πnF0 + θ) = cos[2π(n + N)F0 + θ] = cos(2πnF0 + θ + 2πNF0) (2.22)

The two sides are equal provided NF0 equals an integer k. In other words, F0 must be a rational fraction
(ratio of integers) of the form k/N . What we are really saying is that a DT sinusoid is not always periodic but
only if its digital frequency is a ratio of integers or a rational fraction. The period N equals the denominator
of k/N , provided common factors have been canceled from its numerator and denominator. The significance
of k is that it takes k full periods of the analog sinusoid to yield one full period of the sampled sinusoid.
The common period of a combination of periodic DT sinusoids equals the least common multiple (LCM)
of their individual periods. If F0 is not a rational fraction, there is no periodicity, and the DT sinusoid is
classified as nonperiodic or almost periodic. Examples of periodic and nonperiodic DT sinusoids appear in
Figure 2.2. Even though a DT sinusoid may not always be periodic, it will always have a periodic envelope.
This discussion also applies to complex-valued harmonics of the type ej(2πnF0+θ).

REVIEW PANEL 2.12

The Discrete Harmonic cos(2πnF0 + θ) or ej(2πnF0+θ) Is Not Always Periodic in Time
It is periodic only if its digital frequency F0 = k/N can be expressed as a ratio of integers.
Its period equals N if common factors have been canceled in k/N .
One period of the sampled sinusoid is obtained from k full periods of the analog sinusoid.
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Figure 2.2 Discrete-time sinusoids are not always periodic

EXAMPLE 2.6 (Discrete-Time Harmonics and Periodicity)

(a) Is x[n] = cos(2πFn) periodic if F = 0.32? If F =
√

3? If periodic, what is its period N?

If F = 0.32, x[n] is periodic because F = 0.32 = 32
100 = 8

25 = k
N . The period is N = 25.

If F =
√

3, x[n] is not periodic because F is irrational and cannot be expressed as a ratio of integers.

(b) What is the period of the harmonic signal x[n] = ej0.2nπ + e−j0.3nπ?

The digital frequencies in x[n] are F1 = 0.1 = 1
10 = k1

N1
and F2 = 0.15 = 3

20 = k2
N2

.

Their periods are N1 = 10 and N2 = 20.

The common period is thus N = LCM(N1, N2) = LCM(10, 20) = 20.

(c) The signal x(t) = 2 cos(40πt) + sin(60πt) is sampled at 75 Hz. What is the common period of the
sampled signal x[n], and how many full periods of x(t) does it take to obtain one period of x[n]?

The frequencies in x(t) are f1 = 20 Hz and f2 = 30 Hz. The digital frequencies of the individual
components are F1 = 20

75 = 4
15 = k1

N1
and F2 = 30

75 = 2
5 = k2

N2
. Their periods are N1 = 15 and N2 = 5.

The common period is thus N = LCM(N1, N2) = LCM(15, 5) = 15.

The fundamental frequency of x(t) is f0 = GCD(20, 30) = 10 Hz. One period of x(t) is T = 1
f0

= 0.1 s.
Since N = 15 corresponds to a duration of Nts = N

S = 0.2 s, it takes two full periods of x(t) to obtain
one period of x[n]. We also get the same result by computing GCD(k1, k2) = GCD(4, 2) = 2.

DRILL PROBLEM 2.7

(a) What is the digital frequency of x[n] = 2ej(0.25nπ+30◦)? Is x[n] periodic?
(b) What is the digital frequency of y[n] = cos(0.5n + 30◦)? Is y[n] periodic?
(c) What is the common period N of the signal f [n] = cos(0.4nπ) + sin(0.5nπ + 30◦)?
Answers: (a) F0 = 0.125, yes (b) F0 = 0.25/π, no (c) N = 20
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2.5.2 Discrete-Time Harmonics Are Always Periodic in Frequency

Unlike analog sinusoids, discrete-time sinusoids and harmonics are always periodic in frequency. If we start
with the sinusoid x[n] = cos(2πnF0 + θ) and add an integer m to F0, we get

cos[2πn(F0 + m) + θ] = cos(2πnF0 + θ + 2πnm) = cos(2πnF0 + θ) = x[n]

This result says that discrete-time (DT) sinusoids at the frequencies F0±m are identical. Put another way,
a DT sinusoid is periodic in frequency (has a periodic spectrum) with unit period. The range −0.5 ≤ F ≤ 0.5
defines the principal period or principal range. A DT sinusoid can be uniquely identified only if its
frequency falls in the principal range. A DT sinusoid with a frequency F0 outside this range can always be
expressed as a DT sinusoid with a frequency that falls in the principal period by subtracting out an integer
M from F0 such that the new frequency Fa = F0−M satisfies −0.5 ≤ Fu ≤ 0.5). The frequency Fa is called
the aliased digital frequency and it is always smaller than original frequency F0. This discussion also applies
to complex-valued harmonics of the type ej(2πnF0+θ).

To summarize, a discrete-time sinusoid or harmonic is periodic in time only if its digital frequency F0 is
a rational fraction, but it is always periodic in frequency (with unit period.

REVIEW PANEL 2.13

The Discrete Harmonic cos(2πnF0 + θ) or ej(2πnF0+θ) Is Always Periodic in Frequency
Its frequency period is unity (harmonics at F0 and F0 ±K are identical for integer K).
It is unique only if F0 lies in the principal period −0.5 < F0 ≤ 0.5.
If F0 > 0.5, the unique frequency is Fa = F0−M , where the integer M is chosen to ensure −0.5 < Fa ≤ 0.5.

DRILL PROBLEM 2.8
(a) Let x[n] = ej1.4nπ = ej2πFun where Fu is in the principal range. What is the value of Fu?
(b) Let y[n] = cos(2.4nπ + 30◦). Rewrite y[n] in terms of its frequency in the principal range.
(c) Rewrite f [n] = cos(1.4nπ + 20◦) + cos(2.4nπ + 30◦) using frequencies in the principal range.
Answers: (a) −0.3 (b) cos(0.4nπ + 30◦) (c) cos(0.6nπ − 20◦) + cos(0.4nπ + 30◦)

2.6 The Sampling Theorem
The central concept in the digital processing of analog signals is that the sampled signal must be a unique
representation of the underlying analog signal. When the sinusoid x(t) = cos(2πf0t + θ) is sampled at the
sampling rate S, the digital frequency of the sampled signal is F0 = f0/S. In order for the sampled sinusoid
to permit a unique correspondence with the underlying analog sinusoid, the digital frequency F0 must lie in
the principal range, i.e., |F0| < 0.5. This implies S > 2|f0| and suggests that we must choose a sampling
rate S that exceeds |2f0|. More generally, the sampling theorem says that for a unique correspondence
between an analog signal and the version reconstructed from its samples (using the same sampling rate),
the sampling rate must exceed twice the highest signal frequency fmax. The value S = 2fmax is called the
critical sampling rate or Nyquist rate or Nyquist frequency. The time interval ts = 1

2fmax
is called

the Nyquist interval. For the sinusoid x(t) = cos(2πf0t + θ), the Nyquist rate is SN = 2f0 = 2
T and this

rate is equivalent to taking exactly two samples per period (because the sampling interval is ts = T
2 ). In

order to exceed the Nyquist rate, we should obtain more than two signal samples per period.
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REVIEW PANEL 2.14
The Sampling Theorem: How to Sample an Analog Signal Without Loss of Information
For an analog signal band-limited to fmax Hz, the sampling rate S must exceed 2fmax.
S = 2fmax defines the Nyquist rate. ts = 1

2fmax
defines the Nyquist interval.

For an analog sinusoid: The Nyquist rate corresponds to taking two samples per period.

DRILL PROBLEM 2.9
(a) What is the critical sampling rate in Hz for the following signals:

x(t) = cos(10πt) y(t) = cos(10πt) + sin(15πt) f(t) = cos(10πt) sin(15πt) g(t) = cos2(10πt)
(b) A 50 Hz sinusoid is sampled at twice the Nyquist rate. How many samples are obtained in 3 s?
Answers: (a) 10, 15, 25, 20 (b) 600

2.6.1 Signal Reconstruction and Aliasing

Consider an analog signal x(t) = cos(2πf0t + θ) and its sampled version x[n] = cos(2πnF0 + θ), where
F0 = f0/S. If x[n] is to be a unique representation of x(t), we must be able to reconstruct x(t) from x[n]. In
practice, reconstruction uses only the central copy or image of the periodic spectrum of x[n] in the principal
period −0.5 ≤ F ≤ 0.5, which corresponds to the analog frequency range −0.5S ≤ f ≤ 0.5S. We use a
lowpass filter to remove all other replicas or images, and the output of the lowpass filter corresponds to the
reconstructed analog signal. As a result, the highest frequency fH we can identify in the signal reconstructed
from its samples is fH = 0.5S.

Whether the reconstructed analog signal matches x(t) or not depends on the sampling rate S. If we
exceed the Nyquist rate (i.e. S > 2f0), the digital frequency F0 = f0/S is always in the principal range
−0.5 ≤ F ≤ 0.5, and the reconstructed analog signal is identical to x(t). If the sampling rate is below the
Nyquist rate (i.e. S < 2f0), the digital frequency exceeds 0.5. Its image in the principal range appears at
the lower digital frequency Fa = F0−M (corresponding to the lower analog frequency fa = f0−MS), where
M is an integer that places the aliased digital frequency Fa between −0.5 and 0.5 (or the aliased analog
frequency fa between −0.5S and 0.5S). The reconstructed aliased signal xa(t) = cos(2πfat+ θ) is at a lower
frequency fa = SFa than f0 and is no longer a replica of x(t). The phenomenon, where a reconstructed
sinusoid appears at a lower frequency than the original, is what aliasing is all about. The real problem
is that the original signal x(t) and the aliased signal xa(t) yield identical sampled representations at the
sampling frequency S and prevent unique identification of the original signal x(t) from its samples!

REVIEW PANEL 2.15
Aliasing Occurs if the Analog Signal cos(2πf0t + θ) Is Sampled Below the Nyquist Rate
If S < 2f0, the reconstructed analog signal is aliased to a lower frequency |fa| < 0.5S. We find fa as
fa = f0 −MS, where M is an integer that places fa in the principal period (−0.5S < fa ≤ 0.5S).
Before reconstruction, all frequencies must be brought into the principal period.
The highest frequency of the reconstructed signal cannot exceed half the reconstruction rate.

EXAMPLE 2.7 (Aliasing and Its Effects)

(a) A 100-Hz sinusoid x(t) is sampled at 240 Hz. Has aliasing occurred? How many full periods of x(t)
are required to obtain one period of the sampled signal?
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The sampling rate exceeds 200 Hz, so there is no aliasing. The digital frequency is F = 100
240 = 5

12 .
Thus, five periods of x(t) yield 12 samples (one period) of the sampled signal.

(b) A 100-Hz sinusoid is sampled at rates of 240 Hz, 140 Hz, 90 Hz, and 35 Hz. In each case, has aliasing
occurred, and if so, what is the aliased frequency?

To avoid aliasing, the sampling rate must exceed 200 Hz. If S = 240 Hz, there is no aliasing, and
the reconstructed signal (from its samples) appears at the original frequency of 100 Hz. For all other
choices of S, the sampling rate is too low and leads to aliasing. The aliased signal shows up at a lower
frequency. The aliased frequencies corresponding to each sampling rate S are found by subtracting out
multiples of S from 100 Hz to place the result in the range −0.5S ≤ f ≤ 0.5S. If the original signal
has the form x(t) = cos(200πt + θ), we obtain the following aliased frequencies and aliased signals:

1. S = 140 Hz, fa = 100− 140 = −40 Hz, xa(t) = cos(−80πt + θ) = cos(80πt− θ)

2. S = 90 Hz, fa = 100− 90 = 10 Hz, xa(t) = cos(20πt + θ)

3. S = 35 Hz, fa = 100− 3(35) = −5 Hz, xa(t) = cos(−10πt + θ) = cos(10πt− θ)

We thus obtain a 40-Hz sinusoid (with reversed phase), a 10-Hz sinusoid, and a 5-Hz sinusoid (with
reversed phase), respectively. Notice that negative aliased frequencies simply lead to a phase reversal
and do not represent any new information. Finally, had we used a sampling rate exceeding the Nyquist
rate of 200 Hz, we would have recovered the original 100-Hz signal every time. Yes, it pays to play by
the rules of the sampling theorem!

(c) Two analog sinusoids x1(t) (shown light) and x2(t) (shown dark) lead to an identical sampled version as
illustrated in Figure E2.7C. Has aliasing occurred? Identify the original and aliased signal. Identify the
digital frequency of the sampled signal corresponding to each sinusoid. What is the analog frequency
of each sinusoid if S = 50 Hz? Can you provide exact expressions for each sinusoid?
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Two analog signals and their sampled version

Figure E2.7C The sinusoids for Example 2.7(c)

Examine the interval (0, 0.1) s. The sampled signal shows five samples per period. This covers three
full periods of x1(t) and so F1 = 3

5 . This also covers two full periods of x2(t), and so F2 = 2
5 . Clearly,

x1(t) (with |F1| > 0.5) is the original signal that is aliased to x2(t). The sampling interval is 0.02 s.
So, the sampling rate is S = 50 Hz. The original and aliased frequencies are f1 = SF1 = 30 Hz and
f2 = SF2 = 20 Hz.

From the figure, we can identify exact expressions for x1(t) and x2(t) as follows. Since x1(t) is a delayed
cosine with x1(0) = 0.5, we have x1(t) = cos(60πt − π

3 ). With S = 50 Hz, the frequency f1 = 30 Hz

c©Ashok Ambardar, September 1, 2003



24 Chapter 2 Discrete Signals

actually aliases to f2 = −20 Hz, and thus x2(t) = cos(−40πt− π
3 ) = cos(40πt+ π

3 ). With F = 30
50 = 0.6

(or F = −0.4), the expression for the sampled signal is x[n] = cos(2πnF − π
3 ).

(d) A 100-Hz sinusoid is sampled, and the reconstructed signal (from its samples) shows up at 10 Hz.
What was the sampling rate S?

One choice is to set 100 − S = 10 and obtain S = 90 Hz. Another possibility is to set 100 − S = −10 to
give S = 110 Hz. In fact, we can also subtract out integer multiples of S from 100 Hz, set 100−MS = 10
and compute S for various choices of M . For example, if M = 2, we get S = 45 Hz and if M = 3,
we get S = 30 Hz. We can also set 100 − NS = −10 and get S = 55 Hz for N = 2. Which of these
sampling rates was actually used? We have no way of knowing!

DRILL PROBLEM 2.10
(a) A 60-Hz sinusoid x(t) is sampled at 200 Hz. What is the period N of the sampled signal? How many
full periods of x(t) are required to obtain these N samples? What is the frequency (in Hz) of the analog
signal reconstructed from the samples?
(b) A 160-Hz sinusoid x(t) is sampled at 200 Hz. What is the period N of the sampled signal? How many
full periods of x(t) are required to obtain these N samples? What is the frequency (in Hz) of the analog
signal reconstructed from the samples?
(c) The signal x(t) = cos(60πt + 30◦) is sampled at 50 Hz. What is the expression for the analog signal
y(t) reconstructed from the samples?
(d) A 150-Hz sinusoid is to be sampled. Pick the range of sampling rates (in Hz) closest to 150 Hz that
will cause aliasing but prevent phase reversal of the analog signal reconstructed from the samples.
Answers: (a) 10, 3, −60 (b) 5, 4, 40 (c) y(t) = cos(40πt− 30◦) (d) 100 < S < 150

2.6.2 Reconstruction at Different Sampling Rates

There are situations when we sample a signal using one sampling rate S1 but reconstruct the analog signal
from samples using a different sampling rate S2. In such situations, a frequency f0 in the original signal
will result in a digital frequency F0 = f0/S1. If S1 > 2f0, there is no aliasing, F0 is in the principal range
and the recovered frequency is just fr = F0S2 = f0(S2/S1). If S1 < 2f0, there is aliasing and the recovered
frequency is fr = FaS2 == fa(S2/S1), where Fa corresponds to the aliased digital frequency in the principal
range. In other words, all frequencies, aliased or recovered, should be identified by their principal period.

REVIEW PANEL 2.16
Aliased or Reconstructed Frequencies Are Always Identified From The Principal Period
Sampling: Unique digital frequencies always lie in the principal period −0.5 < Fa ≤ 0.5.
Reconstruction at SR: Analog frequencies lie in the principal period −0.5SR < fa ≤ 0.5SR.
The reconstructed frequency is fR = SRFa = SR

fa

S .

EXAMPLE 2.8 (Signal Reconstruction at Different Sampling Rates)
A 100-Hz sinusoid is sampled at S Hz, and the sampled signal is then reconstructed at 540 Hz. What is the
frequency of the reconstructed signal if S = 270 Hz? If S = 70 Hz?
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1. If S = 270 Hz, the digital frequency of the sampled signal is F = 100
270 = 10

27 , which lies in the principal
period. The frequency fr of the reconstructed signal is then fr = SF = 540F = 200 Hz.

2. If S = 70 Hz, the digital frequency of the sampled signal is F = 100
70 = 10

7 , which does not lie in the
principal period. The frequency of the principal period is F = 10

7 − 1 = − 3
7 , and the frequency fr of

reconstructed signal is then fr = 70F = SF = −30 Hz. The negative sign simply translates to a phase
reversal in the reconstructed signal.

DRILL PROBLEM 2.11
(a) A 60 Hz signal is sampled at 200 Hz. What is the frequency (in Hz) of the signal reconstructed from
the samples if the reconstruction rate is 300 Hz?
(b) A 160 Hz signal is sampled at 200 Hz. If the frequency of the signal reconstructed from the samples
is also 160 Hz, what reconstruction rate (in Hz) was used?
Answers: (a) 90 (b) 800

2.7 An Introduction to Random Signals
The signals we have studied so far are called deterministic or predictable. They are governed by a unique
mathematical representation that, once established, allows us to completely characterize the signal for all
time, past, present, or future. In contrast to this is the class of signals known as random or stochastic
whose precise value cannot be predicted in advance. We stress that only the future values of a random signal
pose a problem since past values of any signal, random or otherwise, are exactly known once they have
occurred. Randomness or uncertainty about future signal values is inherent in many practical situations. In
fact, a degree of uncertainty is essential for communicating information. The longer we observe a random
signal, the more the additional information we gain and the less the uncertainty. To fully understand the
nature of random signals requires the use of probability theory, random variables, and statistics. Even with
such tools, the best we can do is to characterize random signals only on the average based on their past
behavior.

2.7.1 Probability

Figure 2.3 shows the results of two experiments, each repeated under identical conditions. The first exper-
iment always yields identical results no matter how many times it is run and yields a deterministic signal.
We need to run the experiment only once to predict what the next, or any other run, will yield.

The second experiment gives a different result or realization x(t) every time the experiment is repeated
and describes a stochastic or random system. A random signal or random process X(t) comprises
the family or ensemble of all such realizations obtained by repeating the experiment many times. Each
realization x(t), once obtained, ceases to be random and can be subjected to the same operations as we use
for deterministic signals (such as derivatives, integrals, and the like). The randomness of the signal stems
from the fact that one realization provides no clue as to what the next, or any other, realization might yield.
At a given instant t, each realization of a random signal can assume a different value, and the collection of
all such values defines a random variable. Some values are more likely to occur, or more probable, than
others. The concept of probability is tied to the idea of repeating an experiment a large number of times
in order to estimate this probability. Thus, if the value 2V occurs 600 times in 1000 runs, we say that the
probability of occurrence of 2 V is 0.6.
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(a)  Four realizations of a deterministic signal
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Figure 2.3 Realizations of a deterministic and stochastic process

The probability of an event A, denoted Pr(A), is the proportion of successful outcomes to the (very
large) number of times the experiment is run and is a fraction between 0 and 1 since the number of successful
runs cannot exceed the total number of runs. The larger the probability Pr(A), the more the chance of event
A occurring. To fully characterize a random variable, we must answer two questions:

1. What is the range of all possible (nonrandom) values it can acquire? This defines an ensemble space,
which may be finite or infinite.

2. What are the probabilities for all the possible values in this range? This defines the probability
distribution function F (x). Clearly, F (x) must always lie between 0 and 1.

It is common to work with the derivative of the probability distribution function called the probability
density function f(x). The distribution function F (x) is simply the running integral of the density f(x):

f(x) =
dF (x)

dx
or F (x) =

∫ x

−∞
f(λ) dλ (2.23)

The probability F (x1) = Pr[X ≤ x1] that X is less than x1 is given by

Pr[X ≤ x1] =
∫ x1

−∞
f(x) dx (2.24)

The probability that X lies between x1 and x2 is Pr[x1 < X ≤ x2] = F (x2)− F (x1). The area of f(x) is 1.

2.7.2 Measures for Random Variables

Measures or features of a random variable X are based on its distribution. The mean, or expectation, is a
measure of where the distribution is centered and is defined by

Ê(x) = mx =
∫ ∞

−∞
xf(x) dx (mean or expectation) (2.25)

The mean square value is similarly defined by

Ê(x2) =
∫ ∞

−∞
x2f(x) dx (mean square value) (2.26)
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Many of the features of deterministic or random signals are based on moments. The nth moment mn is
defined by

mn =
∫ ∞

−∞
xnf(x) dx (nth moment) (2.27)

We see that the zeroth moment m0 gives the signal area, the first moment m1 corresponds to the mean,
and the second moment m2 defines the mean square value. Moments about the mean are called central
moments and also find widespread use. The nth central moment µn is defined by

µn =
∫ ∞

−∞
(x−mx)nf(x) dx (nth central moment) (2.28)

A very commonly used feature is the second central moment µ2. It is also called the variance, denoted σ2
x,

and defined by

σ2
x = Ê[(x−mx)2] = µ2 =

∫ ∞

−∞
(x−mx)2f(x) dx (variance) (2.29)

The variance may be expressed in terms of the mean and the mean square values as

σ2
x = Ê[(x−mx)2] = Ê(x2)−m2

x =
∫ ∞

−∞
x2f(x) dx−m2

x (2.30)

The variance measures the spread (or dispersion) of the distribution about its mean. The less the spread,
the smaller is the variance. The quantity σ is known as the standard deviation and provides a measure
of the uncertainty in a physical measurement. The variance is also a measure of the ac power in a signal.
For a periodic deterministic signal x(t) with period T , the variance can be readily found by evaluating the
signal power (and subtracting the power due to the dc component if present)

σ2
x =

1
T

∫ T

0

x2(t) dt

︸ ︷︷ ︸
total signal power

−
[

1
T

∫ T

0

x(t) dt

]2

︸ ︷︷ ︸
dc power

(2.31)

This equation can be used to obtain the results listed in the following review panel.

REVIEW PANEL 2.17
The Variance of Some Useful Periodic Signals With Period T

Sinusoid: If x(t) = A cos(2π t
T t + θ), then σ2 = A2

2 .

Triangular Wave: If x(t) = A t
T , 0 ≤ t < T , or x(t) = A(1− |t|

0.5T ), |t| ≤ 0.5T , then σ2 = A2

12 .

Square Wave: If x(t) = A, 0 ≤ t < 0.5T and x(t) = 0, 0.5 ≤ t < T , then σ2 = A2

4 .

DRILL PROBLEM 2.12
(a) Find the variance of the periodic signal x(t) = A, 0 ≤ t < 0.25T and x(t) = 0, 0.25T ≤ t < T .
(b) Find the variance of the raised cosine signal x(t) = A[1 + cos(2π t

T + θ)].
Answers: (a) 3

16A2 (b) 5
4A2
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2.7.3 The Chebyshev Inequality

The measurement of the variance or standard deviation gives us some idea of how much the actual values
will deviate from the mean but provides no indication of how often we might encounter large deviations from
the mean. The Chebyshev inequality allows us to estimate the probability for a deviation to be within
certain bounds (given by α) as

Pr(|x−mx| > α) ≤ (σx/α)2 or Pr(|x−mx| ≤ α) > 1− σ2
x

α2
(Chebyshev inequality) (2.32)

It assumes that the variance or standard deviation is known. To find the probability for the deviation to be
within k standard deviations, we set α = kσx to give

Pr(|x−mx| ≤ kσx) > 1− 1
k2

The Law of Large Numbers

Chebyshev’s inequality, in turn, leads to the so called law of large numbers which, in essence, states that
while an individual random variable may take on values quite far from its mean (show a large spread), the
arithmetic mean of a large number of random values shows little spread, taking on values very close to its
common mean with a very high probability.

2.7.4 Probability Distributions

Two of the most commonly encountered probability distributions are the uniform distribution and normal
(or Gaussian) distribution. These are illustrated in Figure 2.4.

mx mx

x

f(x)

α β
x

F(x)

1

α β
x

f(x)

0.5

Uniform density Uniform distribution Gaussian density

x

F(x)
1

Gaussian distribution

β−α
1

Figure 2.4 The uniform and normal probability distributions

2.7.5 The Uniform Distribution

In a uniform distribution, every value is equally likely, since the random variable shows no preference for a
particular value. The density function f(x) of a typical uniform distribution is just a rectangular pulse with
unit area defined by

f(x) =





1
β − α

, α ≤ x ≤ β

0, otherwise
(uniform density function) (2.33)

Its mean and variance are given by

mx = 0.5(α + β) σ2
x =

(b− a)2

12
(2.34)
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The distribution function F (x) is given by

F (x) =





0 x < a
x−a
b−a a ≤ x ≤ b

1 x > b
(uniform distribution function) (2.35)

This is a finite ramp that rises from a value of zero at x = α to a value of unity at x = β and equals unity
for x ≥ α. For a uniform distribution in which values are equally likely to fall between −0.5 and 0.5, the
density function is f(x) = 1, −0.5 ≤ x < 0.5 with a mean of zero and a variance of 1

12 .
Uniform distributions occur frequently in practice. When quantizing signals in uniform steps, the error

in representing a signal value is assumed to be uniformly distributed between −0.5∆ and 0.5∆, where ∆ is
the quantization step. The density function of the phase of a sinusoid with random phase is also uniformly
distributed between −π and π.

DRILL PROBLEM 2.13
(a) If the quantization error ε is assumed to be uniformly distributed between −0.5∆ and 0.5∆, sketch
the density function f(ε) and compute the variance.
(b) The phase of a sinusoid with random phase is uniformly distributed between −π and π. Compute the
variance.

Answers: (a) σ2
ε = ∆2

12 (b) π2

3

f (ε)

−∆/2 ∆/2

1/∆

ε

2.7.6 The Gaussian or Normal Distribution

The Gaussian or normal probability density is bell shaped and defined by

f(x) =
1√

2πσ2
x

exp
[
− (x−mx)2

2σ2
x

]
(normal distribution) (2.36)

It has a mean of mx and a variance of σ2
x. This density function has a single peak at x = mx, even symmetry

about the peak (x = mx) and inflection points at mx ± σ.
The Gaussian process exhibits several useful properties

1. The variable ax + b where a > 0 is also normally distributed.
2. The sum of normally distributed random signals is also normally distributed. The mean of the sum
equals the sum of the individual means and, if the statistically independent, the variance of the sum equals
the sum of the individual variances.
3. The ratio of the mean deviation (x − mx) and the standard deviation σx for all normal distributions
equals

√
2/π. Thus, for normal distributions, one may equally well work with the mean deviation rather

than the standard deviation.
4. All the higher order moments of a Gaussian random variable may be obtained from a knowledge of the
first two moments alone. In particular, the nth central moments are zero for odd values of n and the following
relation then obtains for the even order (n = 2k) central moments

E[(x−mx)2k] = (1)(3)(5) . . . (2k − 1)σ2k =
(2k)!
k!2k

, n = 2k (central moments of Gaussian) (2.37)
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The Gaussian Distribution Function

The distribution function F (x) of a Gaussian distribution cannot be written in closed form and is given by

F (x) =
1√

2πσ2

∫ x

−∞
exp

[
− (x− m̂x)2

2σ2

]
dx (Gaussian distribution function) (2.38)

The Standard Gaussian Distribution

A Gaussian distribution with a mean of zero and a variance of unity (mx = 0, σ2 = 1) is called a standard
Gaussian and denoted P (x).

P (x) =
1√
2π

∫ x

−∞
e−x2/2 dx (standard Gaussian distribution) (2.39)

The Error Function

Another function that is used extensively is the error function defined by

erf(x) =
2√
π

∫ x

0

e−x2
dx (error function) (2.40)

The Gaussian distribution F (x) may be expressed in terms of the standard form or the error function as

F (x) = P

(
x−mx

σ

)
= 0.5 + 0.5 erf

(
x−mx

σ
√

2

)
(2.41)

The probability that x lies between x1 and x2 may be expressed in terms of the error function as

Pr[x1 ≤ x ≤ x2] = F (x2)− F (x1) = 0.5 erf
(

x2 −mx

σ
√

2

)
− 0.5 erf

(
x1 −mx

σ
√

2

)
(2.42)

This is a particularly useful form since tables of error functions are widely available. A note of caution to the
unwary, however. Several different, though functionally equivalent, definitions of P (x), erf(x) and related
functions are also prevalent in the literature.

The Q-Function

The Q-function describes the area of the tail of a Gaussian distribution. For the standard Gaussian, the
area Q(x) of the tail is given by

Q(x) = 1− P (x) =
1√
2π

∫ ∞

x

e−x2/2 dx

The Q-function and may also be expressed in terms of the error function as

Q(x) = 0.5− 0.5 erf(x/
√

2) (2.43)

The probability that x lies between x1 and x2 may also be expressed in terms of the Q-function as

Pr[x1 ≤ x ≤ x2] = Q

(
x1 −mx

σ

)
−Q

(
x2 −mx

σ

)
(2.44)

The results for the standard distribution may be carried over to a distribution with arbitrary mean mx and
arbitrary standard deviation σx via the simple change of variable x → (x−mx)/σ.
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The Central Limit Theorem

The central limit theorem asserts that the probability density function of the sum of many random signals
approaches a Gaussian as long as their means are finite and their variance is small compared to the total
variance (but nonzero). The individual processes need not even be Gaussian.

2.7.7 Discrete Probability Distributions

The central limit theorem is even useful for discrete variables. When the variables that make up a given
process s are discrete and the number n of such variables is large, that is,

s =
n∑

i=1

xi, n À 1

we may approximate s by a Gaussian whose mean equals nmx and whose variance equals nσ2
x. Thus,

fn(s) ≈ 1√
2πnσ2

x

exp
[
− (s− nmx)2

2nσ2
x

]
, n À 1 (2.45)

Its distribution allows us to compute the probability Pr[s1 ≤ s ≤ s2] in terms of the error function or
Q-function as

Pr[s1 ≤ s ≤ s2] ≈ 0.5 erf
(

s2 − nmx

σ
√

2n

)
− 0.5 erf

(
s1 − nmx

σ
√

2n

)
= Q

(
s1 − nmx

σ
√

n

)
−Q

(
s2 − nmx

σ
√

n

)
(2.46)

This relation forms the basis for numerical approximations involving discrete probabilities.

The Binomial Distribution

Consider an experiment with two outcomes which result in mutually independent and complementary events.
If the probability of a success is p, and the probability of a failure is q = 1− p, the probability of exactly k
successes in n trials follows the binomial distribution and is given by

Pr[s = k] = pn(k) = Cn
k (p)k(1− p)n−k (binomial probability) (2.47)

Here, Cn
k represents the binomial coefficient and may be expressed in terms of factorials or gamma

functions as

Cn
k =

n!
k! (n− k)!

=
Γ(n + 1)

Γ(k + 1) Γ(n− k + 1)

The probability of at least k successes in n trials is given by

Pr[s ≥ k] =
n∑

i=k

pn(i) = Ip(k, n− k + 1)

where Ix(a, b) is the incomplete beta function defined by

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt B(a, b) =
ΓaΓb

Γ(a + b)
, a > 0, b > 0
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The probability of getting between k1 and k2 successes in n trials describes a cumulative probability
because we must sum the probabilities of all possible outcomes for the event (the probability of exactly k1,
then k1 + 1, then k1 + 2 successes, and so on to k2 successes) and is given by

Pr[k1 ≤ s ≤ k2] =
k2∑

i=k1

pn(i)

For large n, its evaluation can become a computational nightmare.

Some Useful Approximations

When n is large and neither p → 0 nor q → 0, the probability pn(k) of exactly k successes in n trials may
be approximated by the Gaussian

pn(k) = Cn
k (p)k(1− p)n−k ' 1√

2πσ2
exp

[
− (k −m)2

2σ2

]
, m = np, σ2 = np(1− p)

This result is based on the central limit theorem and called the de Moivre-Laplace approximation. It
assumes that σ2 À 1 and |k −m| is of the same order as σ or less. Using this result, the probability of at
least k successes in n trials may be written in terms of the error function or Q-function as

Pr[s ≥ k] ≈ 0.5− 0.5 erf
(

k −m

σ
√

2

)
= Q

(
k −m

σ

)

Similarly, the cumulative probability of between k1 and k2 successes in n trials is

Pr[k1 ≤ s ≤ k2] ≈ 0.5 erf
(

k2 −m

σ
√

2

)
− 0.5 erf

(
k1 −m

σ
√

2

)
= Q

(
k1 −m

σ

)
−Q

(
k2 −m

σ

)

The Poisson probability

If the number of trials n approaches infinity and the probability p of success in each trial approaches zero
but their product m = np remains constant, the binomial probability is well approximated by

Pr[s = k] = Cn
k (p)k(1− p)n−k ≈ mke−m

k!
= pm(k) (Poisson probability) (2.48)

where n À 1, p ¿ 1 and m = np. This is known as the Poisson probability. The mean and variance of this
distribution are both equal to m. In practical situations, the Poisson approximation is often used whenever
n is large and p is small and not just under the stringent limiting conditions imposed in its derivation. Unlike
the binomial distribution which requires probabilities for both success and failure, the Poisson distribution
requires only the probability of a success p (through the parameter m = np that describes the expected
number of successes) and may thus be used even when the number of unsuccessful outcomes is unknown.
The probability that the number of successes will lie between 0 and k inclusive, if the expected number is
m, is given by the summation

Pr[s ≤ k] =
k∑

i=0

kpm(i) =
k∑

i=0

mie−m

i!
= 1− P (k + 1,m), k ≥ 1

where P (a, x) is the so called incomplete gamma function defined by

P (a, x) =
1

Γ(a)

∫ x

0

ta−1e−t dt a > 0
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Note that Pr[s ≤ 0] = e−m. For large m, the Poisson probability of exactly k successes may also be
approximated using the central limit theorem to give

pm(k) ' 1√
2πm

exp
[
− (k −m)2

2m

]

Using this approximation, the probability of between k1 and k2 successes is

Pr[k1 ≤ s ≤ k2] ≈ 0.5 erf
(

k2 −m√
2m

)
− 0.5 erf

(
k1 −m√

2m

)
= Q

(
k1 −m√

m

)
−Q

(
k2 −m√

m

)

2.7.8 Distributions for Deterministic Signals

The idea of distributions also applies to deterministic periodic signals for which they can be found as exact
analytical expressions. Consider the periodic signal x(t) of Figure 2.5. The probability Pr[X < 0] that
x(t) < 0 is zero. The probability Pr[X < 3] that x(t) is less than 3 is 1. Since x(t) varies linearly over one
period (T = 3), all values in this range are equally likely. This means that the density function is constant
over the range 0 ≤ x ≤ 3 with an area of unity, and the distribution F (x) rises linearly from zero to unity
over this range. The distribution F (x) and density f(x) are also shown in Figure 2.5. The variance can be
computed either from the signal x(t) itself or from its density function f(x). The results are repeated for
convenience.

σ2
x =

1
T

∫ T

0

x2(t) dt

︸ ︷︷ ︸
total signal power

−
[

1
T

∫ T

0

x(t) dt

]2

︸ ︷︷ ︸
dc power

or σ2
x =

∫ ∞

−∞
x2f(x) dx−m2

x (2.49)

T=3

Periodic signal

3

t

x(t)
Distribution

3

1

x

F(x)
Density

3

1/3

x

f(x)

Figure 2.5 A periodic signal and its density and distribution functions

DRILL PROBLEM 2.14
(a) Refer to Figure 2.5. Compute the variance from x(t) itself.
(b) Refer to Figure 2.5. Compute the variance from its density function f(x).
Answers: (a) 0.75 (b) 0.75

2.7.9 Stationary, Ergodic, and Pseudorandom Signals

A random signal is called stationary if its statistical features do not change over time. Thus, different (non-
overlapping) segments of a single realization are more or less identical in the statistical sense. Signals that are
non-stationary do not possess this property and may indeed exhibit a trend (a linear trend, for example)
with time. Stationarity suggests a state of statistical equilibrium akin to the steady-state for deterministic
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situations. A stationary process is typically characterized by a constant mean and constant variance. The
statistical properties of a stationary random signal may be found as ensemble averages across the process
by averaging over all realizations at one specific time instant or as time averages along the process by
averaging a single realization over time. The two are not always equal. If they are, a stationary process is
said to be ergodic. The biggest advantage of ergodicity is that we can use features from a single realization
to describe the whole process. It is very difficult to establish whether a stationary process is ergodic but,
because of the advantages it offers, ergodicity is often assumed in most practical situations! For an ergodic
signal, the mean equals the time average, and the variance equals the ac power (the power in the signal with
its dc component removed).

2.7.10 Statistical Estimates

Probability theory allows us to fully characterize a random signal from an a priori knowledge of its probability
distribution. This yields features like the mean and variance of the random variable. In practice, we are
faced with exactly the opposite problem of finding such features from a set of discrete data, often in the
absence of a probability distribution. The best we can do is get an estimate of such features and perhaps
even the distribution itself. This is what statistical estimation achieves. The mean and variance are typically
estimated directly from the observations xk, k = 0, 1, 2, . . . , N − 1 as

mx =
1
N

N−1∑

k=0

xk σ2
x =

1
N − 1

N−1∑

k=0

(xk −mx)2 (2.50)

Histograms

The estimates fk of a probability distribution are obtained by constructing a histogram from a large number
of observations. A histogram is a bar graph of the number of observations falling within specified amplitude
levels, or bins, as illustrated in Figure 2.6.

Number of observations
Number of observations

Histogram of a uniform random signal Histogram of a Gaussian random signal

Bin width Bin width

Figure 2.6 Histograms of a uniformly distributed and a normally distributed random signal

Pseudorandom Signals

In many situations, we use artificially generated signals (which can never be truly random) with prescribed
statistical features called pseudorandom signals. Such signals are actually periodic (with a very long
period), but over one period their statistical features approximate those of random signals.

2.7.11 Random Signal Analysis

If a random signal forms the input to a system, the best we can do is to develop features that describe the
output on the average and estimate the response of a system under the influence of random signals. Such

c©Ashok Ambardar, September 1, 2003



2.7 An Introduction to Random Signals 35

estimates may be developed either in the time domain or in the frequency domain.

Signal-to-Noise Ratio

For a noisy signal x(t) = s(t)+An(t) with a signal component s(t) and a noise component An(t) (with noise
amplitude A), the signal-to-noise ratio (SNR) is the ratio of the signal power σ2

s and noise power A2σ2
n

and usually defined in decibels (dB) as

SNR = 10 log
(

σ2
s

A2σ2
n

)
dB (2.51)

The decibel value of α is defined as 20 log α. We can adjust the SNR by varying the noise amplitude A.

Application: Coherent Signal Averaging

Coherent signal averaging is a method of extracting signals from noise and assumes that the experiment can
be repeated and the noise corrupting the signal is random (and uncorrelated). Averaging the results of many
runs tends to average out the noise to zero, and the signal quality (or signal-to-noise ratio) improves. The
more the number of runs, the smoother and less noisy the averaged signal. We often remove the mean or any
linear trend before averaging. Figure 2.7 shows one realization of a noisy sine wave and the much smoother
results of averaging 8 and 48 such realizations. This method is called coherent because it requires time
coherence (time alignment of the signal for each run). It relies, for its success, on perfect synchronization of
each run and on the statistical independence of the contaminating noise.

0 5 10

−5

0

5

(a)  One realization of noisy sine

Time

A
m
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de

0 5 10

−5

0
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(b)  Average of 8 realizations

Time

A
m
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itu

de
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−5

0
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(c)  Average of 48 realizations

Time

A
m
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itu

de

Figure 2.7 Coherent averaging of a noisy sine wave
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CHAPTER 2 PROBLEMS

2.1 (Discrete Signals) Sketch each signal and find its energy or power as appropriate.

(a) x[n] = {⇓6, 4, 2, 2} (b) y[n] = {−3, −2,
⇓
−1, 0, 1}

(c) f [n] = {⇓0, 2, 4, 6} (d) g[n] = u[n]− u[n− 4]
(e) p[n] = cos(nπ/2) (f) q[n] = 8(0.5)nu[n]

[Hints and Suggestions: Only p[n] is a power signal. The rest have finite energy.]

2.2 (Signal Duration) Use examples to argue that the product of a right-sided and a left-sided discrete-
time signal is always time-limited or identically zero.

[Hints and Suggestions: Select simple signals that either overlap or do not overlap.]

2.3 (Operations) Let x[n] = {⇓6, 4, 2, 2}. Sketch the following signals and find their signal energy.

(a) y[n] = x[n− 2] (b) f [n] = x[n + 2] (c) g[n] = x[−n + 2] (d) h[n] = x[−n− 2]

[Hints and Suggestions: Note that g[n] is a folded version of f [n].]

2.4 (Operations) Let x[n] = 8(0.5)n(u[n + 1]− u[n− 3]). Sketch the following signals.

(a) y[n] = x[n− 3] (b) f [n] = x[n + 1] (c) g[n] = x[−n + 4] (d) h[n] = x[−n− 2]

[Hints and Suggestions: Note that x[n] contains 5 samples (from n = −1 to n = 3). To display the
marker for y[n] (which starts at n = 2), we include two zeros at n = 0 (the marker) and n = 1.]

2.5 (Energy and Power) Classify the following as energy signals, power signals, or neither and find the
energy or power as appropriate.
(a) x[n] = 2nu[−n] (b) y[n] = 2nu[−n− 1] (c) f [n] = cos(nπ)

(d) g[n] = cos(nπ/2) (e) p[n] =
1
n

u[n− 1] (f) q[n] =
1√
n

u[n− 1]

(g) r[n] =
1
n2

u[n− 1] (h) s[n] = ejnπ (i) d[n] = ejnπ/2

(j) t[n] = e(j+1)nπ/4 (k) v[n] = jn/4 (l) w[n] = (
√

j)n + (
√

j)−n

[Hints and Suggestions: For x[n] and y[n], 22n = 4n = (0.25)−n. Sum this from n = −∞ to n = 0
(or n = −1) using a change of variable (n → −n) in the summation. For p[n], sum 1/n2 over n = 1
to n = ∞ using tables. For q[n], the sum of 1/n from n = 1 to n = ∞ does not converge! For t[n],
separate the exponentials. To compute the power for s[n] and d[n], note that |s[n]| = |d[n]| = 1. For
v[n], use j = ejπ/2. For w[n], set

√
j = ejπ/4 and use Euler’s relation to convert to a sinusoid.]

2.6 (Energy and Power) Sketch each of the following signals, classify as an energy signal or power
signal, and find the energy or power as appropriate.

(a) x[n] =
∞∑

k=−∞
y[n− kN ], where y[n] = u[n]− u[n− 3] and N = 6

(b) f [n] =
∞∑

k=−∞
(2)n−5k(u[n− 5k]− u[n− 5k − 4])
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[Hints and Suggestions: The period of x[n] is N = 6. With y[n] = u[n] − u[n − 3], one period of
x[n] (starting at n = 0) is {1, 1, 1, 0, 0, 0}. The period of f [n] is N = 5. Its one period (starting at
n = 0) contains four samples from 2n(u[n]− u[n− 4]) and one trailing zero.]

2.7 (Decimation and Interpolation) Let x[n] = {4, 0,
⇓
2, −1, 3}. Find and sketch the following

signals and compare their signal energy with the energy in x[n].

(a) The decimated signal d[n] = x[2n]
(b) The zero-interpolated signal f [n] = x[n

2 ]
(c) The step-interpolated signal g[n] = x[n

2 ]
(d) The linearly interpolated signal h[n] = x[n

2 ]

[Hints and Suggestions: To get d[n], retain the samples of x[n] at n = 0,±2,±4, . . .. Assuming that
the interpolated signals will be twice the length of x[n], the last sample will be 0 for f [n], 3 for g[n]
and 1.5 (the linearly interpolated value with x[n] = 0, n > 2) for h[n].]

2.8 (Interpolation and Decimation) Let x[n] = 4 tri(n/4). Sketch the following signals and describe
how they differ.

(a) x[ 23n], using zero interpolation followed by decimation
(b) x[ 23n], using step interpolation followed by decimation
(c) x[ 23n], using decimation followed by zero interpolation
(d) x[ 23n], using decimation followed by step interpolation

2.9 (Fractional Delay) Starting with x[n], we can generate the signal x[n − 2] (using a delay of 2) or
x[2n − 3] (using a delay of 3 followed by decimation). However, to generate a fractional delay of the
form x[n− M

N ] requires a delay, interpolation, and decimation!

(a) Describe the sequence of operations required to generate x[n− 2
3 ] from x[n].

(b) Let x[n] = {⇓1, 4, 7, 10, 13}. Sketch x[n] and x[n− 2
3 ]. Use linear interpolation where required.

(c) Generalize the results of part (a) to generate x[n− M
N ] from x[n]. Any restrictions on M and N?

[Hints and Suggestions: In part (a) the sequence of operations requires interpolation, delay (by 2)
and decimation. The interpolation and decimation factors are identical.]

2.10 (Symmetry) Sketch each signal and its even and odd parts.

(a) x[n] = 8(0.5)nu[n] (b) y[n] = u[n] (c) f [n] = 1 + u[n]

(d) g[n] = u[n]− u[n− 4] (e) p[n] = tri(n−3
3 ) (f) q[n] = {6,

⇓
4, 2, 2}

[Hints and Suggestions: Confirm the appropriate symmetry for each even part and each odd part.
For each even part, the sample at n = 0 must equal the original sample value. For each odd part, the
sample at n = 0 must equal zero.]

2.11 (Sketching Discrete Signals) Sketch each of the following signals:

(a) x[n] = r[n + 2]− r[n− 2]− 4u[n− 6] (b) y[n] = rect(n
6 )

(c) f [n] = rect(n−2
4 ) (d) g[n] = 6 tri(n−4

3 )

[Hints and Suggestions: Note that f [n] is a rectangular pulse centered at n = 2 with 5 samples. Also,
g[n] is a triangular pulse centered at n = 4 with 7 samples (including the zero-valued end samples).]
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2.12 (Sketching Signals) Sketch the following signals and describe how they are related.

(a) x[n] = δ[n] (b) f [n] = rect(n) (c) g[n] = tri(n) (d) h[n] = sinc(n)

2.13 (Signal Description) For each signal shown in Figure P2.13,

(a) Write out the numeric sequence, and mark the index n = 0 by an arrow.
(b) Write an expression for each signal using impulse functions.
(c) Write an expression for each signal using steps and/or ramps.
(d) Find the signal energy.
(e) Find the signal power, assuming that the sequence shown repeats itself.

[n]x [n]x [n]x [n]x
2

1

Signal  1

−3 8
n

Signal  2

n

2

4

−3 3

Signal  3

1
2

3
4 5

5
n

Signal  4

2
n

8

6 5
4

3

4
Figure P2.13 Signals for Problem 2.13

[Hints and Suggestions: In part (c), all signals must be turned off (by step functions) and any
ramps must be first flattened out (by other ramps) . For example, signal 3 = r[n]−r[n−5]−5u[n−6].
The second term flattens out the first ramp and last term turns the signal off after n = 5.]

2.14 (Discrete Exponentials) A causal discrete exponential has the form x[n] = αnu[n].

(a) Assume that α is real and positive. Pick convenient values for α > 1, α = 1, and α < 1; sketch
x[n]; and describe the nature of the sketch for each choice of α.

(b) Assume that α is real and negative. Pick convenient values for α < −1, α = −1, and α > −1;
sketch x[n]; and describe the nature of the sketch for each choice of α.

(c) Assume that α is complex and of the form α = Aejθ, where A is a positive constant. Pick
convenient values for θ and for A < 1, A = 1, and A > 1; sketch the real part and imaginary
part of x[n] for each choice of A; and describe the nature of each sketch.

(d) Assume that α is complex and of the form α = Aejθ, where A is a positive constant. Pick
convenient values for θ and for A < 1, A = 1, and A > 1; sketch the magnitude and imaginary
phase of x[n] for each choice of A; and describe the nature of each sketch.

2.15 (Signal Representation) The two signals shown in Figure P2.15 may be expressed as

(a) x[n] = Aαn(u[n]− u[n−N ]) (b) y[n] = A cos(2πFn + θ)

Find the constants in each expression and then find the signal energy or power as appropriate.

[n]x [n]y

1

1 2 3 4 5

4

n

1 1
1 1

2 2

−2−2

−1 −1 −1 −1

1
n

Figure P2.15 Signals for Problem 2.15

[Hints and Suggestions: For y[n], first find the period to compute F . Then, evaluate y[n] at two
values of n to get two equations for, say y[0] and y[1]. These will yield θ (from their ratio) and A.]
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2.16 (Discrete-Time Harmonics) Check for the periodicity of the following signals, and compute the
common period N if periodic.

(a) x[n] = cos(nπ
2 ) (b) y[n] = cos(n

2 )
(c) f [n] = sin(nπ

4 )− 2 cos(nπ
6 ) (d) g[n] = 2 cos(nπ

4 ) + cos2(nπ
4 )

(e) p[n] = 4− 3 sin( 7nπ
4 ) (f) q[n] = cos( 5nπ

12 ) + cos( 4nπ
9 )

(g) r[n] = cos( 8
3nπ) + cos( 8

3n) (h) s[n] = cos( 8nπ
3 ) cos(nπ

2 )
(i) d[n] = ej0.3nπ (j) e[n] = 2ej0.3nπ + 3ej0.4nπ

(k) v[n] = ej0.3n (l) w[n] = (j)n/2

[Hints and Suggestions: There is no periodicity if F is not a rational fraction for any component.
Otherwise, work with the periods and find their LCM. For w[n], note that j = ejπ/2.]

2.17 (The Roots of Unity) The N roots of the equation zN = 1 can be found by writing it as zN = ej2kπ

to give z = ej2kπ/N , k = 0, 1, . . . , N − 1. What is the magnitude and angle of each root? The roots
can be displayed as vectors directed from the origin whose tips lie on a circle.

(a) What is the length of each vector and the angular spacing between adjacent vectors? Sketch for
N = 5 and N = 6.

(b) Extend this concept to find the roots of zN = −1 and sketch for N = 5 and N = 6.

[Hints and Suggestions: In part (b), note that zN = −1 = ejπej2kπ = ej(2k+1)π.]

2.18 (Digital Frequency) Set up an expression for each signal, using a digital frequency |F | < 0.5, and
another expression using a digital frequency in the range 4 < F < 5.

(a) x[n] = cos( 4nπ
3 ) (b) x[n] = sin( 4nπ

3 ) + 3 sin( 8nπ
3 )

[Hints and Suggestions: First find the digital frequency of each component in the principal range
(−0.5 < F ≤ 0.5). Then, add 4 or 5 as appropriate to bring each frequency into the required range.]

2.19 (Digital Sinusoids) Find the period N of each signal if periodic. Express each signal using a digital
frequency in the principal range (|F | < 0.5) and in the range 3 ≤ F ≤ 4.

(a) x[n] = cos( 7nπ
3 ) (b) x[n] = cos( 7nπ

3 ) + sin(0.5nπ) (c) x[n] = cos(n)

2.20 (Sampling and Aliasing) Each of the following sinusoids is sampled at S = 100 Hz. Determine if
aliasing has occurred and set up an expression for each sampled signal using a digital frequency in the
principal range (|F | < 0.5).

(a) x(t) = cos(320πt + π
4 ) (b) x(t) = cos(140πt− π

4 ) (c) x(t) = sin(60πt)

[Hints and Suggestions: Find the frequency f0. If S > 2f0 there is no aliasing and F < 0.5.
Otherwise, bring F into the principal range to write the expression for the sampled signal.]

2.21 (Aliasing and Signal Reconstruction) The signal x(t) = cos(320πt + π
4 ) is sampled at 100 Hz,

and the sampled signal x[n] is reconstructed at 200 Hz to recover the analog signal xr(t).

(a) Has aliasing occurred? What is the period N and the digital frequency F of x[n]?
(b) How many full periods of x(t) are required to generate one period of x[n]?
(c) What is the analog frequency of the recovered signal xr(t)?
(d) Write expressions for x[n] (using |F | < 0.5) and for xr(t).
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[Hints and Suggestions: For part (b), if the digital frequency is expressed as F = k/N where N
is the period and k is an integer, it takes k full cycles of the analog sinusoid to get N samples of
the sampled signal. In part (c), the frequency of the reconstructed signal is found from the aliased
frequency in the principal range.]

2.22 (Digital Pitch Shifting) One way to accomplish pitch shifting is to play back (or reconstruct) a
sampled signal at a different sampling rate. Let the analog signal x(t) = sin(15800πt + 0.25π) be
sampled at a sampling rate of 8 kHz.
(a) Find its sampled representation with digital frequency |F | < 0.5.
(b) What frequencies are heard if the signal is reconstructed at a rate of 4 kHz?
(c) What frequencies are heard if the signal is reconstructed at a rate of 8 kHz?
(d) What frequencies are heard if the signal is reconstructed at a rate of 20 kHz?

[Hints and Suggestions: The frequency of the reconstructed signal is found from the aliased digital
frequency in the principal range and the appropriate reconstruction rate.]

2.23 (Discrete-Time Chirp Signals) Consider the signal x(t) = cos[φ(t)], where φ(t) = αt2. Show that
its instantaneous frequency fi(t) = 1

2π φ′(t) varies linearly with time.
(a) Choose α such that the frequency varies from 0 Hz to 2 Hz in 10 seconds, and generate the

sampled signal x[n] from x(t), using a sampling rate of S = 4 Hz.
(b) It is claimed that, unlike x(t), the signal x[n] is periodic. Verify this claim, using the condition

for periodicity (x[n] = x[n + N ]), and determine the period N of x[n].
(c) The signal y[n] = cos(πF0n

2/M), n = 0, 1, . . . ,M −1, describes an M -sample chirp whose digital
frequency varies linearly from 0 to F0. What is the period of y[n] if F0 = 0.25 and M = 8?

[Hints and Suggestions: In part (b), if x[n] = cos(βn2), periodicity requires x[n] = x[n + N ] or
cos(βn2) = cos[β(n2 + 2nN + N2)]. Thus 2nNβ = 2mπ and N2β = 2kπ where m and k are integers.
Satisfy these conditions for the smallest integer N .]

2.24 (Time Constant) For exponentially decaying discrete signals, the time constant is a measure of
how fast a signal decays. The 60-dB time constant describes the (integer) number of samples it takes
for the signal level to decay by a factor of 1000 (or 20 log 1000 = 60 dB).
(a) Let x[n] = (0.5)nu[n]. Compute its 60-dB time constant and 40-dB time constant.
(b) Compute the time constant in seconds if the discrete-time signal is derived from an analog signal

sampled at 1 kHz.

2.25 (Signal Delay) The delay D of a discrete-time energy signal x[n] is defined by

D =

∞∑

k=−∞
kx2[k]

∞∑

k=−∞
x2[k]

(a) Verify that the delay of the symmetric sequence x[n] = {4, 3, 2, 1,
⇓
0, 1, 2, 3, 4} is zero.

(b) Compute the delay of the signals g[n] = x[n− 1] and h[n] = x[n− 2].
(c) What is the delay of the signal y[n] = 1.5(0.5)nu[n]− 2δ[n]?

[Hints and Suggestions: For part (c), compute the summations required in the expression for the
delay by using tables and the fact that y[n] = −0.5 for n = 0 and y[n] = 1.5(0.5)n for n ≥ 1.]
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2.26 (Periodicity) It is claimed that the sum of an absolutely summable signal x[n] and its shifted (by
multiples of N) replicas is a periodic signal xp[n] with period N . Verify this claim by sketching the
following and, for each case, compute the power in the resulting periodic signal xp[n] and compare the
sum and energy of one period of xp[n] with the sum and energy of x[n].
(a) The sum of x[n] = tri(n/3) and its replicas shifted by N = 7
(b) The sum of x[n] = tri(n/3) and its replicas shifted by N = 6
(c) The sum of x[n] = tri(n/3) and its replicas shifted by N = 5
(d) The sum of x[n] = tri(n/3) and its replicas shifted by N = 4
(e) The sum of x[n] = tri(n/3) and its replicas shifted by N = 3

2.27 (Periodic Extension) The sum of an absolutely summable signal x[n] and its shifted (by multiples
of N) replicas is called the periodic extension of x[n] with period N .
(a) Show that one period of the periodic extension of the signal x[n] = αnu[n] with period N is

y[n] =
αn

1− αN
, 0 ≤ n ≤ N − 1

(b) How does the sum of one period of the periodic extension y[n] compare with the sum of x[n]?
(c) With α = 0.5 and N = 3, compute the signal energy in x[n] and the signal power in y[n].

[Hints and Suggestions: For one period (n = 0 to n = N − 1), only x[n] and the tails of the replicas
to its left contribute. So, find the sum of x[n + kN ] = αn+kN only from k = 0 to k = ∞.]

2.28 (Signal Norms) Norms provide a measure of the size of a signal. The p-norm, or Hölder norm,
‖x‖p for discrete signals is defined by ‖x‖p = (

∑ |x|p)1/p, where 0 < p < ∞ is a positive integer. For
p = ∞, we also define ‖x‖∞ as the peak absolute value |x|max.
(a) Let x[n] = {3, −j4, 3 + j4}. Find ‖x‖1, ‖x‖2, and ‖x‖∞.
(b) What is the significance of each of these norms?

COMPUTATION AND DESIGN

2.29 (Discrete Signals) For each part, plot the signals x[n] and y[n] over −10 ≤ n ≤ 10 and compare.

(a) x[n] = u[n + 4]− u[n− 4] + 2δ[n + 6]− δ[n− 3] y[n] = x[−n− 4]
(b) x[n] = r[n + 6]− r[n + 3]− r[n− 3] + r[n− 6] y[n] = x[n− 4]
(c) x[n] = rect( n

10 )− rect(n−3
6 ) y[n] = x[n + 4]

(d) x[n] = 6 tri(n
6 )− 3 tri(n

3 ) y[n] = x[−n + 4]

2.30 (Signal Interpolation) Let h[n] = sin(nπ/3), 0 ≤ n ≤ 10. Plot the signal h[n]. Use this to
generate and plot the zero-interpolated, step-interpolated, and linearly interpolated signals assuming
interpolation by 3.

2.31 (Discrete Exponentials) A causal discrete exponential may be expressed as x[n] = αnu[n], where
the nature of α dictates the form of x[n]. Plot the following over 0 ≤ n ≤ 40 and comment on the
nature of each plot.
(a) The signal x[n] for α = 1.2, α = 1, and α = 0.8.
(b) The signal x[n] for α = −1.2, α = −1, and α = −0.8.
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(c) The real part and imaginary parts of x[n] for α = Aejπ/4, with A = 1.2, A = 1, and A = 0.8.
(d) The magnitude and phase of x[n] for α = Aejπ/4, with A = 1.2, A = 1, and A = 0.8.

2.32 (Discrete-Time Sinusoids) Which of the following signals are periodic and with what period? Plot
each signal over −10 ≤ n ≤ 30. Do the plots confirm your expectations?
(a) x[n] = 2 cos(nπ

2 ) + 5 sin(nπ
5 ) (b) x[n] = 2 cos(nπ

2 ) sin(nπ
3 )

(c) x[n] = cos(0.5n) (d) x[n] = 5 sin(nπ
8 + π

4 )− 5 cos(nπ
8 − π

4 )

2.33 (Complex-Valued Signals) A complex-valued signal x[n] requires two plots for a complete descrip-
tion in one of two forms—the magnitude and phase vs. n or the real part vs. n and imaginary part
vs. n.

(a) Let x[n] = {⇓2, 1 + j, −j2, 2− j2, −4}. Sketch each form for x[n] by hand.
(b) Let x[n] = e−j0.3nπ. Use Matlab to plot each form over −30 ≤ n ≤ 30. Is x[n] periodic? If so,

can you identify its period from the Matlab plots? From which form, and how?

2.34 (Complex Exponentials) Let x[n] = 5
√

2ej(nπ
9 −π

4 ). Plot the following signals and, for each case,
derive analytic expressions for the signals plotted and compare with your plots. Is the signal x[n]
periodic? What is the period N? Which plots allow you determine the period of x[n]?
(a) The real part and imaginary part of x[n] over −20 ≤ n ≤ 20
(b) The magnitude and phase of x[n] over −20 ≤ n ≤ 20
(c) The sum of the real and imaginary parts over −20 ≤ n ≤ 20
(d) The difference of the real and imaginary parts over −20 ≤ n ≤ 20

2.35 (Complex Exponentials) Let x[n] = (
√

j)n +(
√

j)−n. Plot the following signals and, for each case,
derive analytic expressions for the sequences plotted and compare with your plots. Is the signal x[n]
periodic? What is the period N? Which plots allow you determine the period of x[n]?
(a) The real part and imaginary part of x[n] over −20 ≤ n ≤ 20
(b) The magnitude and phase of x[n] over −20 ≤ n ≤ 20

2.36 (Discrete-Time Chirp Signals) An N -sample chirp signal x[n] whose digital frequency varies
linearly from F0 to F1 is described by

x[n] = cos
[
2π

(
F0n +

F1 − F0

2N
n2

)]
, n = 0, 1, . . . , N − 1

(a) Generate and plot 800 samples of a chirp signal x whose digital frequency varies from F = 0 to
F = 0.5. Using the Matlab based routine timefreq (from the author’s website), observe how
the frequency of x varies linearly with time.

(b) Generate and plot 800 samples of a chirp signal x whose digital frequency varies from F = 0 to
F = 1. Is the frequency always increasing? If not, what is the likely explanation?

2.37 (Chirp Signals) It is claimed that the chirp signal x[n] = cos(πn2/6) is periodic (unlike the analog
chirp signal x(t) = cos(πt2/6)). Plot x[n] over 0 ≤ n ≤ 20. Does x[n] appear periodic? If so, can you
identify the period N? Justify your results by trying to find an integer N such that x[n] = x[n + N ]
(the basis for periodicity).

2.38 (Signal Averaging) Extraction of signals from noise is an important signal-processing application.
Signal averaging relies on averaging the results of many runs. The noise tends to average out to zero,
and the signal quality or signal-to-noise ratio (SNR) improves.
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(a) Generate samples of the sinusoid x(t) = sin(800πt) sampled at S = 8192 Hz for 2 seconds. The
sampling rate is chosen so that you may also listen to the signal if your machine allows.

(b) Create a noisy signal s[n] by adding x[n] to samples of uniformly distributed noise such that s[n]
has an SNR of 10 dB. Compare the noisy signal with the original and compute the actual SNR
of the noisy signal.

(c) Sum the signal s[n] 64 times and average the result to obtain the signal sa[n]. Compare the
averaged signal sa[n], the noisy signal s[n], and the original signal x[n]. Compute the SNR of
the averaged signal xa[n]. Is there an improvement in the SNR? Do you notice any (visual and
audible) improvement? Should you?

(d) Create the averaged result xb[n] of 64 different noisy signals and compare the averaged signal
xb[n] with the original signal x[n]. Compute the SNR of the averaged signal xb[n]. Is there an
improvement in the SNR? Do you notice any (visual and/or audible) improvement? Explain how
the signal xb[n] differs from xa[n].

(e) The reduction in SNR is a function of the noise distribution. Generate averaged signals, using
different noise distributions (such as Gaussian noise) and comment on the results.

2.39 (The Central Limit Theorem) The central limit theorem asserts that the sum of independent noise
distributions tends to a Gaussian distribution as the number N of distributions in the sum increases.
In fact, one way to generate a random signal with a Gaussian distribution is to add many (typically 6
to 12) uniformly distributed signals.
(a) Generate the sum of uniformly distributed random signals using N = 2, N = 6, and N = 12 and

plot the histograms of each sum. Does the histogram begin to take on a Gaussian shape as N
increases? Comment on the shape of the histogram for N = 2.

(b) Generate the sum of random signals with different distributions using N = 6 and N = 12. Does
the central limit theorem appear to hold even when the distributions are not identical (as long
as you select a large enough N)? Comment on the physical significance of this result.

2.40 (Music Synthesis I) A musical composition is a combination of notes, or signals, at various frequen-
cies. An octave covers a range of frequencies from f0 to 2f0. In the western musical scale, there are 12
notes per octave, logarithmically equispaced. The frequencies of the notes from f0 to 2f0 correspond
to

f = 2k/12f0 k = 0, 1, 2, . . . , 11

The 12 notes are as follows (the ] and [ stand for sharp and flat, and each pair of notes in parentheses
has the same frequency):

A (A] or B[) B C (C] or D[) D (D] or E[) E F (F] or G[) G (G] or A[)

An Example: Raga Malkauns: In Indian classical music, a raga is a musical composition based on
an ascending and descending scale. The notes and their order form the musical alphabet and grammar
from which the performer constructs musical passages, using only the notes allowed. The performance
of a raga can last from a few minutes to an hour or more! Raga malkauns is a pentatonic raga (with
five notes) and the following scales:

Ascending: D F G B[ C D Descending: C B[ G F D

The final note in each scale is held twice as long as the rest. To synthesize this scale in Matlab, we
start with a frequency f0 corresponding to the first note D and go up in frequency to get the notes in
the ascending scale; when we reach the note D, which is an octave higher, we go down in frequency to
get the notes in the descending scale. Here is a Matlab code fragment.
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f0=340; d=f0; % Pick a frequency and the note D

f=f0*(2^(3/12)); g=f0*(2^(5/12)); % The notes F and G

bf=f0*(2^(8/12)); c=f0*(2^(10/12)); % The notes B(flat) and C

d2=2*d; % The note D (an octave higher)

Generate sampled sinusoids at these frequencies, using an appropriate sampling rate (say, 8192 Hz);
concatenate them, assuming silent passages between each note; and play the resulting signal, using the
Matlab command sound. Use the following Matlab code fragment as a guide:

ts=1/8192; % Sampling interval

t=0:ts:0.4; % Time for each note (0.4 s)

s1=0*(0:ts:0.1); % Silent period (0.1 s)

s2=0*(0:ts:0.05); % Shorter silent period (0.05 s)

tl=0:ts:1; % Time for last note of each scale

d1=sin(2*pi*d*t); % Start generating the notes

f1=sin(2*pi*f*t); g1=sin(2*pi*g*t);

bf1=sin(2*pi*bf*t); c1=sin(2*pi*c*t);

dl1=sin(2*pi*d2*tl); dl2=sin(2*pi*d*tl);

asc=[d1 s1 f1 s1 g1 s1 bf1 s1 c1 s2 dl1]; % Create ascending scale

dsc=[c1 s1 bf1 s1 g1 s1 f1 s1 dl2]; % Create descending scale

y=[asc s1 dsc s1]; sound(y) % Malkauns scale (y)

2.41 (Music Synthesis II) The raw scale of raga malkauns will sound pretty dry! The reason for
this is the manner in which the sound from a musical instrument is generated. Musical instruments
produce sounds by the vibrations of a string (in string instruments) or a column of air (in woodwind
instruments). Each instrument has its characteristic sound. In a guitar, for example, the strings are
plucked, held, and then released to sound the notes. Once plucked, the sound dies out and decays.
Furthermore, the notes are never pure but contain overtones (harmonics). For a realistic sound, we
must include the overtones and the attack, sustain, and release (decay) characteristics. The sound
signal may be considered to have the form x(t) = α(t)cos(2πf0t + θ), where f0 is the pitch and α(t)
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is the envelope that describes the attack-sustain-release characteristics of the instrument played. A
crude representation of some envelopes is shown in Figure P2.41 (the piecewise linear approximations
will work just as well for our purposes). Woodwind instruments have a much longer sustain time and
a much shorter release time than do plucked string and keyboard instruments.

woodwind instruments
Envelopes of α(t)

string and keyboard instruments
Envelopes of α(t)

1

t
1

1

t
1

Figure P2.41 Envelopes and their piecewise linear approximations (dark) for Problem 2.41

Experiment with the scale of raga malkauns and try to produce a guitar-like sound, using the appro-
priate envelope form. You should be able to discern an audible improvement.

2.42 (Music Synthesis III) Synthesize the following notes, using a woodwind envelope, and synthesize
the same notes using a plucked string envelope.

F](0.3) D(0.4) E(0.4) A(1) A(0.4) E(0.4) F](0.3) D(1)

All the notes cover one octave, and the numbers in parentheses give a rough indication of their relative
duration. Can you identify the music? (It is Big Ben.)

2.43 (Music Synthesis IV) Synthesize the first bar of Pictures at an Exhibition by Mussorgsky, which
has the following notes:

A(3) G(3) C(3) D(2) G?(1) E(3) D(2) G?(1) E(3) C(3) D(3) A(3) G(3)

All the notes cover one octave except the note G?, which is an octave above G. The numbers in
parentheses give a rough indication of the relative duration of the notes (for more details, you may
want to listen to an actual recording). Assume that a keyboard instrument (such as a piano) is played.

2.44 (DTMF Tones) In dual-tone multi-frequency (DTMF) or touch-tone telephone dialing, each number
is represented by a dual-frequency tone. The frequencies for each digit are listed in Chapter 18.

(a) Generate DTMF tones corresponding to the telephone number 487-2550, by sampling the sum of
two sinusoids at the required frequencies at S = 8192 Hz for each digit. Concatenate the signals
by putting 50 zeros between each signal (to represent silence) and listen to the signal using the
Matlab command sound.

(b) Write a Matlab program that generates DTMF signals corresponding to a vector input repre-
senting the digits in a phone number. Use a sampling frequency of S = 8192 Hz.
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Chapter 3

TIME-DOMAIN ANALYSIS

3.0 Scope and Objectives
Systems that process discrete-time signals are called discrete-time systems or digital filters. Their math-
ematical description relies heavily on how they respond to arbitrary or specific signals. This chapter starts
with the classification of discrete systems and introduces the important concepts of linearity and time invari-
ance. It presents the analysis of discrete-time systems described by difference equations. It concludes with
the all-important concept of the impulse response and the process of convolution that forms an important
method for finding the response of linear, time-invariant systems.

3.1 Discrete-Time Systems
In the time domain, many discrete-time systems can be modeled by difference equations relating the
input and output. Difference equations typically involve input and output signals and their shifted versions.
For example, the system described by y[n] = αy[n− 1] + βx[n] produces the present output y[n] as the sum
of the previous output y[n − 1] and the present input x[n]. The quantities α and β are called coefficients.
Linear, time-invariant (LTI) systems are characterized by constant coefficients. Such systems have been
studied extensively and their response can be obtained by well established mathematical methods.

3.1.1 Linearity and Superposition

An operator allows us to transform one function to another. If an operator is represented by the symbol O,
the equation

O{x[n]} = y[n] (3.1)

implies that if the function x[n] is treated exactly as the operator O tells us, we obtain the function y[n]. The
forward shift operator zk describes an advance of k units and transforms x[n] to x[n+k]. We express this
transformation in operator notation as zk{x[n]} = x[n + k]. The backward shift operator z−k describes
a delay of k units and transforms x[n] to x[n − k]. In operator notation, we have z−k{x[n]} = x[n − k].
The unit delay operator is represented by z−1 and transforms x[n] to x[n − 1]. In operator notation,
z−1{x[n]} = x[n−1]. An operation may describe several steps. For example, the operationO{ } = 4z−3{ }+6
says that to get y[n], we must delay x[n] by 3 units, multiply the result by 4, and then add 6 to finally obtain
4z−3{x[n]}+ 6 = 4x[n− 3] + 6 = y[n].

If an operation on the sum of two functions is equivalent to the sum of operations applied to each
separately, the operator is said to be additive. In other words,

O{x1[n] + x2[n]} = O{x1[n]}+O{x2[n]} (for an additive operation) (3.2)
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If an operation on Kx[n] is equivalent to K times the linear operation on x[n] where K is a scalar, the
operator is said to be homogeneous. In other words,

O{Kx[n]} = KO{x[n]} (for a homogeneous operation) (3.3)

Together, the two results describe the principle of superposition. An operator O is termed a linear
operator if it obeys superposition and is therefore both additive and homogeneous:

O{Ax1[n] + Bx2[n]} = AO{x1[n]}+ BO{x2[n]} (for a linear operation) (3.4)

If a system fails the test for either additivity or homogeneity, it is termed nonlinear. It must pass both
tests in order to be termed linear. However, in many instances, it suffices to test only for homogeneity or
additivity to confirm the linearity of an operation (even though one does not imply the other). An important
concept that forms the basis for the study of linear systems is that the superposition of linear operators is
also linear.

REVIEW PANEL 3.1
A Linear Operator Obeys Superposition: aO{x1[n]}+ bO{x2[n]} = O{ax1[n] + bx2[n]}
Superposition implies both homogeneity and additivity.
Homogeneity: O{ax[n]} = aO{x[n]} Additivity: O{x1[n]}+O{x2[n]} = O{x1[n] + x2[n]}

EXAMPLE 3.1 (Testing for Linear Operators)
(a) Consider the operator O{ } = C{ }+ D.

By the homogeneity test, O{Ax[n]} = ACx[n] + D, but AO{x[n]} = A(Cx[n] + D) = ACx[n] + AD.

The two differ, so the operation is nonlinear (it is linear only if D = 0).

(b) Consider the squaring operator O{ } = { }2, which transforms x[n] to x2[n].

By the homogeneity test, AO{x[n]} = Ax2[n], but O{Ax[n]} = (Ax[n])2 = A2x2[n].

The two are not equal, and the squaring operator is nonlinear.

DRILL PROBLEM 3.1
Which of the following operations are linear?

(a) O{ } = cos{ } (b) O{ } = log{ } (c) O{x[n]} = αn{x[n]}
Answers: Only (c) is linear.

3.1.2 Time Invariance

Time invariance implies that the shape of the response y[n] depends only on the shape of the input x[n]
and not on the time when it is applied. If the input is shifted to x[n − n0], the response equals y[n − n0]
and is shifted by the same amount. In other words, the system does not change with time. Formally, if the
operator O transforms the input x[n] to the output y[n] such that O{x[n]} = y[n], time invariance means

O{x[n− n0]} = y[n− n0] (for time invariance) (3.5)

In other words, if the input is delayed by n0 units, the output is also delayed by the same amount and
is simply a shifted replica of the original output.

c©Ashok Ambardar, September 1, 2003
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REVIEW PANEL 3.2
Time Invariance from the Operational Relation
If O{x[n]} = y[n], then O{x[n− n0)} = y[n− n0] (shift input by α ⇒ shift output by α).

EXAMPLE 3.2 (Linearity and Time Invariance of Operators)

(a) y[n] = x[n]x[n− 1] is nonlinear but time invariant.

The operation is O{ } = ({ })(z−1{ }). We find that

AO{x[n]} = A(x[n]x[n− 1]), but O{Ax[n]} = (Ax[n])(Ax[n− 1]). The two are not equal.

O{x[n− n0]} = x[n− n0]x[n− n0 − 1], and y[n− n0] = x[n− n0]x[n− n0 − 1]. The two are equal.

(b) y[n] = nx[n] is linear but time varying.

The operation is O{ } = n{ }. We find that

AO{x[n]} = A(nx[n]), and O{Ax[n]} = n(Ax[n]). The two are equal.

O{x[n− n0]} = n(x[n− n0]), but y[n− n0] = (n− n0)x[n− n0]. The two are not equal.

(c) y[n] = x[2n] is linear but time varying. The operation n ⇒ 2n reveals that

AO{x[n]} = A(x[2n]), and O{Ax[n]} = (Ax[2n]). The two are equal.

O{x[n− n0]} = x[2n− n0], but y[n− n0] = x[2(n− n0)]. The two are not equal.

(d) y[n] = x[n− 2] is linear and time invariant. The operation n ⇒ n− 2 reveals that

AO{x[n]} = A(x[n− 2]), and O{Ax[n]} = (Ax[n− 2]). The two are equal.

O{x[n− n0]} = x[n− n0 − 2], and y[n− n0] = x[n− n0 − 2]. The two are equal.

(e) y[n] = 2x[n]x[n] is nonlinear but time invariant.

The operation is O{ } = (2){ }{ } and reveals that

AO{x[n]} = A(2)x[n]x[n], but O{Ax[n]} = (2)Ax[n](Ax[n]). The two are not equal.

O{x[n− n0]} = (2)x[n−n0]x[n− n0], and y[n− n0] = (2)x[n−n0]x[n− n0]. The two are equal.

DRILL PROBLEM 3.2
Which of the following operations are time-invariant?

(a) O{x[n]} = cos{x[n]} (b) O{x[n]} = C{x[n]} (c) O{x[n]} = Cn{x[n]}
Answers: (a) and (b) are time-invariant.
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3.1.3 LTI Systems

Systems that are both linear and time-invariant are termed LTI (linear, time invariant). We may check for
linearity or time-invariance by applying formal tests to the system equation as a whole or by looking at
its individual operations. A difference equation is LTI if all its coefficients are constant (and no constant
terms are present). Any nonlinear or time-varying behavior is recognized (by generalizing the results of the
previous example) as follows:

1. If a constant term is present or a term contains products of the input and/or output, the system
equation is nonlinear.

2. If a coefficient is an explicit function of n or a scaled input or output (such as y[2n]) is present, the
system equation is time varying.

REVIEW PANEL 3.3
What Makes a Difference Equation LTI or Nonlinear or Time Varying?
It is LTI if all coefficients are constant and there are no constant terms.
It is nonlinear if a term is constant or a nonlinear function of x[n] or y[n].
It is time varying if a coefficient is an explicit function of n or an input or output is scaled (e.g. y[2n]).

EXAMPLE 3.3 (Linearity and Time Invariance of Systems)
We check the following systems for linearity and time invariance.

(a) y[n]− 2y[n− 1] = 4x[n]. This is LTI.

(b) y[n]− 2ny[n− 1] = x[n]. This is linear but time varying.

(c) y[n] + 2y2[n] = 2x[n]− x[n− 1]. This is nonlinear but time invariant.

(d) y[n]− 2y[n− 1] = (2)x[n]x[n]. This is nonlinear but time invariant.

(e) y[n]− 4y[n]y[2n] = x[n]. This is nonlinear and time varying.

DRILL PROBLEM 3.3
What can you say about the linearity (L) and time-invariance (TI) of the following?

(a) y[n] + 2y[n− 1] = x[n] (b) y[n] + 2ny[n− 1] = x[n] (c) y2[n] + 2ny[n− 1] = x[n]
Answers: (a) L and TI (b) L but not TI (c) Not L, not TI

3.1.4 Causality and Memory

In many practical situations, we deal with systems whose inputs and outputs are right-sided signals. In a
causal system, the present response y[n] cannot depend on future values of the input, such as x[n + 2].
Systems whose present response requires knowledge of future values of the input are termed noncausal.
Consider an LTI system whose input and output are assumed to be right-sided signals. If such a system is
described by the difference equation

y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n + K]
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it is causal as long as K ≤ 0. On the other hand, if the system is described by

y[n + L] + A1y[n + L− 1] + · · ·+ ALy[n] = B0x[n + K]

it is causal as long as K ≤ L. The reason is that by time invariance, this system may also be described by

y[n] + A1y[n− 1] + · · ·+ ALy[n− L] = B0x[n + K − L]

For causality, we require K − L ≤ 0 or K ≤ L. It is often easier to check for causality by examining the
operational transfer function H(z) derived from the difference equation. The general form of such a
transfer function may be expressed as a ratio of polynomials in z

H(z) =
B0z

P + B1z
P−1 + · · ·+ BP−1z + BP

A0zQ + A1zQ−1 + · · ·+ AQ−1z + AQ
(3.6)

Assuming a right-sided input and output, this system is causal if P ≤ Q.

DRILL PROBLEM 3.4
(a) Which of the two systems are causal?

y[n] = 2n+1x[n] y[n] = 2nx[n + 1]
(b) Find the operational transfer function of each system and determine if it is causal.

y[n]− 2y[n− 1] = x[n + 1] y[n + 1]− 2y[n− 2] = x[n + 1]
Answers: (a) The first is causal. (b) The second is causal.

Instantaneous and Dynamic Systems

If the response of a system at n = n0 depends only on the input at n = n0 and not at any other times
(past or future), the system is called instantaneous or static. The system equation of an instantaneous
system has the form y[n + α] = Kx[n + α]. Note that the arguments of the input and output are identical.
The response of a dynamic system depends on past (and/or future) inputs. Dynamic systems are usually
described by (but not limited to) difference equations. The system y[n] + 0.5y[n − 1] = x[n] (a difference
equation) is dynamic. The system y[n] = 3x[n− 2] is also dynamic (because the arguments of the input and
output are different) but the system y[n− 2] = 3x[n− 2] is instantaneous.

REVIEW PANEL 3.4
What Makes a System Noncausal or Dynamic?
Noncausal if the numerator degree of the operational transfer function exceeds the denominator degree.
Dynamic if the system equation has a form different from y[n + α] = Kx[n + α].

EXAMPLE 3.4 (Causal and Dynamic Systems)
(a) y[n] = x[n + 2] is noncausal (to find y[0], we need x[2]) and dynamic (y[n0] does not depend on x[n0]

but on x[n0 + 2]).

(b) y[n + 4] + y[n + 3] = x[n + 2]. By time invariance, y[n] + y[n − 1] = x[n − 2]. So it is causal and
dynamic.

(c) y[n] = 2x[αn] is causal and instantaneous for α = 1, causal and dynamic for α < 1, and noncausal and
dynamic for α > 1. It is also time varying if α 6= 1.

(d) y[n] = 2(n + 1)x[n] is causal, instantaneous and time varying.
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DRILL PROBLEM 3.5
Which of the following systems are instantaneous?

(a) y[n] = 2n+1x[n] (b) y[n] = 2nx[n + 1] (c) y[n]− 2y[n− 1] = x[n + 1]
Answers: Only (a) is instantaneous.

3.2 Digital Filters
A discrete-time system is also referred to as a digital filter and we shall use this terminology extensively. An
important formulation for digital filters is based on difference equations. The general form of an Nth-order
difference equation may be written as

y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (3.7)

The order N describes the output term with the largest delay. It is customary to normalize the leading
coefficient to unity. The coefficients Ak and Bk are constant for an LTI digital filter. The response depends
on the applied input and initial conditions that describe its state just before the input is applied. Systems
with zero initial conditions are said to be relaxed. In general, if an input x[n] to a relaxed LTI system
undergoes a linear operation, the output y[n] undergoes the same linear operation. Often, an arbitrary
function may be decomposed into its simpler constituents, the response due to each analyzed separately
and more effectively, and the total response found using superposition. This approach is the key to several
methods of filter analysis described in subsequent chapters. An arbitrary signal x[n] can be expressed as a
weighted sum of shifted impulses. If the input to a discrete-time system is the unit impulse δ[n], the resulting
output is called the impulse response and denoted h[n]. The impulse response is the basis for finding the
filter response by a method called convolution.

3.2.1 Digital Filter Terminology

An important filter classification is based on the length of its impulse response. Consider a digital filter
described by the equation

y[n] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (Non-recursive or FIR filter) (3.8)

Its present response depends only on the input terms and shows no dependence (recursion) on past values of
the response. It is called a nonrecursive filter, or a moving average filter, because its response is just a
weighted sum (moving average) of the input terms. It is also called a finite impulse response (FIR) filter
because its impulse response is of finite duration (length). In fact the impulse response sequence contains
sample values that correspond directly to the so called filter coefficients Bk.

Now consider a digital filter described by the difference equation

y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] (Recursive, IIR or AR Filter) (3.9)

This describes a recursive filter of order N whose present output depends on its own past values y[n− k]
and on present value of the input. It is also called an infinite impulse response (IIR) filter because its
impulse response h[n] (the response to a unit impulse input) is usually of infinite duration. It is also called
an AR (autoregressive) filter because its output depends (regresses) on its own previous values.

Finally, consider the most general formulation described by the difference equation

y[n]+A1y[n−1]+· · ·+ANy[n−N ] = B0x[n]+B1x[n−1]+· · ·+BMx[n−M ] (Recursive or ARMA Filter)
(3.10)
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This is also a recursive filter. It is called an ARMA (autoregressive, moving average) filter because its
present output depends not only on its own past values y[n− k] but also on the past and present values of
the input. In general, the impulse response of such a filter is also of infinite duration.

REVIEW PANEL 3.5
The Terminology of Digital Filters
Nonrecursive or FIR: y[n] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ]
Recursive, IIR or AR: y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n]
Recursive or ARMA: y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ]

3.2.2 Digital Filter Realization

Digital filters described by linear difference equations with constant coefficients may be realized by using
elements corresponding to the operations of scaling (or scalar multiplication), shift (or delay), and summing
(or addition) that naturally occur in such equations. These elements describe the gain (scalar multiplier),
delay, and summer (or adder), represented symbolically in Figure 3.1.

[n]x [n −1]x−1z [n]x [n]xA
[n]x [n]y[n]x

[n]y

Delay Multiplier

A

Summer

+ +
+
Σ

Figure 3.1 The building blocks for digital filter realization

Delay elements in cascade result in an output delayed by the sum of the individual delays. The operational
notation for a delay of k units is z−k. A nonrecursive filter described by

y[n] = B0x[n] + B1x[n− 1] + · · ·+ BNx[n−N ] (3.11)

can be realized using a feed-forward structure with N delay elements, and a recursive filter of the form

y[n] = −A1y[n− 1]− · · · −ANy[n−N ] + x[n] (3.12)

requires a feedback structure (because the output depends on its own past values). Each realization is
shown in Figure 3.2 and requires N delay elements.

DRILL PROBLEM 3.6
Sketch the realizations of the following systems

(a) y[n]− 0.6y[n− 1] = x[n] (b) y[n]− 1
6y[n− 1]− 1

6y[n− 2] = 4x[n]
Answer: See following figures.

[n]x [n]y

−1z
++ Σ

0.6

[n]x [n]y

−1z

−1z

+

+

+

+ Σ

Σ

4
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1A−

2A−

NA−

0B

1B

2B

MB

[n]x [n]y [n]y[n]x

−1z

−1z

−1z

−1z

−1z

−1z

+

+ +

+

+++ +

+

+

+

+

Σ

Σ

Σ

Σ

Σ

Σ

Figure 3.2 Realization of a nonrecursive (left) and recursive (right) digital filter

The general form described by

y[n] = −A1y[n− 1]− · · · −ANy[n−N ] + B0x[n] + B1x[n− 1] + · · ·+ BNx[n−N ] (3.13)

requires both feed-forward and feedback and may be realized using 2N delay elements, as shown in Figure 3.3.
This describes a direct form I realization.

However, since LTI systems may be cascaded in any order (as we shall learn soon), we can switch the
feedback and feedforward sections to obtain a canonical realization with only N delays, as also shown in
Figure 3.3. It is also called a direct form II realization. Other forms that also use only N elements are
also possible. We discuss various aspects of digital filter realization in more detail in subsequent chapters.
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Figure 3.3 Direct (left) and canonical (right) realization of a digital filter
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DRILL PROBLEM 3.7
What is the difference equation of the digital filter whose realization is shown?

[n]y[n]x

−1z

−1z

+

+

+

+ +Σ

Σ

−
2 Σ

2

Answer: y[n]− y[n− 1]− 2y[n− 2] = 2x[n]− x[n− 1]

3.3 Response of Digital Filters
A digital filter processes discrete signals and yields a discrete output in response to a discrete input. Its
response depends not only on the applied input but also on the initial conditions that describe its state just
prior to the application of the input. Systems with zero initial conditions are said to be relaxed. Digital
filters may be analyzed in the time domain using any of the following models:

The difference equation representation applies to linear, nonlinear, and time-varying systems. For LTI
systems, it allows computation of the response using superposition even if initial conditions are present.

The impulse response representation describes a relaxed LTI system by its impulse response h[n]. The
output y[n] appears explicitly in the governing relation called the convolution sum. It also allows us to relate
time-domain and transformed-domain methods of system analysis.

The state variable representation describes an nth-order system by n simultaneous first-order difference
equations called state equations in terms of n state variables. It is useful for complex or nonlinear systems
and those with multiple inputs and outputs. For LTI systems, state equations can be solved using matrix
methods. The state variable form is also readily amenable to numerical solution. We do not pursue this
method in this book.

3.3.1 Response of Nonrecursive Filters

The system equation of a non-recursive filter is

y[n] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (FIR filter)

Since the output y[n] depends only on the input x[n] and its shifted versions, the response is simply a
weighted sum of the input terms exactly as described by its system equation.

EXAMPLE 3.5 (Response of Nonrecursive Filters)
Consider an FIR filter described by y[n] = 2x[n]− 3x[n− 2]. Find its output y[n] if the input to the system
is x[n] = (0.5)nu[n] and compute y[n] for n = 1 and n = 2.
We find that y[n] = 2x[n]− 3x[n− 2] = 2(0.5)nu[n]− 3(0.5)n−2u[n− 2].
We get y[1] = 2(0.5)1 = 1 and y[2] = 2(0.5)2 − 3(0.5)0 = 0.5− 3 = −2.5
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3.3.2 Response of Recursive Filters by Recursion

The difference equation of a recursive digital filter is

y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ]

The response shows dependence on its past values as well as values of the input. The output y[n] requires
the prior values of y[n− 1], y[n− 2], . . . , y[n−N ]. Once known, we can use y[n] and the other previously
known values to compute y[n + 1] and continue to use recursion to successively compute the values of the
output as far as desired. Consider the second-order difference equation

y[n] + A1y[n− 1] + A2y[n− 2] = B0x[n] + B1x[n− 1]

To find y[n], we rewrite this equation as follows

y[n] = −A1y[n− 1]−A2y[n− 2] + B0x[n] + B1x[n− 1]

We see that y[n] can be found from its past values y[n− 1] and y[n− 2]. To start the recursion at n = 0, we
must be given values of y[−1] and y[−2], and once known, values of y[n], n ≥ 0 may be computed successively
as far as desired. We see that this method requires initial conditions to get the recursion started. In general,
the response y[n], n ≥ 0 of the Nth-order difference equation requires the N consecutive initial conditions
y[−1], y[−2], . . . , y[−N ]. The recursive approach is effective and can be used even for nonlinear or time
varying systems. Its main disadvantage is that a general closed form solution for the output is not always
easy to discern.

EXAMPLE 3.6 (System Response Using Recursion)
(a) Consider a system described by y[n] = a1y[n− 1] + b0u[n]. Let the initial condition be y[−1] = 0. We

then successively compute

y[0] = a1y[−1] + b0u[0] = b0

y[1] = a1y[0] + b0u[1] = a1b0 + b0 = b0[1 + a1]
y[2] = a1y[1] + b0u[2] = a1[a1b0 + b0] + b0 = b0[1 + a1 + a2

1]

The form of y[n] may be discerned as

y[n] = b0[1 + a1 + a2
1 + · · ·+ an−1

1 + an
1 ]

Using the closed form for the geometric sequence results in

y[n] =
b0(1− an+1

1 )
1− a1

If the coefficients appear as numerical values, the general form may not be easy to discern.

(b) Consider a system described by y[n] = a1y[n− 1]+ b0nu[n]. Let the initial condition be y[−1] = 0. We
then successively compute

y[0] = a1y[−1] = 0
y[1] = a1y[0] + b0u[1] = b0

y[2] = a1y[1] + 2b0u[2] = a1b0 + 2b0

y[3] = a1y[2] + 3b0u[3] = a1[a1b0 + 2b0] + 3b0 = a2
1 + 2a1b0 + 3b0
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The general form is thus y[n] = an−1
1 + 2b0a

n−2
1 + 3b0a

n−3
1 + (n− 1)b0a1 + nb0.

We can find a more compact form for this, but not without some effort. By adding and subtracting
b0a

n−1
1 and factoring out an

1 , we obtain

y[n] = an
1 − b0a

n−1
1 + b0a

n
1 [a−1

1 + 2a−2
1 + 3a−3

1 + · · ·+ na−n
1 ]

Using the closed form for the sum Σ kxk from k = 1 to k = N (with x = a−1), we get

y[n] = an
1 − b0a

n−1
1 + b0a

n
1

a−1[1− (n + 1)a−n + na−(n+1)]
(1− a−1)2

What a chore! More elegant ways of solving difference equations are described later in this chapter.

(c) Consider the recursive system y[n] = y[n− 1] + x[n]− x[n− 3]. If x[n] equals δ[n] and y[−1] = 0, we
successively obtain

y[0] = y[−1] + δ[0]− δ[−3] = 1 y[3] = y[2] + δ[3]− δ[0] = 1− 1 = 0
y[1] = y[0] + δ[1]− δ[−2] = 1 y[4] = y[3] + δ[4]− δ[1] = 0
y[2] = y[1] + δ[2]− δ[−1] = 1 y[5] = y[4] + δ[5]− δ[2] = 0

The impulse response of this “recursive” filter is zero after the first three values and has a finite length.
It is actually a nonrecursive (FIR) filter in disguise!

DRILL PROBLEM 3.8
(a) Let y[n]− y[n− 1]− 2y[n− 2] = u[n]. Use recursion to compute y[3] if y[−1] = 2, y[−2] = 0.
(b) Let y[n]−0.8y[n−1] = x[n]. Use recursion to find the general form of y[n] if x[n] = δ[n] and y[−1] = 0.
Answers: (a) 32 (b) (0.8)n, n ≥ 0 or (0.8)nu[n]

3.4 The Natural and Forced Response
For an LTI system governed by a linear constant-coefficient difference equation, a formal way of computing
the output is by the method of undetermined coefficients. This method yields the total response y[n] as
the sum of the forced response yF [n] and the natural response yN [n]. The form of the natural response
depends only on the system details and is independent of the nature of the input. The forced response arises
due to the interaction of the system with the input and thus depends on both the input and the system
details.

3.4.1 The Single-Input Case

Consider the Nth-order difference equation with the single unscaled input x[n]

y[n] + A1y[n− 1] + A2y[n− 2] + · · ·+ ANy[n−N ] = x[n] (3.14)

with initial conditions y[−1], y[−2], y[−3], . . . , y[−N ].
Its forced response arises due to the interaction of the system with the input and thus depends on

both the input and the system details. It satisfies the given difference equation and has the same form as the

c©Ashok Ambardar, September 1, 2003



3.4 The Natural and Forced Response 57

input. Table 3.1 summarizes these forms for various types of inputs. The constants in the forced response
can be found uniquely and independently of the natural response or initial conditions simply by satisfying
the given differential equation.

The characteristic equation is defined by the polynomial equation

1 + A1z
−1 + A2z

−2 + · · ·+ ANz−N = zN + A1z
N−1 + · · ·+ AN = 0 (3.15)

This equation has N roots, z1, z2, . . . , zN . The natural response is a linear combination of N discrete-time
exponentials of the form

yN [n] = K1z
n
1 + K2z

n
2 + · · ·+ KNzn

N (3.16)

This form must be modified for multiple roots. Since complex roots occur in conjugate pairs, their associated
constants also form conjugate pairs to ensure that yN [n] is real. Algebraic details lead to the preferred form
with two real constants. Table 3.2 summarizes the preferred forms for multiple or complex roots.

The total response is found by first adding the forced and natural response and then evaluating the un-
determined constants (in the natural component) using the prescribed initial conditions. For stable systems,
the natural response is also called the transient response, since it decays to zero with time. For systems
with harmonic or switched harmonic inputs, the forced response is a harmonic at the input frequency and
is termed the steady-state response.

Table 3.1 Form of the Forced Response for Discrete LTI Systems

Note: If the right-hand side (RHS) is αn, where α is also a root of the characteristic
equation repeated p times, the forced response form must be multiplied by np.

Entry Forcing Function (RHS) Form of Forced Response

1 C0 (constant) C1 (another constant)

2 αn (see note above) Cαn

3 cos(nΩ + β) C1 cos(nΩ) + C2 sin(nΩ) or C cos(nΩ + φ)

4 αn cos(nΩ + β) (see note above) αn[C1 cos(nΩ) + C2 sin(nΩ)]

5 n C0 + C1n

6 np C0 + C1n + C2n
2 + · · ·+ Cpn

p

7 nαn (see note above) αn(C0 + C1n)

8 npαn (see note above) αn(C0 + C1n + C2n
2 + · · ·+ Cpn

p)

9 n cos(nΩ + β) (C1 + C2n)cos(nΩ) + (C3 + C4n)sin(nΩ)
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58 Chapter 3 Time-Domain Analysis

Table 3.2 Form of the Natural Response for Discrete LTI Systems

Entry Root of Characteristic Equation Form of Natural Response

1 Real and distinct: r Krn

2 Complex conjugate: rejΩ rn[K1 cos(nΩ) + K2 sin(nΩ)]

3 Real, repeated: rp+1 rn(K0 + K1n + K2n
2 + · · ·+ Kpn

p)

4 Complex, repeated:
(
rejΩ

)p+1 rn cos(nΩ)(A0 + A1n + A2n
2 + · · ·+ Apn

p)

+ rn sin(nΩ)(B0 + B1n + B2n
2 + · · ·+ Bpn

p)

REVIEW PANEL 3.6
Response of LTI Systems Described by Difference Equations
Total Response = Natural Response + Forced Response

The roots of the characteristic equation determine only the form of the natural response.
The input terms (RHS) of the difference equation completely determine the forced response.
Initial conditions satisfy the total response to yield the constants in the natural response.

EXAMPLE 3.7 (Forced and Natural Response)
(a) Consider the system shown in Figure E3.7A.

Find its response if x[n] = (0.4)n, n ≥ 0 and the initial condition is y[−1] = 10.

[n]x [n]y

−1z
++ Σ

0.6

Figure E3.7A The system for Example 3.7(a)

The difference equation describing this system is y[n]− 0.6y[n− 1] = x[n] = (0.4)n, n ≥ 0.

Its characteristic equation is 1− 0.6z−1 = 0 or z − 0.6 = 0.

Its root z = 0.6 gives the form of the natural response yN [n] = K(0.6)n.

Since x[n] = (0.4)n, the forced response is yF [n] = C(0.4)n.

We find C by substituting for yF [n] into the difference equation

yF [n]− 0.6yF [n− 1] = (0.4)n = C(0.4)n − 0.6C(0.4)n−1.

Cancel out (0.4)n from both sides and solve for C to get

C − 1.5C = 1 or C = −2.

Thus, yF [n] = −2(0.4)n. The total response is y[n] = yN [n] + yF [n] = −2(0.4)n + K(0.6)n.

We use the initial condition y[−1] = 10 on the total response to find K:
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3.4 The Natural and Forced Response 59

y[−1] = 10 = −5 + K
0.6 and K = 9.

Thus, y[n] = −2(0.4)n + 9(0.6)n, n ≥ 0.

(b) Consider the difference equation y[n]− 0.5y[n− 1] = 5 cos(0.5nπ), n ≥ 0 with y[−1] = 4.

Its characteristic equation is 1− 0.5z−1 = 0 or z − 0.5 = 0.

Its root z = 0.5 gives the form of the natural response yN [n] = K(0.5)n.

Since x[n] = 5 cos(0.5nπ), the forced response is yF [n] = A cos(0.5nπ) + B sin(0.5nπ).

We find yF [n− 1] = A cos[0.5(n− 1)π] + B sin[0.5(n− 1)π] = A sin(0.5nπ)−B cos(0.5nπ). Then

yF [n]− 0.5yF [n− 1] = (A + 0.5B)cos(0.5nπ)− (0.5A−B)sin(0.5nπ) = 5 cos(0.5nπ)

Equate the coefficients of the cosine and sine terms to get

(A + 0.5B) = 5, (0.5A−B) = 0 or A = 4, B = 2, and yF [n] = 4 cos(0.5nπ) + 2 sin(0.5nπ).

The total response is y[n] = K(0.5)n + 4 cos(0.5nπ) + 2 sin(0.5nπ). With y[−1] = 4, we find

y[−1] = 4 = 2K − 2 or K = 3, and thus y[n] = 3(0.5)n + 4 cos(0.5nπ) + 2 sin(0.5nπ), n ≥ 0.

The steady-state response is 4 cos(0.5nπ) + 2 sin(0.5nπ), and the transient response is 3(0.5)n.

(c) Consider the difference equation y[n]− 0.5y[n− 1] = 3(0.5)n, n ≥ 0 with y[−1] = 2.

Its characteristic equation is 1− 0.5z−1 = 0 or z − 0.5 = 0.

Its root, z = 0.5, gives the form of the natural response yN [n] = K(0.5)n.

Since x[n] = (0.5)n has the same form as the natural response, the forced response is yF [n] = Cn(0.5)n.

We find C by substituting for yF [n] into the difference equation:

yF [n]− 0.5yF [n− 1] = 3(0.5)n = Cn(0.5)n − 0.5C(n− 1)(0.5)n−1.

Cancel out (0.5)n from both sides and solve for C to get Cn− C(n− 1) = 3, or C = 3.

Thus, yF [n] = 3n(0.5)n. The total response is y[n] = yN [n] + yF [n] = K(0.5)n + 3n(0.5)n.

We use the initial condition y[−1] = 2 on the total response to find K:

y[−1] = 2 = 2K − 6, and K = 4.

Thus, y[n] = 4(0.5)n + 3n(0.5)n = (4 + 3n)(0.5)n, n ≥ 0.

(d) (A Second-Order System) Consider the system shown in Figure E3.7D.
Find the forced and natural response of this system if x[n] = u[n] and y[−1] = 0, y[−2] = 12.

[n]x [n]y

−1z

−1z

+

+

+

+ Σ

Σ

4

1/6

1/6

Figure E3.7D The system for Example 3.7(d)
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Comparison with the generic realization reveals that the system difference equation is

y[n]− 1
6y[n− 1]− 1

6y[n− 2] = 4x[n] = 4u[n]

Its characteristic equation is 1− 1
6z−1 − 1

6z−2 = 0 or z2 − 1
6z − 1

6 = 0.

Its roots are z1 = 1
2 and z2 = − 1

3 .

The natural response is thus yN [n] = K1(z1)n + K2(z2)n = K1( 1
2 )n + K2(− 1

3 )n.

Since the forcing function is 4u[n] (a constant for n ≥ 0), the forced response yF [n] is constant.

Let yF [n] = C. Then yF [n− 1] = C, yF [n− 2] = C, and

yF [n]− 1
6yF [n− 1]− 1

6yF [n− 2] = C − 1
6C − 1

6C = 4. This yields C = 6.

Thus, yF [n] = 6. The total response y[n] is y[n] = yN [n] + yF [n] = K1( 1
2 )n + K2(− 1

3 )n + 6.

To find the constants K1 and K2, we use the initial conditions on the total response to obtain

y[−1] = 0 = 2K1 − 3K2 + 6, and y[−2] = 12 = 4K1 + 9K2 + 6. We find K1 = −1.2 and K2 = 1.2.

Thus, y[n] = −1.2( 1
2 )n + 1.2(− 1

3 )n + 6, n ≥ 0.

Its transient response is −1.2( 1
2 )n + 1.2(− 1

3 )n. Its steady-state response is a constant that equals 6.

DRILL PROBLEM 3.9
(a) Let y[n]− 0.8y[n− 1] = 2 with y[−1] = 5. Solve for y[n], n ≥ 0.
(b) Let y[n] + 0.8y[n− 1] = 2(0.8)n with y[−1] = 10. Solve for y[n], n ≥ 0.
(c) Let y[n]− 0.8y[n− 1] = 2(0.8)n with y[−1] = 5. Solve for y[n], n ≥ 0.
(d) Let y[n]− 0.8y[n− 1] = 2(−0.8)n + 2(0.4)n with y[−1] = −5. Solve for y[n], n ≥ 0.
Answers: (a) 10− 4(0.8)n (b) (0.8)n− 7(−0.8)n (c) (2n+6)(0.8)n (d) (0.8)n +(−0.8)n− 2(0.4)n

3.4.2 The Zero-Input Response and Zero-State Response

A linear system is one for which superposition applies and implies that the system is relaxed (with zero initial
conditions) and that the system equation involves only linear operators. However, we can use superposition
even for a system with nonzero initial conditions that is otherwise linear. We treat it as a multiple-input
system by including the initial conditions as additional inputs. The output then equals the superposition
of the outputs due to each input acting alone, and any changes in the input are related linearly to changes
in the response. As a result, its response can be written as the sum of a zero-input response (due to the
initial conditions alone) and the zero-state response (due to the input alone). The zero-input response obeys
superposition, as does the zero-state response.

It is often more convenient to describe the response y[n] of an LTI system as the sum of its zero-state
response (ZSR) yzs[n] (assuming zero initial conditions) and zero-input response (ZIR) yzi[n] (assuming zero
input). Each component is found using the method of undetermined coefficients. Note that the natural and
forced components yN [n] and yF [n] do not, in general, correspond to the zero-input and zero-state response,
respectively, even though each pair adds up to the total response.
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REVIEW PANEL 3.7
The ZSR and ZIR for y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = x[n]
1. Find ZSR from yzs[n] + A1yzs[n− 1] + · · ·+ ANyzs[n−N ] = x[n], assume zero initial conditions.
2. Find ZIR from yzi[n] + A1yzi[n− 1] + · · ·+ ANyzi[n−N ] = 0, using given initial conditions.
3. Find complete response as y[n] = yzs[n] + yzi[n].
The ZSR obeys superposition. The ZIR obeys superposition.

EXAMPLE 3.8 (Zero-Input and Zero-State Response for the Single-Input Case)

(a) (A First-Order System) Consider the difference equation y[n]− 0.6y[n− 1] = (0.4)n, n ≥ 0, with
y[−1] = 10.

Its characteristic equation is 1− 0.6z−1 = 0 or z − 0.6 = 0.

Its root z = 0.6 gives the form of the natural response yN [n] = K(0.6)n.

Since x[n] = (0.4)n, the forced response is yF [n] = C(0.4)n.

We find C by substituting for yF [n] into the difference equation

yF [n]− 0.6yF [n− 1] = (0.4)n = C(0.4)n − 0.6C(0.4)n−1.

Cancel out (0.4)n from both sides and solve for C to get

C − 1.5C = 1 or C = −2.

Thus, yF [n] = −2(0.4)n.

The total response (subject to initial conditions) is y[n] = yF [n] + yN [n] = −2(0.4)n + K(0.6)n

1. Its ZSR is found from the form of the total response is yzs[n] = −2(0.4)n + K(0.6)n, assuming
zero initial conditions:

yzs[−1] = 0 = −5 + K
0.6 K = 3 yzs[n] = −2(0.4)n + 3(0.6)n, n ≥ 0

2. Its ZIR is found from the natural response yzi[n] = K(0.6)n, with given initial conditions:

yzi[−1] = 10 = K
0.6 K = 6 yzi[n] = 6(0.6)n, n ≥ 0

3. The total response is y[n] = yzi[n] + yzs[n] = −2(0.4)n + 9(0.6)n, n ≥ 0.

(b) (A Second-Order System)

Let y[n]− 1
6y[n− 1]− 1

6y[n− 2] = 4, n ≥ 0, with y[−1] = 0 and y[−2] = 12.

Its characteristic equation is 1− 1
6z−1 − 1

6z−2 = 0 or z2 − 1
6z − 1

6 = 0.

Its roots are z1 = 1
2 and z2 = − 1

3 .

Since the forcing function is a constant for n ≥ 0, the forced response yF [n] is constant.

Let yF [n] = C. Then yF [n−1] = C, yF [n−2] = C, and yF [n]− 1
6yF [n−1]− 1

6yF [n−2] = C− 1
6C− 1

6C = 4.

This yields C = 6 to give the forced response yF [n] = 6.
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1. The ZIR has the form of the natural response yzi[n] = K1( 1
2 )n + K2(− 1

3 )n.
To find the constants, we use the given initial conditions y[−1] = 0 and y[−2] = 12:

0 = K1( 1
2 )−1 + K2(− 1

3 )−1 = 2K1 − 3K2 12 = K1( 1
2 )−2 + K2(− 1

3 )−2 = 4K1 + 9K2

Thus, K1 = 1.2, K2 = 0.8, and

yzi[n] = 1.2( 1
2 )n + 0.8(− 1

3 )n, n ≥ 0
2. The ZSR has the same form as the total response. Since the forced response is yF [n] = 6, we have

yzs[n] = K1( 1
2 )n + K2(− 1

3 )n + 6

To find the constants, we assume zero initial conditions, y[−1] = 0 and y[−2] = 0, to get

y[−1] = 0 = 2K1 − 3K2 + 6 y[−2] = 0 = 4K1 + 9K2 + 6

We find K1 = −2.4 and K = 0.4, and thus

yzs[n] = −2.4(1
2 )n + 0.4(− 1

3 )n + 6, n ≥ 0
3. The total response is y[n] = yzi[n] + yzs[n] = −1.2( 1

2 )n + 1.2(− 1
3 )n + 6, n ≥ 0.

(c) (Linearity and Superposition of the ZSR and ZIR) An IIR filter is described by y[n] − y[n −
1]− 2y[n− 2] = x[n], with x[n] = 6u[n] and initial conditions y[−1] = −1, y[−2] = 4.

1. Find the zero-input response, zero-state response, and total response.

2. How does the total response change if y[−1] = −1, y[−2] = 4 as given, but x[n] = 12u[n]?

3. How does the total response change if x[n] = 6u[n] as given, but y[−1] = −2, y[−2] = 8?

1. We find the characteristic equation as (1− z−1 − 2z−2) = 0 or (z2 − z − 2) = 0.
The roots of the characteristic equation are z1 = −1 and z2 = 2.
The form of the natural response is yN [n] = A(−1)n + B(2)n.
Since the input x[n] is constant for n ≥ 0, the form of the forced response is also constant.
So, choose yF [n] = C in the system equation and evaluate C:

yF [n]− yF [n− 1]− 2yF [n− 2] = C − C − 2C = 6 C = −3 yF [n] = −3

For the ZSR, we use the form of the total response and zero initial conditions:

yzs[n] = yF [n] + yN [n] = −3 + A(−1)n + B(2)n, y[−1] = y[−2] = 0

We obtain yzs[−1] = 0 = −3−A + 0.5B and yzs[−2] = 0 = −3 + A + 0.25B

Thus, A = 1, B = 8, and yzs[n] = −3 + (−1)n + 8(2)n, n ≥ 0.
For the ZIR, we use the form of the natural response and the given initial conditions:

yzi[n] = yN [n] = A(−1)n + B(2)n y[−1] = −1 y[−2] = 4

This gives yzi[−1] = −1 = −A + 0.5B, and yzi[−2] = 4 = A + 0.25B.
Thus, A = 3, B = 4, and yzi[n] = 3(−1)n + 4(2)n, n ≥ 0.
The total response is the sum of the zero-input and zero-state response:

y[n] = yzi[n] + yzs[n] = −3 + 4(−1)n + 12(2)n, n ≥ 0
2. If x[n] = 12u[n], the zero-state response doubles to yzs[n] = −6 + 2(−1)n + 16(2)n.
3. If y[−1] = −2 and y[−2] = 8, the zero-input response doubles to yzi[n] = 6(−1)n + 8(2)n.

c©Ashok Ambardar, September 1, 2003



3.4 The Natural and Forced Response 63

DRILL PROBLEM 3.10
(a) Let y[n]− 0.8y[n− 1] = 2. Find its zero-state response.
(b) Let y[n] + 0.8y[n− 1] = x[n] with y[−1] = −5. Find its zero-input response.
(c) Let y[n]− 0.4y[n− 1] = (0.8)n with y[−1] = 10. Find its zero-state and zero-input response.
Answers: (a) 10− 8(0.8)n (b) 4(−0.8)n (c) 2(0.8)n − (0.4)n, 4(0.4)n

3.4.3 Solution of the General Difference Equation

The solution of the general difference equation described by

y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (3.17)

is found by invoking linearity and superposition as follows:

1. Compute the zero-state response y0[n] of the single-input system

y0[n] + A1y0[n− 1] + A2y0[n− 2] + · · ·+ ANy0[n−N ] = x[n] (3.18)

2. Use linearity and superposition to find yzs[n] as

yzs[n] = B0y0[n] + B1y0[n− 1] + · · ·+ BMy0[n−M ] (3.19)

3. Find the zero-input response yzi[n] using initial conditions.
4. Find the total response as y[n] = yzs[n] + yzi[n].

Note that the zero-input response is computed and included just once.

REVIEW PANEL 3.8
Solving y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ]
1. Find y0[n] from y0[n] + A1y0[n− 1] + · · ·+ ANy0[n−N ] = x[n], assume zero initial conditions.
2. Find ZSR (using superposition) as yzs[n] = B0y0[n] + B1y0[n− 1] + · · ·+ BMy0[n−M ].
3. Find ZIR from yzi[n] + A1yzi[n− 1] + · · ·+ ANyzi[n−N ] = 0, using given initial conditions.
4. Find complete response as y[n] = yzs[n] + yzi[n].

EXAMPLE 3.9 (Response of a General System)
Consider the recursive digital filter whose realization is shown in Figure E3.9.
What is the response of this system if x[n] = 6u[n] and y[−1] = −1, y[−2] = 4?

[n]y[n]x

−1z

−1z

+

+

+

+ +Σ

Σ

−
2 Σ

2

Figure E3.9 The digital filter for Example 3.9
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Comparison with the generic realization reveals that the system difference equation is

y[n]− y[n− 1]− 2y[n− 2] = 2x[n]− x[n− 1]

From the previous example, the ZSR of y[n]−y[n−1]−2y[n−2] = x[n] is y0[n] = [−3+(−1)n+8(2)n]u[n].
The ZSR for the input 2x[n]− x[n− 1] is thus

yzs[n] = 2y0[n]− y0[n− 1] = [−6 + 2(−1)n + 16(2)n]u[n]− [3 + (−1)n−1 + 8(2)n−1]u[n− 1]

From the previous example, the ZIR of y[n]− y[n− 1]− 2y[n− 2] = x[n] is yzi[n] = [3(−1)n + 4(2)n]u[n].
The total response is y[n] = yzi[n] + yzs[n]:

y[n] = [3(−1)n + 4(2)n]u[n] + [−6 + 2(−1)n + 16(2)n]u[n]− [3 + (−1)n−1 + 8(2)n−1]u[n− 1]

DRILL PROBLEM 3.11
(a) Let y[n]− 0.8y[n− 1] = x[n] with x[n] = 2(0.4)n and y[−1] = −10. Find its ZSR and ZIR.
(b) Let y[n]− 0.8y[n− 1] = 2x[n] with x[n] = 2(0.4)n and y[−1] = −10. Find y[n].
(c) Let y[n]− 0.8y[n− 1] = 2x[n]− x[n− 1] with x[n] = 2(0.4)n and y[−1] = −10. Find y[n].
Answers: (a) 4(0.8)n − 2(0.4)n, −8(0.8)n (b) −4(0.4)n (c) (0.4)n − 5(0.8)n (simplified)

3.5 The Impulse Response
The impulse response h[n] of a relaxed LTI system is simply the response to a unit impulse input δ[n]. The
impulse response provides us with a powerful method for finding the zero-state response of LTI systems to
arbitrary inputs using superposition (as described in the next chapter). The impulse response and the step
response are often used to assess the time-domain performance of digital filters.

REVIEW PANEL 3.9
The Impulse Response and Step Response Is Defined Only for Relaxed LTI Systems

[n]h[n]δ Relaxed LTI systemImpulse input Impulse response

Impulse response h[n]: The output of a relaxed LTI system if the input is a unit impulse δ[n]
Step response s[n]: The output of a relaxed LTI system if the input is a unit step u[n]

3.5.1 Impulse Response of Nonrecursive Filters

For a nonrecursive (FIR) filter of length M + 1 described by

y[n] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (3.20)

the impulse response h[n] (with x[n] = δ[n]) is an M + 1 term sequence of the input terms, which may be
written as

h[n] = B0δ[n] + B1δ[n− 1] + · · ·+ BMδ[n−M ] or h[n] = {
⇓

B0, B1, . . . , BM} (3.21)

The sequence h[n] represents the FIR filter coefficients.
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DRILL PROBLEM 3.12
(a) Let y[n] = 2x[n + 1] + 3x[n]− x[n− 2]. Write its impulse response as a sequence.
(b) Let y[n] = x[n]− 2x[n− 1] + 4x[n− 3]. Write its impulse response as a sum of impulses.

Answers: (a) h[n] = {2,
⇓
3, 0, −1} (b) h[n] = δ[n]− 2δ[n− 1] + 4δ[n− 3]

3.5.2 Impulse Response by Recursion

Recursion provides a simple means of obtaining as many terms of the impulse response h[n] of a relaxed
recursive filter as we please, though we may not always be able to discern a closed form from the results.
Remember that we must use zero initial conditions.

EXAMPLE 3.10 (Impulse Response by Recursion)
Find the impulse response of the system described by y[n]− αy[n− 1] = x[n].

We find h[n] as the solution to h[n] = αh[n − 1] + δ[n] subject to the initial condition y[−1] = 0. By
recursion, we obtain

h[0] = αh[−1] + δ[0] = 1 h[2] = αh[1] = α2

h[1] = αh[0] = α h[3] = αh[2] = α3

The general form of h[n] is easy to discern as h[n] = αnu[n].

DRILL PROBLEM 3.13
(a) Let y[n] + 0.8y[n− 1] = x[n]. Find its impulse response by recursion.
(b) Let y[n] + 0.8y[n− 1] = 3x[n]. Find its impulse response by recursion.
(c) Let y[n]− αy[n− 1] = Cx[n]. Find its impulse response by recursion.
Answers: (a) (−0.8)n (b) 3(−0.8)n (c) Cαn

3.5.3 Impulse Response for the Single-Input Case

Consider the Nth-order difference equation with a single input:

y[n] + A1y[n− 1] + A2y[n− 2] + · · ·+ ANy[n−N ] = x[n] (3.22)

To find its impulse response, we solve the difference equation

h[n] + A1h[n− 1] + A2h[n− 2] + · · ·+ ANh[n−N ] = δ[n] (zero initial conditions) (3.23)

Since the input δ[n] is zero for n > 0, we must apparently assume a forced response that is zero and thus
solve for the natural response using initial conditions (leading to a trivial result). The trick is to use at
least one nonzero initial condition, which we must find by recursion. By recursion, we find h[0] = 1. Since
δ[n] = 0, n > 0, the impulse response is found as the natural response of the homogeneous equation

h[n] + A1h[n− 1] + A2h[n− 2] + · · ·+ ANh[n−N ] = 0, h[0] = 1 (3.24)

subject to the nonzero initial condition h[0] = 1. All the other initial conditions are assumed to be zero
(h[−1] = 0 for a second-order system, h[−1] = h[−2] = 0 for a third-order system, and so on).
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REVIEW PANEL 3.10
The Impulse Response of y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = x[n]

Find h[n] from h[n] + A1h[n− 1] + · · ·+ ANh[n−N ] = 0, with just h[0] = 1 (all others zero).

EXAMPLE 3.11 (Impulse Response Computation for the Single-Input Case)
(a) (A First-Order System) Consider the difference equation y[n]− 0.6y[n− 1] = x[n].

Its impulse response is found by solving h[n]− 0.6h[n− 1] = 0, h[0] = 1.

Its natural response is h[n] = K(0.6)n.

With h[0] = 1, we find K = 1, and thus h[n] = (0.6)nu[n].

(b) (A Second-Order System) Let y[n]− 1
6y[n− 1]− 1

6y[n− 2] = x[n].

Its impulse response is found by solving h[n]− 1
6h[n− 1]− 1

6h[n− 2] = 0, h[0] = 1, h[−1] = 0.

Its characteristic equation is 1− 1
6z−1 − 1

6z−2 = 0 or z2 − 1
6z − 1

6 = 0.

Its roots, z1 = 1
2 and z2 = − 1

3 , give the natural response h[n] = K1( 1
2 )n + K2(− 1

3 )n.

With h[0] = 1 and h[−1] = 0, we find 1 = K1 + K2 and 0 = 2K1 − 3K2.

Solving for the constants, we obtain K1 = 0.6 and K2 = 0.4.

Thus, h[n] = [0.6( 1
2 )n + 0.4(− 1

3 )n]u[n].

DRILL PROBLEM 3.14
(a) Let y[n]− 0.9y[n− 1] = x[n]. Find its impulse response h[n].
(b) Let y[n]− 1.2y[n− 1] + 0.32y[n− 2] = x[n]. Find its impulse response h[n].
Answers: (a) (0.9)n (b) 2(0.8)n − (0.4)n

3.5.4 Impulse Response for the General Case

To find the impulse response of the general system described by

y[n] + A1y[n− 1] + A2y[n− 2] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (3.25)

we use linearity and superposition as follows:

1. Find the impulse response h0[n] of the single-input system

y0[n] + A1y0[n− 1] + A2y0[n− 2] + · · ·+ ANy0[n−N ] = x[n] (3.26)

by solving the homogeneous equation

h0[n] + A1h0[n− 1] + · · ·+ ANh0[n−N ] = 0, h0[0] = 1 (all other conditions zero) (3.27)

2. Then, invoke superposition to find the actual impulse response h[n] as

h[n] = B0h0[n] + B1h0[n− 1] + · · ·+ BMh0[n−M ] (3.28)
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REVIEW PANEL 3.11
Impulse Response of y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ]

1. Find h0[n] from h0[n] + A1h0[n− 1] + · · ·+ ANh0[n−N ] = 0 with just h0[0] = 1 (all others zero).
2. Find h[n] (using superposition) as h[n] = B0h0[n] + B1h0[n− 1] + · · ·+ BMh0[n−M ].

EXAMPLE 3.12 (Impulse Response for the General Case)

(a) Find the impulse response of y[n]− 0.6y[n− 1] = 4x[n] and y[n]− 0.6y[n− 1] = 3x[n + 1]− x[n].

We start with the single-input system y0[n]− 0.6y0[n− 1] = x[n].

Its impulse response h0[n] was found in the previous example as h0[n] = (0.6)nu[n].

Then, for the first system, h[n] = 4h0[n] = 4(0.6)nu[n].

For the second system, h[n] = 3h0[n + 1]− h0[n] = 3(0.6)n+1u[n + 1]− (0.6)nu[n].

This may also be expressed as h[n] = 3δ[n + 1] + 0.8(0.6)nu[n].

Comment: The general approach can be used for causal or noncausal systems.

(b) Let y[n]− 1
6y[n− 1]− 1

6y[n− 2] = 2x[n]− 6x[n− 1].

To find h[n], start with the single-input system y[n]− 1
6y[n− 1]− 1

6y[n− 2] = x[n].

Its impulse response h0[n] was found in the previous example as

h0[n] = [0.6( 1
2 )n + 0.4(− 1

3 )n]u[n]

The impulse response of the given system is h[n] = 2h0[n]− 6h0[n− 1]. This gives

h[n] = [1.2( 1
2 )n + 0.8(− 1

3 )n]u[n]− [3.6( 1
2 )n−1 + 2.4(− 1

3 )n−1]u[n− 1]

Comment: This may be simplified to h[n] = [−6( 1
2 )n + 8(− 1

3 )n]u[n].

DRILL PROBLEM 3.15
(a) Let y[n]− 0.5y[n− 1] = 2x[n] + x[n− 1]. Find its impulse response h[n].
(b) Let y[n]− 1.2y[n− 1] + 0.32y[n− 2] = x[n] + 2x[n− 1]. Find its impulse response h[n].
Answers: (a) 2(0.5)nu[n] + (0.5)n−1u[n− 1] = 4(0.5)nu[n]− 2δ[n] (b) 7(0.8)n − 6(0.4)n (simplified)

3.5.5 Recursive Forms for Nonrecursive Digital Filters

The terms FIR and nonrecursive are synonymous. A nonrecursive filter always has a finite impulse response.
The terms IIR and recursive are often, but not always, synonymous. Not all recursive filters have an infinite
impulse response. In fact, nonrecursive filters can always be implemented in recursive form if desired. A
recursive filter may also be approximated by a nonrecursive filter of the form y[n] = B0x[n] + B1x[n− 1] +
· · ·+ BMx[n−M ] if we know all the past inputs. In general, this implies M →∞.
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EXAMPLE 3.13 (Recursive Forms for Nonrecursive Filters)
Consider the nonrecursive filter y[n] = x[n] + x[n− 1] + x[n− 2].

Its impulse response is h[n] = δ[n] + δ[n− 1] + δ[n− 2].

To cast this filter in recursive form, we compute y[n− 1] = x[n− 1] + x[n− 2] + x[n− 3].

Upon subtraction from the original equation, we obtain the recursive form

y[n]− y[n− 1] = x[n]− x[n− 3]

This describes a recursive formulation for the given nonrecursive, FIR filter.

DRILL PROBLEM 3.16
Consider the nonrecursive filter y[n] = x[n] + x[n− 1] + x[n− 2]. What recursive filter do you obtain by
computing y[n]− y[n− 2]. Does the impulse response of the recursive filter match the impulse response of
the nonrecursive filter?
Answers: y[n]− y[n− 2] = x[n] + x[n− 1]− x[n− 3]− x[n− 4], the impulse responses match.

3.5.6 The Response of Anti-Causal Systems

So far, we have focused on the response of systems described by difference equations to causal inputs.
However, by specifying an anti-causal input and appropriate initial conditions, the same difference equation
can be solved backward in time for n < 0 to generate an anti-causal response. For example, to find the
causal impulse response h[n], we assume that h[n] = 0, n < 0; but to find the anti-causal impulse response
hA[n] of the same system, we would assume that h[n] = 0, n > 0. This means that the same system can be
described by two different impulse response functions. How we distinguish between them is easily handled
using the z-transform (described in the next chapter).

EXAMPLE 3.14 (Causal and Anti-Causal Impulse Response)
(a) Find the causal impulse response of the first-order system y[n]− 0.4y[n− 1] = x[n].

For the causal impulse response, we assume h[n] = 0, n < 0, and solve for h[n], n > 0, by recursion
from h[n] = 0.4h[n− 1] + δ[n]. With h[0] = 0.4h[−1] + δ[0] = 1 and δ[n] = 0, n 6= 0, we find

h[1] = 0.4h[0] = 0.4 h[2] = 0.4h[1] = (0.4)2 h[3] = 0.4h[2] = (0.4)3 etc.

The general form is easily discerned as h[n] = (0.4)n and is valid for n ≥ 0.
Comment: The causal impulse response of y[n]− αy[n− 1] = x[n] is h[n] = αnu[n].

(b) Find the anti-causal impulse response of the first-order system y[n]− 0.4y[n− 1] = x[n].
For the anti-causal impulse response, we assume h[n] = 0, n ≥ 0, and solve for h[n], n < 0, by recursion
from h[n− 1] = 2.5(h[n]− δ[n]). With h[−1] = 2.5(h[0]− δ[0]) = −2.5, and δ[n] = 0, n 6= 0, we find

h[−2] = 2.5h[−1] = −(2.5)2 h[−3] = 2.5h[−2] = −(2.5)3 h[−4] = 2.5h[−3] = −(2.5)4 etc.

The general form is easily discerned as h[n] = −(2.5)−n = −(0.4)n and is valid for n ≤ −1.
Comment: The anti-causal impulse response of y[n]− αy[n− 1] = x[n] is h[n] = −αnu[−n− 1].
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DRILL PROBLEM 3.17
Let y[n]− 0.5y[n− 1] = 2x[n]. Find its causal impulse response and anti-causal impulse response.
Answers: hc[n] = 2(0.5)nu[n], hac[n] = −2(0.5)nu[−n− 1]

3.6 System Representation in Various Forms
An LTI system may be described by a difference equation, impulse response, or input-output data. All three
are related and, given one form, we should be able to access the others. We have already studied how to
obtain the impulse response from a difference equation. Here we shall describe how to obtain the system
difference equation from its impulse response or from input-output data.

3.6.1 Difference Equations from the Impulse Response

In the time domain, the process of finding the difference equation from its impulse response is tedious. It is
much easier implemented by other methods (such as the z-transform). The central idea is that the terms in
the impulse response are an indication of the natural response (and the roots of the characteristic equation)
from which the difference equation may be reconstructed if we can describe the combination of the impulse
response and its delayed versions by a sum of impulses. The process is best illustrated by some examples.

EXAMPLE 3.15 (Difference Equations from the Impulse Response)

(a) Let h[n] = u[n]. Then h[n− 1] = u[n− 1], and h[n]− h[n− 1] = u[n]− u[n− 1] = δ[n].

The difference equation corresponding to h[n]− h[n− 1] = δ[n] is simply y[n]− y[n− 1] = x[n].

(b) Let h[n] = 3(0.6)nu[n]. This suggests a difference equation whose left-hand side is y[n]− 0.6y[n− 1].

We then set up h[n]− 0.6h[n− 1] = 3(0.6)nu[n]− 1.8(0.6)n−1u[n− 1]. This simplifies to

h[n]− 0.6h[n− 1] = 3(0.6)nu[n]− 3(0.6)nu[n− 1] = 3(0.6)n(u[n]− u[n− 1]) = 3(0.6)nδ[n] = 3δ[n]

The difference equation corresponding to h[n]− 0.6h[n− 1] = 3δ[n] is y[n]− 0.6y[n− 1] = 3x[n].

(c) Let h[n] = 2(−0.5)nu[n] + (0.5)nu[n]. This suggests a characteristic equation (z − 0.5)(z + 0.5).

The left-hand side of the difference equation is thus y[n]− 0.25y[n− 2]. We now compute

h[n]− 0.25h[n− 2] = 2(−0.5)nu[n] + (0.5)nu[n]− 0.25(2(−0.5)n−1u[n− 1] + (0.5)n−1u[n− 1])

This simplifies to

h[n]− 0.25h[n− 2] = [2(−0.5)n + (0.5)n](u[n]− u[n− 2])

Since u[n]− u[n− 2] has just two samples (at n = 0 and n = 1), it equals δ[n] + δ[n− 1], and we get

h[n]− 0.25h[n− 2] = [2(−0.5)n + (0.5)n](δ[n] + δ[n− 1])

This simplifies further to h[n]− 0.25h[n− 2] = 3δ[n]− 0.5δ[n− 1].

From this result, the difference equation is y[n]− 0.25y[n− 2] = 3x[n]− 0.5x[n− 1].
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DRILL PROBLEM 3.18
(a) Set up the difference equation corresponding to the impulse response h[n] = 2(−0.5)nu[n].
(b) Set up the difference equation corresponding to the impulse response h[n] = (0.5)nu[n] + δ[n].
Answers: (a) y[n] + 0.5y[n− 1] = 2x[n] (b) y[n]− 0.5y[n− 1] = 2x[n]− 0.5x[n− 1]

3.6.2 Difference Equations from Input-Output Data

The difference equation of LTI systems may also be obtained from input-output data. The response of the
system described by y[n] = 3x[n]+2x[n−1] to x[n] = δ[n] is y[n] = 3δ[n]+2δ[n−1]. Turning things around,
the input δ[n] and output 3δ[n]+2δ[n−1] then corresponds to the difference equation y[n] = 3x[n]+2x[n−1].
Note how the coefficients of the input match the output data (and vice versa).

REVIEW PANEL 3.12
Difference Equation of an LTI System from Input-Output Information

Example: If x[n] = {⇓1, 2, 3} and y[n] = {⇓3, 3}, then y[n] + 2y[n− 1] + 3y[n− 2] = 3x[n] + 3x[n− 1].

[n]y [n−1]y [n−2]y [n]x [n−1]x+ 2 + 3 = 3 + 3
System EquationSystem

1 2
3

n
21

Input

3 3
n

1

Output

DRILL PROBLEM 3.19

(a) The impulse response of an LTI system is h[n] = {⇓1, 2, −1}. What is the system equation?

(b) The input {⇓2, 4} to an LTI system gives the output {⇓3, −1}. What is the system equation?
Answers: (a) y[n] = x[n] + 2x[n− 1]− x[n− 2] (b) 2y[n] + 4y[n− 1] = 3x[n]− x[n− 1]

3.7 Application-Oriented Examples
In this section we explore various practical applications of digital filters such as signal smoothing using
averaging filters, echo cancellation using inverse filters, special audio effects using echo and reverb, and
wave-table synthesis of musical tones for synthesizers.

3.7.1 Moving Average Filters

A moving average or running average filter is an FIR filter that replaces a signal value by an average of
its neighboring values. The averaging process blurs the sharp details of the signal and results in an output
that is a smoother version of the input. Moving average filtering is a simple way of smoothing a noisy signal
and improving its signal-to-noise ratio. A causal L-point moving average (or averaging) filter replaces a
signal value by the average of its past L samples and is defined by

y[n] =
1
L

[x[n] + x[n− 1] + x[n− 2] + · · ·+ x[n− (L− 1)] =
1
L

L−1∑

k=0

x[n− k] (3.29)
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This is an L-point FIR filter whose impulse response is

h[n] =
1
L
{ ⇓1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

L samples

} (3.30)

Figure 3.4 shows a noisy sinusoid and the output when it is passed through two moving average filters of
different lengths. We see that the output of the 10-point filter is indeed a smoother version of the noisy
input. Note that the output is a delayed version of the input and shows a start-up transient for about 10
samples before the filter output settles down. This is typical of all filters. A filter of longer length will result
in a longer transient. It should also produce better smoothing. While that may be generally true, we see
that the 50-point averaging filter produces an output that is essentially zero after the initial transient. The
reason is that the sinusoid also has a period of 50 samples and its 50-point running average is thus zero!
This suggests that while averaging filters of longer lengths usually do a better job of signal smoothing, the
peculiarities of a given signal may not always result in a useful output.

0 50 100 150
−1.5

−1

0

1

1.5
(a) Periodic signal

0 50 100 150
−1.5

−1

0

1

1.5
(b) Noisy signal

0 10 50 100 150
−1.5

−1

0

1

1.5
(c) Output of 10−point averaging filter

0 50 100 150
−1.5

−1

0

1

1.5
(d) Output of 50−point averaging filter

Figure 3.4 The response of two averaging filters to a noisy sinusoid

3.7.2 Inverse Systems

Inverse systems are quite important in practical applications. For example, a measurement system (such as
a transducer) invariably affects (distorts) the signal being measured. To undo the effects of the distortion
requires a system that acts as the inverse of the measurement system. If an input x[n] to a system results
in an output y[n], then its inverse is a system that recovers the signal x[n] in response to the input y[n], as
illustrated in Figure 3.5. For invertible LTI systems described by difference equations, finding the inverse
system is as easy as switching the input and output variables, as illustrated in the following example.

c©Ashok Ambardar, September 1, 2003



72 Chapter 3 Time-Domain Analysis

y[n]x[n] x[n]
System Inverse system

Figure 3.5 A system and its inverse

REVIEW PANEL 3.13
Finding the Inverse of an LTI System? Try Switching the Input and Output
System: y[n] + 2y[n− 1] = 3x[n] + 4x[n− 1] Inverse system: 3y[n] + 4y[n− 1] = x[n] + 2x[n− 1]
How to find the inverse from the impulse response h[n]? Find the difference equation first.

EXAMPLE 3.16 (Inverse Systems)
(a) Refer to the interconnected system shown in Figure E3.16A(1). Find the difference equation of the

inverse system, sketch a realization of each system, and find the output of each system.

[n]y [n]x [n -1]x= - 0.5 Inverse system

1

4 4
n

Input
Output

Figure E3.16A(1) The interconnected system for Example 3.16(a)

The original system is described by y[n] = x[n]− 0.5x[n− 1]. By switching the input and output, the
inverse system is described by y[n] − 0.5y[n − 1] = x[n]. The realization of each system is shown in
Figure E3.16A(2). Are they related? Yes. If you flip the realization of the echo system end-on-end
and change the sign of the feedback signal, you get the inverse realization.

−1z −1z
0.5

Input Output
+

+

Inverse system

Σ

System

0.5

Input Output+−
Σ

Figure E3.16A(2) Realization of the system and its inverse for Example 3.16(a)

The response g[n] of the first system is simply

g[n] = (4δ[n] + 4δ[n− 1])− (2δ[n− 1] + 2δ[n− 2]) = 4δ[n] + 2δ[n− 1])− 2δ[n− 2])

If we let the output of the second system be y0[n], we have

y0[n] = 0.5y0[n− 1] + 4δ[n] + 2δ[n− 1])− 2δ[n− 2])

Recursive solution gives

y0[0] = 0.5y0[−1] + 4δ[0] = 4 y0[1] = 0.5y0[0] + 2δ[0] = 4 y0[2] = 0.5y0[1]− 2δ[0] = 0

All subsequent values of y0[n] are zero since the input terms are zero for n > 2. The output is thus

y0[n] = {⇓4, 4}, the same as the input to the overall system.
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(b) Consider the FIR filter y[n] = x[n] + 2x[n− 1]. Its inverse is found by switching the input and output
as y[n]+2y[n−1] = x[n]. The inverse of an FIR filter always results in an IIR filter (while the converse
is not always true).

DRILL PROBLEM 3.20
(a) Consider the IIR filter y[n] + 2y[n− 1] = x[n]. What is the inverse system? Is it FIR or IIR?
(b) Consider the IIR filter y[n] + 2y[n− 1] = x[n] + x[n− 1]. Is the inverse system FIR or IIR?

(c) Consider the FIR filter whose impulse response is h[n] = {⇓1, −0.4}. What is the impulse response of
the inverse system? Is it FIR or IIR?
Answers: (a) y[n] = x[n]+2x[n−1], FIR (b) y[n]+y[n−1] = x[n]+2x[n−1], IIR (c) 0.4)nu[n], IIR

Invertible Systems

Not all systems have an inverse. For a system to have an inverse, or be invertible, distinct inputs must
lead to distinct outputs. If a system produces an identical output for two different inputs, it does not have
an inverse. For example, the system described by y[n] = cos(x[n]) is not invertible because different inputs
(such as x[n] + 2kπ, k = 0,±1,±2 . . .) yield an identical input.

EXAMPLE 3.17 (Invertibility)

(a) The nonlinear system y[n] = x2[n] does not have an inverse. Two inputs, differing in sign, yield the
same output. If we try to recover x[n] as

√
y[n], we run into a sign ambiguity.

(b) The linear (but time-varying) decimating system y[n] = x[2n] does not have an inverse. Two inputs,
which differ in the samples discarded (for example, the signals {1, 2, 4, 5} and {1, 3, 4, 8} yield the same
output {1, 4}). If we try to recover the original signal by interpolation, we cannot uniquely identify
the original signal.

(c) The linear (but time-varying) interpolating system y[n] = x[n/2] does have an inverse. Its inverse is a
decimating system that discards the very samples inserted during interpolation and thus recovers the
original signal exactly.

DRILL PROBLEM 3.21

(a) Is the system y[n] = ex[n] invertible? If so, what is the inverse system?
(b) Is the system described by the impulse response h[n] = (0.5)nu[n] invertible? If so, what is the impulse
response of the inverse system?
Answers: (a) Yes, y[n] = ln(x[n]) (b) Yes, h[n] = δ[n]− 0.5δ[n− 1]
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3.7.3 Echo and Reverb

The digital processing of audio signals often involves digital filters to create various special effects such as
echo and reverb, which are typical of modern-day studio sounds. An echo filter has the form

y[n] = x[n] + αx[n−D] (an echo filter) (3.31)

This describes an FIR filter whose output y[n] equals the input x[n] and its delayed (by D samples) and
attenuated (by α) replica of x[n] (the echo term). Its realization is sketched in Figure 3.6. The D-sample
delay is implemented by a cascade of D delay elements and represented by the block marked z−D. This
filter is also called a comb filter (for reasons to be explained in later chapters).

z-D z-D

Input Output+

α

An echo filter

+
Σ Input Output

+

+

α

A reverb filter

Σ

Figure 3.6 Echo and reverb filters

Reverberations are due to multiple echoes (from the walls and other structures in a concert hall, for
example). For simplicity, if we assume that the signal suffers the same delay D and the same attenuation α
in each round-trip to the source, we may describe the action of reverb by

y[n] = x[n] + αx[n−D] + α2x[n− 2D] + α3x[n− 3D] + · · · (3.32)

If we delay both sides by D units, we get

αy[n−D] = αx[n−D] + α2x[n− 2D] + α3x[n− 3D] + α4x[n− 4D] + · · · (3.33)

Subtracting the second equation from the first, we obtain a compact form for a reverb filter:

y[n]− αy[n−D] = x[n] (a reverb filter) (3.34)

This is an IIR filter whose realization is also sketched in Figure 3.6. Its form is reminiscent of the inverse of
the echo system y[n] + αy[n−D] = x[n], but with α replaced by −α.

In concept, it should be easy to tailor the simple reverb filter to simulate realistic effects by including
more terms with different delays and attenuation. In practice, however, this is no easy task, and the filter
designs used by commercial vendors in their applications are often proprietary.

3.7.4 Periodic Sequences and Wave-Table Synthesis

Electronic music synthesizers typically possess tone banks of stored tone sequences that are replicated and
used in their original or delayed forms or combined to synthesize new sounds and generate various musical
effects. The periodic versions of such sequences can be generated by filters that have a recursive form
developed from a nonrecursive filter whose impulse response corresponds to one period of the periodic
signal. The difference equation of such a recursive filter is given by

y[n]− y[n−N ] = x1[n] (N -sample periodic signal generator) (3.35)
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where x1[n] corresponds to one period (N samples) of the signal x[n]. This form actually describes a reverb
system with no attenuation whose delay equals the period N . Hardware implementation often uses a circular
buffer or wave-table (in which one period of the signal is stored), and cycling over it generates the periodic
signal. The same wave-table can also be used to change the frequency (or period) of the signal (to double
the frequency for example, we would cycle over alternate samples) or for storing a new signal.

EXAMPLE 3.18 (Generating Periodic Signals Using Recursive Filters)
Suppose we wish to generate the periodic signal x[n] described by

x[n] = {2, 3, 1, 6, 2, 3, 1, 6, 2, 3, 1, 6, 2, 3, 1, 6, . . .}
The impulse response sequence of a nonrecursive filter that generates this signal is simply

h[n] = {2, 3, 1, 6, 2, 3, 1, 6, 2, 3, 1, 6, 2, 3, 1, 6, . . .}
If we delay this sequence by one period (four samples), we obtain

h[n− 4] = {0, 0, 0, 0, 2, 3, 1, 6, 2, 3, 1, 6, 2, 3, 1, 6, 2, 3, 1, 6, . . .}
Subtracting the delayed sequence from the original gives us h[n]− h[n− 4] = {2, 3, 1, 6}.
Its recursive form is y[n]− y[n− 4] = x1[n], where x1[n] = {2, 3, 1, 6} describes one period of x[n].

DRILL PROBLEM 3.22

(a) What is the system equation of a filter whose impulse response is periodic with first period {⇓1, 2}.
(b) Find the response of the system y[n]− y[n− 3] = 2δ[n] + 3δ[n− 2].

Answers: (a) y[n]− y[n− 2] = x[n] + 2x[n− 1] (b) Periodic (N = 3) with period y1[n] = {⇓2, 0, 3}

3.7.5 How Difference Equations Arise

We conclude with some examples of difference equations, which arise in many ways in various fields ranging
from mathematics and engineering to economics and biology.

1. y[n] = y[n− 1] + n, y[−1] = 1

This difference equation describes the number of regions y[n] into which n lines divide a plane if no
two lines are parallel and no three lines intersect.

2. y[n + 1] = (n + 1)(y[n] + 1), y[0] = 0

This difference equation describes the number of multiplications y[n] required to compute the deter-
minant of an n× n matrix using cofactors.

3. y[n + 2] = y[n + 1] + y[n], y[0] = 0, y[1] = 1

This difference equation generates the Fibonacci sequence {y[n] = 0, 1, 1, 2, 3, 5, . . .}, where each
number is the sum of the previous two.

4. y[n + 2]− 2xy[n + 1] + y[n] = 0, y[0] = 1, y[1] = x

This difference equation generates the Chebyshev polynomials Tn(x) = y[n] of the first kind. We
find that T2(x) = y[2] = 2x2 − 1, T3(x) = y[3] = 4x3 − 3x, etc. Similar difference equations called
recurrence relations form the basis for generating other polynomial sets.
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5. y[n + 1] = αy[n](1− y[n])

This difference equation, called a logistic equation in biology, is used to model the growth of populations
that reproduce at discrete intervals.

6. y[n + 1] = (1 + α)y[n] + d[n]

This difference equation describes the bank balance y[n] at the beginning of the nth-compounding
period (day, month, etc.) if the percent interest rate is α per compounding period and d[n] is the
amount deposited in that period.

3.8 Discrete Convolution
Discrete-time convolution is a method of finding the zero-state response of relaxed linear time-invariant
(LTI) systems. It is based on the concepts of linearity and time invariance and assumes that the system
information is known in terms of its impulse response h[n]. In other words, if the input is δ[n], a unit sample
at the origin n = 0, the system response is h[n]. Now, if the input is x[0]δ[n], a scaled impulse at the origin,
the response is x[0]h[n] (by linearity). Similarly, if the input is the shifted impulse x[1]δ[n− 1] at n = 1, the
response is x[1]h[n − 1] (by time invariance). The response to the shifted impulse x[k]δ[n − k] at n = k is
x[k]h[n−k] (by linearity and time invariance). Since an arbitrary input x[n] is simply a sequence of samples,
it can be described by a sum of scaled and shifted impulses:

x[n] =
∞∑

k=−∞
x[k]δ[n− k] (3.36)

By superposition, the response to x[n] is the sum of scaled and shifted versions of the impulse response:

y[n] =
∞∑

k=−∞
x[k]h[n− k] = x[n] ? h[n] (3.37)

This defines the convolution operation and is also called linear convolution or the convolution sum, and
denoted by y[n] = x[n]?h[n] (or by x[n]∗h[n] in the figures) in this book. The order in which we perform the
operation does not matter, and we can interchange the arguments of x and h without affecting the result.

∞∑

k=−∞
x[k]h[n− k] =

∞∑

k=−∞
x[n− k]h[k] or x[n] ? h[n] = h[n] ? x[n] (3.38)

REVIEW PANEL 3.14
Convolution Yields the Zero-State Response of an LTI System

h[n] x[n]*=h[n]x[n]*=
x[n] and h[n]

Input Outputx[n] y[n]
h[n]

System
Output = convolution of impulse response = 

Notation: We use x[n] ? h[n] to denote
∞∑

k=−∞
x[k]h[n− k]

3.8.1 Analytical Evaluation of Discrete Convolution

If x[n] and h[n] are described by simple enough analytical expressions, the convolution sum can be imple-
mented quite readily to obtain closed-form results. While evaluating the convolution sum, it is useful to
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keep in mind that x[k] and h[n − k] are functions of the summation variable k. For causal signals of the
form x[n]u[n] and h[n]u[n], the summation involves step functions of the form u[k] and u[n − k]. Since
u[k] = 0, k < 0 and u[n − k] = 0, k > n, these can be used to simplify the lower and upper summation
limits to k = 0 and k = n, respectively.

EXAMPLE 3.19 (Analytical Evaluation of Discrete Convolution)
(a) Let x[n] = h[n] = u[n]. Then x[k] = u[k] and h[n−k] = u[n−k]. The lower limit on the convolution sum

simplifies to k = 0 (because u[k] = 0, k < 0), the upper limit to k = n (because u[n− k] = 0, k > n),
and we get

y[n] =
∞∑

k=−∞
u[k]u[n− k] =

n∑

k=0

1 = (n + 1)u[n] = r[n + 1]

Note that (n + 1)u[n] also equals r[n + 1], and thus u[n] ? u[n] = r[n + 1].

(b) Let x[n] = h[n] = anu[n]. Then x[k] = aku[k] and h[n − k] = an−ku[n − k]. The lower limit on the
convolution sum simplifies to k = 0 (because u[k] = 0, k < 0), the upper limit to k = n (because
u[n− k] = 0, k > n), and we get

y[n] =
∞∑

k=−∞
akan−ku[k]u[n− k] =

n∑

k=0

akan−k = an
n∑

k=0

1 = (n + 1)anu[n]

The argument of the step function u[n] is based on the fact that the upper limit on the summation
must exceed or equal the lower limit (i.e. n ≥ 0).

(c) Let x[n] = u[n− 1] and h[n] = αnu[n− 1]. Then

u[n− 1] ? αnu[n− 1] =
∞∑

k=−∞
αku[k − 1]u[n− 1− k] =

n−1∑

k=1

αk =
(α− αn)

1− α
u[n− 2]

Here, we used the closed form result for the finite summation. The argument of the step function
u[n− 2] is dictated by the fact that the upper limit on the summation must exceed or equal the lower
limit (i.e. n− 1 ≥ 1 or n ≥ 2).

(d) Let x[n] = (0.8)nu[n] and h[n] = (0.4)nu[n]. Then

y[n] =
∞∑

k=−∞
(0.8)ku[k](0.4)n−ku[n− k] =

n∑

k=0

(0.8)k(0.4)n−k = (0.4)n
n∑

k=0

2k

Using the closed-form result for the sum, we get y[n] = (0.4)n 1− 2n+1

1− 2
= (0.4)n(2n+1 − 1)u[n].

This may also be expressed as y[n] = [2(0.8)n − (0.4)n]u[n].

(e) Let x[n] = nu[n] and h[n] = a−nu[n−1], a < 1. With h[n−k] = a−(n−k)u[n−1−k] and x[k] = ku[k],
the lower and upper limits on the convolution sum become k = 0 and k = n− 1. Then

y[n] =
n−1∑

k=0

ka−(n−k) = a−n
n−1∑

k=0

kak =
a−n+1

(1− a)2
[1− nan−1 + (n− 1)an]u[n− 1]
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Here, we used known results for the finite summation to generate the closed-form solution.

DRILL PROBLEM 3.23
(a) Let x[n] = (0.8)nu[n] and h[n] = (0.4)nu[n− 1]. Find their convolution.
(b) Let x[n] = (0.8)nu[n− 1] and h[n] = (0.4)nu[n]. Find their convolution.
(c) Let x[n] = (0.8)nu[n− 1] and h[n] = (0.4)nu[n− 1]. Find their convolution.
Answers: (a) [(0.8)n − (0.4)n]u[n− 1] (b) 2[(0.8)n − (0.4)n]u[n− 1] (c) [(0.8)n − 2(0.4)n]u[n− 2]

3.9 Convolution Properties
Many of the properties of discrete convolution are based on linearity and time invariance. For example, if
x[n] (or h[n]) is shifted by n0, so is y[n]. Thus, if y[n] = x[n] ? h[n], then

x[n− n0] ? h[n] = x[n] ? h[n− n0] = y[n− n0] (3.39)

The sum of the samples in x[n], h[n], and y[n] are related by

∞∑
n=−∞

y[n] =

( ∞∑
n=−∞

x[n]

)( ∞∑
n=−∞

h[n]

)
(3.40)

For causal systems (h[n] = 0, n < 0) and causal signals (x[n] = 0, n < 0), y[n] is also causal. Thus,

y[n] = x[n] ? h[n] = h[n] ? x[n] =
n∑

k=0

x[k]h[n− k] =
n∑

k=0

h[k]x[n− k] (3.41)

An extension of this result is that the convolution of two left-sided signals is also left-sided and the convolution
of two right-sided signals is also right-sided.

EXAMPLE 3.20 (Properties of Convolution)

(a) Here are two useful convolution results that are readily found from the defining relation:

δ[n] ? x[n] = x[n] δ[n] ? δ[n] = δ[n]

(b) We find y[n] = u[n] ? x[n]. Since the step response is the running sum of the impulse response, the
convolution of a signal x[n] with a unit step is the running sum of the signal x[n]:

x[n] ? u[n] =
n∑

k=−∞
x[k]

(c) We find y[n] = rect(n/2N) ? rect(n/2N) where rect(n/2N) = u[n + N ]− u[n−N − 1].

The convolution contains four terms:

y[n] = u[n+N ]?u[n+N ]−u[n+N ]?u[n−N−1]−u[n−N−1]?u[n+N ]+u[n−N−1]?u[n−N−1]
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Using the result u[n] ? u[n] = r[n + 1] and the shifting property, we obtain

y[n] = r[n + 2N + 1]− 2r[n] + r[n− 2N − 1] = (2N + 1)tri
(

n

2N + 1

)

The convolution of two rect functions (with identical arguments) is thus a tri function.

DRILL PROBLEM 3.24
(a) Let x[n] = (0.8)n+1u[n + 1] and h[n] = (0.4)n−1u[n− 2]. Find their convolution.
(b) Let x[n] = (0.8)nu[n] and h[n] = (0.4)n−1u[n− 2]. Find their convolution.
Answers: (a) [(0.8)n − (0.4)n]u[n− 1] (b) [(0.8)n−1 − (0.4)n−1]u[n− 2]

3.10 Convolution of Finite Sequences
In practice, we often deal with sequences of finite length, and their convolution may be found by several
methods. The convolution y[n] of two finite-length sequences x[n] and h[n] is also of finite length and is
subject to the following rules, which serve as useful consistency checks:

1. The starting index of y[n] equals the sum of the starting indices of x[n] and h[n].
2. The ending index of y[n] equals the sum of the ending indices of x[n] and h[n].
3. The length Ly of y[n] is related to the lengths Lx and Lh of x[n] and h[n] by Ly = Lx + Lh − 1.

3.10.1 The Sum-by-Column Method

This method is based on the idea that the convolution y[n] equals the sum of the (shifted) impulse responses
due to each of the impulses that make up the input x[n]. To find the convolution, we set up a row of index
values beginning with the starting index of the convolution and h[n] and x[n] below it. We regard x[n] as a
sequence of weighted shifted impulses. Each element (impulse) of x[n] generates a shifted impulse response
(product with h[n]) starting at its index (to indicate the shift). Summing the response (by columns) gives
the discrete convolution. Note that none of the sequences is folded. It is better (if only to save paper) to let
x[n] be the shorter sequence. The starting index (and the marker location corresponding to n = 0) for the
convolution y[n] is found from the starting indices of x[n] and h[n].

REVIEW PANEL 3.15
Discrete Convolution Using the Sum-by-Column Method
1. Line up the sequence x[n] below the sequence h[n].
2. Line up with each sample of x[n], the product of the entire array h[n] with that sample of x[n].
3. Sum the columns of the (successively shifted) arrays to generate the convolution sequence.

EXAMPLE 3.21 (Convolution of Finite-Length Signals)

(a) An FIR (finite impulse response) filter has an impulse response given by h[n] = {⇓1, 2, 2, 3}. Find its

response y[n] to the input x[n] = {⇓2, −1, 3}. Assume that both x[n] and h[n] start at n = 0.
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The paper-and-pencil method expresses the input as x[n] = 2δ[n]− δ[n− 1] + 3δ[n− 2] and tabulates
the response to each impulse and the total response as follows:

h[n] = 1 2 2 3
x[n] = 2 −1 3

Input Response
2δ[n] 2h[n] = 2 4 4 6

−δ[n− 1] −h[n− 1] = −1 −2 −2 −3
3δ[n− 2] 3h[n− 2] = 3 6 6 9

Sum = x[n] Sum = y[n] = 2 3 5 10 3 9

So, y[n] = {⇓2, 3, 5, 10, 3, 9} = 2δ[n] + 3δ[n− 1] + 5δ[n− 2] + 10δ[n− 3] + 3δ[n− 4] + 9δ[n− 5].

The convolution process is illustrated graphically in Figure E3.21A.
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1 2 3

1 2 3 4

1 2 3 54

1 2 3 4 5

[n]y

1 2 3

[n]h

n1 2 2 3
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n1 2 2 3
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[n]h

n1 2 2 3

1 2 3

[n]h

n1 2 2 3

Input Output
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n
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3
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n

3
5

3
2

10 9

n

n

SuperpositionSuperposition

Figure E3.21A The discrete convolution for Example 3.21(a)

(b) Let h[n] = {2, 5,
⇓
0, 4} and x[n] = {4,

⇓
1, 3}.

We note that the convolution starts at n = −3 and use this to set up the index array and generate the
convolution as follows:

c©Ashok Ambardar, September 1, 2003



3.10 Convolution of Finite Sequences 81

n −3 −2 −1 0 1 2
h[n] 2 5 0 4
x[n] 4 1 3

8 20 0 16
2 5 0 4

6 15 0 12

y[n] 8 22 11
⇓
31 4 12

The marker is placed by noting that the convolution starts at n = −3, and we get

y[n] = {8, 22, 11,
⇓
31, 4, 12}

(c) (Response of a Moving-Average Filter) Let x[n] = {⇓2, 4, 6, 8, 10, 12, . . .}.

What system will result in the response y[n] = {⇓1, 3, 5, 7, 9, 11, . . .}?
At each instant, the response is the average of the input and its previous value. This system describes
an averaging or moving average filter. Its difference equation is simply y[n] = 0.5(x[n] + x[n− 1]).

Its impulse response is thus h[n] = 0.5{δ[n] + δ[n− 1]}, or h[n] = {
⇓

0.5, 0.5}.
Using discrete convolution, we find the response as follows:

x: 2 4 6 8 10 12 . . .
h: 1

2
1
2

1 2 3 4 5 6 . . .
1 2 3 4 5 6 . . .

y: 1 3 5 7 9 11 . . .

This result is indeed the averaging operation we expected.

DRILL PROBLEM 3.25

(a) Let x[n] = {⇓1, 4, 0, 2} and h[n] = {⇓1, 2, 1}. Find their convolution.

(b) Let x[n] = {1, 4,
⇓
1, 3} and h[n] = {2,

⇓
1, −1}. Find their convolution.

Answers: (a) {⇓1, 6, 9, 6, 4, 2} (b) {2, 9, 5,
⇓
3, 2, −3}

3.10.2 The Fold, Shift, Multiply, and Sum Concept

The convolution sum may also be interpreted as follows. We fold x[n] and shift x[−n] to line up its last
element with the first element of h[n]. We then successively shift x[−n] (to the right) past h[n], one index
at a time, and find the convolution at each index as the sum of the pointwise products of the overlapping
samples. One method of computing y[n] is to list the values of the folded function on a strip of paper and
slide it along the stationary function, to better visualize the process. This technique has prompted the name
sliding strip method. We simulate this method by showing the successive positions of the stationary and
folded sequence along with the resulting products, the convolution sum, and the actual convolution.
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EXAMPLE 3.22 (Convolution by the Sliding Strip Method)

Find the convolution of h[n] = {⇓2, 5, 0, 4} and x[n] = {⇓4, 1, 3}.
Since both sequences start at n = 0, the folded sequence is x[−k] = {3, 1,

⇓
4}.

We line up the folded sequence below h[n] to begin overlap and shift it successively, summing the product
sequence as we go, to obtain the discrete convolution. The results are computed in Figure E3.22.

The discrete convolution is y[n] = {⇓8, 22, 11, 31, 4, 12}.

0 4

2 5 0 4

[4]y

15 0 16
[3]y  = sum of products = 31

2 5 0 4
1 43 1 43

[5]y  = sum of products = 12

2 5 0 4
1 43

 = sum of products = 4

SlideSlide

12

2 5 0 4

2 20
[1]y  = sum of products = 22[0]y  = sum of products = 8

2 5 0 4
1 43 1 43

2 5 0 4

6 5 0
[2]y  = sum of products = 11

1 43Slide Slide

8

Figure E3.22 The discrete signals for Example 3.22 and their convolution

3.10.3 Discrete Convolution, Multiplication, and Zero Insertion

The discrete convolution of two finite-length sequences x[n] and h[n] is entirely equivalent to multiplication
of two polynomials whose coefficients are described by the arrays x[n] and h[n] (in ascending or descending
order). The convolution sequence corresponds to the coefficients of the product polynomial. Based on this
result, if we insert N zeros between each pair of adjacent samples of each sequence to be convolved, their
convolution corresponds to the original convolution sequence with N zeros inserted between each pair of its
adjacent samples.

If we append zeros to one of the convolved sequences, the convolution result will also show as many appended
zeros at the corresponding location. For example, leading zeros appended to a sequence will appear as leading
zeros in the convolution result. Similarly, trailing zeros appended to a sequence will show up as trailing zeros
in the convolution.

REVIEW PANEL 3.16
Convolution of Finite-Length Signals Corresponds to Polynomial Multiplication

Example: {⇓1, 1, 3} ? {⇓1, 0, 2} = {⇓1, 1, 5, 2, 6} (x2 + x + 3)(x2 + 2) = x4 + x3 + 5x2 + 2x + 6
Zero Insertion of Both Sequences Leads to Zero Insertion of the Convolution

Example: If {⇓1, 2} ? {⇓3, 1, 4} = {⇓3, 7, 6, 8}
Then, {⇓1, 0, 0, 2} ? {⇓3, 0, 0, 1, 0, 0, 4} = {⇓3, 0, 0, 7, 0, 0, 6, 0, 0, 8}
Zero-Padding of One Sequence Leads to Zero-Padding of the Convolution
Example: If x[n] ? h[n] = y[n] then {0, 0, x[n], 0, 0} ? {h[n], 0} = {0, 0, y[n], 0, 0, 0}.
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EXAMPLE 3.23 (Polynomial Multiplication, Zero Insertion, Zero-Padding)

(a) Let h[n] = {⇓2, 5, 0, 4} and x[n] = {⇓4, 1, 3}. To find their convolution, we set up the polynomials

h(z) = 2z3 + 5z2 + 0z + 4 x(z) = 4z2 + 1z + 3

Their product is y(z) = 8z5 + 22z4 + 11z3 + 31z2 + 4z + 12.

The convolution is thus y[n] = {⇓8, 22, 11, 31, 4, 12}.

(b) (Zero-Insertion) Zero insertion of each convolved sequence gives

h1[n] = {⇓2, 0, 5, 0, 0, 0, 4} x1[n] = {⇓4, 0, 1, 0, 3}

To find their convolution, we set up the polynomials

h1(z) = 2z6 + 5z4 + 0z2 + 4 x1(z) = 4z4 + 1z2 + 3

Their product is y1(z) = 8z10 + 22z8 + 11z6 + 31z4 + 4z2 + 12.

The convolution is then y1[n] = {⇓8, 0, 22, 0, 11, 0, 31, 0, 4, 0, 12}.
This result is just y[n] with zeros inserted between adjacent samples.

(c) (Zero-Padding) If we pad the first sequence by two zeros and the second by one zero, we get

h2[n] = {⇓2, 5, 0, 4, 0, 0} x2[n] = {⇓4, 1, 3, 0}

To find their convolution, we set up the polynomials

h2(z) = 2z5 + 5z4 + 4z2 x2(z) = 4z3 + 1z2 + 3z

Their product is y2(z) = 8z8 + 22z7 + 11z6 + 31z5 + 4z4 + 12z3.

The convolution is then y1[n] = {⇓8, 22, 11, 31, 4, 12, 0, 0, 0}.
This result is just y[n] with three zeros appended at the end.

DRILL PROBLEM 3.26

Use the result {⇓1, 0, 2} ? {⇓1, 3} = {⇓1, 3, 2, 6} to answer the following.

(a) Let x[n] = {⇓1, 0, 0, 0, 2} and h[n] = {⇓1, 0, 3}. Find their convolution.

(b) Let x[n] = {⇓1, 0, 2, 0} and h[n] = {⇓1, 3, 0, 0}. Find their convolution.

(c) Let x[n] = {0, 0,
⇓
1, 0, 2} and h[n] = {⇓1, 3, 0}. Find their convolution.

Answers: (a) {⇓1, 0, 3, 0, 2, 0, 6} (b) {⇓1, 3, 2, 6, 0, 0, 0} (c) {0, 0,
⇓
1, 3, 2, 6, 0}
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3.10.4 Impulse Response of LTI Systems in Cascade and Parallel

Consider the ideal cascade of two LTI systems shown in Figure 3.7. The response of the first system is
y1[n] = x[n] ? h1[n]. The response y[n] of the second system is

y[n] = y1[n] ? h2[n] = (x[n] ? h1[n]) ? h2[n] = x[n] ? (h1[n] ? h2[n]) (3.42)

If we wish to replace the cascaded system by an equivalent LTI system with impulse response h[n] such that
y[n] = x[n] ? h[n], it follows that h[n] = h1[n] ? h2[n]. Generalizing this result, the impulse response h[n] of
N ideally cascaded LTI systems is simply the convolution of the N individual impulse responses

h[n] = h1[n] ? h2[n] ? · · · ? hN [n] (for a cascade combination) (3.43)

If the hk[n] are energy signals, the order of cascading is unimportant.

[n]h1 [n]h2 [n]h1 [n]h2*[n]x [n]y [n]y[n]x

[n]h1

[n]h2

[n]h1 [n]h2+ [n]y

[n]x

[n]x

[n]y

Two LTI systems in cascade Equivalent LTI system

Two LTI systems in parallel

Equivalent LTI systemΣ+ +

Figure 3.7 Cascaded and parallel systems and their equivalents

The overall impulse response of LTI systems in parallel equals the sum of the individual impulse responses,
as shown in Figure 3.7:

hP [n] = h1[n] + h2[n] + · · ·+ hN [n] (for a parallel combination) (3.44)

REVIEW PANEL 3.17
Impulse Response of N Interconnected Discrete LTI Systems
In cascade: Convolve the impulse responses: hC [n] = h1[n] ? h2[n] ? · · · ? hN [n]
In parallel: Add the impulse responses: hP [n] = h1[n] + h2[n] + · · ·+ hN [n]

EXAMPLE 3.24 (Interconnected Systems)
Consider the interconnected system of Figure E3.24. Find its overall impulse response and the output.
Comment on the results.

[n]y [n]x [n−1]x= − 0.5 [n]h (0.5)n [n]u=

1

4 4
n

Input
Output

Figure E3.24 The interconnected system of Example 3.24
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The impulse response of the first system is h1[n] = δ[n]− 0.5δ[n− 1]. The overall impulse response hC [n]
is given by the convolution

hC [n] = (δ[n]− 0.5δ[n− 1]) ? (0.5)nu[n] = (0.5)nu[n]− 0.5(0.5)n−1u[n− 1]

This simplifies to
hC [n] = (0.5)n(u[n]− u[n− 1]) = (0.5)nδ[n] = δ[n]

What this means is that the overall system output equals the applied input. The second system thus acts
as the inverse of the first.

DRILL PROBLEM 3.27

(a) Find the impulse response of the cascade of two identical filters, each with h[n] = {⇓1, 1, 3}.
(b) The impulse response of two filters is h1[n] = {⇓1, 0, 2} and h2[n] = {4,

⇓
1, 3}. Find the impulse

response of their parallel combination.
(c) Two filters are described by y[n] − 0.4y[n − 1] = x[n] and h2[n] = 2(0.4)nu[n]. Find the impulse
response of their parallel combination and cascaded combination.

Answers: (a) {⇓1, 2, 7, 6, 9} (b) {4,
⇓
2, 3, 2} (c) hP [n] = 3(0.4)nu[n], hC [n] = 2(n+1)(0.4)nu[n]

3.11 Stability and Causality of LTI Systems
System stability is an important practical constraint in filter design and is defined in various ways. Here we
introduce the concept of Bounded-input, bounded-output (BIBO) stability that requires every bounded
input to produce a bounded output.

3.11.1 Stability of FIR Filters

The system equation of an FIR filter describes the output as a weighted sum of shifted inputs. If the input
remains bounded, the weighted sum of the inputs is also bounded. In other words, FIR filters are always
stable. This can be a huge design advantage.

3.11.2 Stability of LTI Systems Described by Difference Equations

For an LTI system described by the difference equation

y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (3.45)

the conditions for BIBO stability involve the roots of the characteristic equation. A necessary and sufficient
condition for BIBO stability of such an LTI system is that every root of its characteristic equation must have
a magnitude less than unity. This criterion is based on the results of Tables 3.1 and 3.2. Root magnitudes
less than unity ensure that the natural (and zero-input) response always decays with time (see Table 3.2),
and the forced (and zero-state) response always remains bounded for every bounded input. Roots with
magnitudes that equal unity make the system unstable. Simple (non-repeated) roots with unit magnitude
produce a constant (or sinusoidal) natural response that is bounded; but if the input is also a constant
(or sinusoid at the same frequency), the forced response is a ramp or growing sinusoid (see Table 3.1) and
hence unbounded. Repeated roots with unit magnitude result in a natural response that is itself a growing
sinusoid or polynomial and thus unbounded. In the next chapter, we shall see that the stability condition
is equivalent to having an LTI system whose impulse response h[n] is absolutely summable. The stability of
nonlinear or time-varying systems usually must be checked by other means.
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3.11.3 Stability of LTI Systems Described by the Impulse Response

For systems described by their impulse response, it turns out that BIBO stability requires that the impulse
response h[n] be absolutely summable. Here is why. If x[n] is bounded such that |x[n]| < M , so too is its
shifted version x[n− k]. The convolution sum then yields the following inequality:

|y[n]| <
∞∑

k=−∞
|h[k]||x[n− k]| < M

∞∑

k=−∞
|h[k]| (3.46)

If the output is to remain bounded (|y[n]| < ∞), then

∞∑

k=−∞
|h[k]| < ∞ (for a stable LTI system) (3.47)

In other words, h[n] must be absolutely summable. This is both a necessary and sufficient condition. The
stability of nonlinear systems must be investigated by other means.

3.11.4 Causality

In analogy with analog systems, causality of discrete-time systems implies a non-anticipating system with
an impulse response h[n] = 0, n < 0. This ensures that an input x[n]u[n− n0] starting at n = n0 results in
a response y[n] also starting at n = n0 (and not earlier). This follows from the convolution sum:

y[n] =
∞∑

k−∞
x[k]u(k − n0]h[n− k]u[n− k] =

n∑
n0

x[k]h[n− k] (3.48)

REVIEW PANEL 3.18
Stability and Causality of Discrete LTI Systems
Stability: Every root r of the characteristic equation must have magnitude |r| less than unity.

The impulse response h[n] must be absolutely summable with
∞∑

k=−∞
|h[k]| < ∞.

Note: FIR filters are always stable.

Causality: The impulse response h[n] must be zero for negative indices (h[n] = 0, n < 0).

EXAMPLE 3.25 (Concepts Based on Stability and Causality)

(a) The system y[n] − 1
6y[n − 1] − 1

6y[n − 2] = x[n] is stable since the roots of its characteristic equation
z2 − 1

6z − 1
6 = 0 are z1 = 1

2 and z2 = − 1
3 and their magnitudes are less than 1.

(b) The system y[n]− y[n− 1] = x[n] is unstable. The root of its characteristic equation z− 1 = 0 is z = 1
gives the natural response yN = Ku[n], which is actually bounded. However, for an input x[n] = u[n],
the forced response will have the form Cnu[n], which becomes unbounded.
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(c) The system y[n] − 2y[n − 1] + y[n − 2] = x[n] is unstable. The roots of its characteristic equation
z2 − 2z + 1 = 0 are equal and produce the unbounded natural response yN [n] = Au[n] + Bnu[n].

(d) The system y[n] − 1
2y[n − 1] = nx[n] is linear, time varying and unstable. The (bounded) step input

x[n] = u[n] results in a response that includes the ramp nu[n], which becomes unbounded.

(e) The system y[n] = x[n]− 2x[n− 1] is stable because it describes an FIR filter.

(f) The FIR filter described by y[n] = x[n + 1] − x[n] has the impulse response h[n] = {1,− ⇓
1}. It is a

stable system, since
∑ |h[n]| = |1| + | − 1| = 2. It is also noncausal because h[n] = δ[n + 1] − δ[n] is

not zero for n < 0. We emphasize that FIR filters are always stable because
∑ |h[n]| is the absolute

sum of a finite sequence and is thus always finite.

(g) A filter described by h[n] = (−0.5)nu[n] is causal. It describes a system with the difference equation
y[n] = x[n] + ay[n− 1]. It is also stable because

∑ |h[n]| is finite. In fact, we find that

∞∑
n=−∞

|h[n]| =
∞∑

n=0

(−0.5)n =
1

1− 0.5
= 2

(h) A filter described by the difference equation y[n] − 0.5y[n − 1] = nx[n] is causal but time varying. It
is also unstable. If we apply a step input u[n] (bounded input), then y[n] = nu[n] + 0.5y[n− 1]. The
term nu[n] grows without bound and makes this system unstable. We caution you that this approach
is not a formal way of checking for the stability of time-varying systems.

DRILL PROBLEM 3.28

(a) Is the filter described by h[n] = {2,
⇓
1, 1, 3} causal? Is it stable?

(b) Is the filter described by h[n] = 2nu[n + 2] causal? Is it stable?
(c) Is the filter described by y[n] + 0.5y[n− 1] = 4u[n] causal? Is it stable?
(d) Is the filter described by y[n] + 1.5y[n− 1] + 0.5y[n− 2] = u[n] causal? Is it stable?
Answers: (a) Noncausal, stable (b) Noncausal, unstable (c) Causal, stable (d) Causal, unstable

3.12 System Response to Periodic Inputs
In analogy with analog systems, the response of a discrete-time system to a periodic input with period N is
also periodic with the same period N . A simple example demonstrates this concept.
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EXAMPLE 3.26 (Response to Periodic Inputs)

(a) Let x[n] = {⇓1, 2, −3, 1, 2, −3, 1, 2, −3, . . .} and h[n] = {⇓1, 1}.
The convolution y[n] = x[n] ? h[n], using the sum-by-column method, is

Index n 0 1 2 3 4 5 6 7 8 9 10
x[n] 1 2 −3 1 2 −3 1 2 −3 1 . . .
h[n] 1 1

1 2 −3 1 2 −3 1 2 −3 1 . . .
1 2 −3 1 2 −3 1 2 −3 . . .

y[n] 1 3 −1 −2 3 −1 −2 3 −1 −2 . . .

The convolution y[n] is periodic with period N = 3, except for start-up effects (which last for one

period). One period of the convolution is y[n] = {
⇓
−2, 3, −1}.

(b) Let x[n] = {⇓1, 2, −3, 1, 2, −3, 1, 2, −3, . . .} and h[n] = {⇓1, 1, 1}.
The convolution y[n] = x[n] ? h[n], using the sum-by-column method, is found as follows:

Index n 0 1 2 3 4 5 6 7 8 9 10
x[n] 1 2 −3 1 2 −3 1 2 −3 1 . . .
h[n] 1 1 1

1 2 −3 1 2 −3 1 2 −3 1 . . .
1 2 −3 1 2 −3 1 2 −3 . . .

1 2 −3 1 2 −3 1 2 . . .
y[n] 1 3 0 0 0 0 0 0 0 0 . . .

Except for start-up effects, the convolution is zero. The system h[n] = {⇓1, 1, 1} is a moving average
filter. It extracts the 3-point running sum, which is always zero for the given periodic signal x[n].

REVIEW PANEL 3.19
The Response of LTI Systems to Periodic Signals Is Also Periodic with Identical Period

Period =Period = N N

Relaxed
LTI system

Periodic input Periodic output

One way to find the system response to periodic inputs is to find the response to one period of the input and
then use superposition. In analogy with analog signals, if we add an absolutely summable signal (or energy
signal) x[n] and its infinitely many replicas shifted by multiples of N , we obtain a periodic signal with period
N , which is called the periodic extension of x[n]:

xpe[n] =
∞∑

k=−∞
x[n + kN ] (3.49)
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An equivalent way of finding one period of the periodic extension is to wrap around N -sample sections of
x[n] and add them all up. If x[n] is shorter than N , we obtain one period of its periodic extension simply
by padding x[n] with zeros (to increase its length to N).

EXAMPLE 3.27 (Periodic Extension)

(a) The periodic extension of x[n] = {⇓1, 5, 2, 0, 4, 3, 6, 7} with period N = 3 is found by wrapping
around blocks of 3 samples and finding the sum to give

{⇓1, 5, 2, 0, 4, 3, 6, 7} =⇒ wrap around =⇒





⇓
1 5 2
0 4 3
6 7





=⇒ sum =⇒ {⇓7, 16, 5}

In other words, if we add x[n] to its shifted versions x[n + kN ] where N = 3 and k = ±1,±2,±3, . . .,

we get a periodic signal whose first period is {⇓7, 16, 5}.

The periodic extension of the signal x[n] = αnu[n] with period N is given by

xpe[n] =
∞∑

k=−∞
x[n + kN ] =

∞∑

k=0

αn+kN = αn
∞∑

k=0

(αN )k =
αn

1− αN
, 0 ≤ n ≤ N − 1

The methods for finding the response of a discrete-time system to periodic inputs rely on the concepts of
periodic extension and wraparound. One approach is to find the output for one period of the input (using
regular convolution) and find one period of the periodic output by superposition (using periodic extension).
Another approach is to first find one period of the periodic extension of the impulse response, then find its
regular convolution with one period of the input and finally, wrap around the regular convolution to generate
one period of the periodic output.

EXAMPLE 3.28 (System Response to Periodic Inputs)

(a) Let x[n] = {⇓1, 2, −3} describe one period of a periodic input with period N = 3 to a system whose

impulse response is h[n] = {⇓1, 1}. The response y[n] is also periodic with period N = 3. To find y[n]
for one period, we find the regular convolution y1[n] of h[n] and one period of x[n] to give

y1[n] = {⇓1, 1} ? {⇓1, 2, −3} = {⇓1, 3, −1, −3}
We then wrap around y1[n] past three samples to obtain one period of y[n] as

{⇓1, 3, −1, −3} =⇒ wrap around =⇒
{ ⇓

1 3 −1
−3

}
=⇒ sum =⇒ {

⇓
−2, 3, −1}

This is identical to the result obtained in the previous example.

(b) We find the response yp[n] of a moving average filter described by h[n] = {⇓2, 1, 1, 3, 1} to a periodic

signal whose one period is xp[n] = {⇓2, 1, 3}, with N = 3, using two methods.
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1. (Method 1) We find the regular convolution y[n] = xp[n] ? h[n] to obtain

y[n] = {⇓2, 1, 3} ? {⇓2, 1, 1, 3, 1} = {⇓4, 4, 9, 10, 8, 10, 3}

To find yp[n], values past N = 3 are wrapped around and summed to give

{⇓4, 4, 9, 10, 8, 10, 3} =⇒ wrap around =⇒





⇓
4 4 9

10 8 10
3





=⇒ sum =⇒ {
⇓
17, 12, 19}

2. (Method 2) We first create the periodic extension of h[n], with N = 3, (by wraparound) to get

hp[n] = {⇓5, 2, 1}. The regular convolution of hp[n] and one period of x[n] gives

y[n] = {⇓2, 1 , 3} ? {⇓5, 2 , 1} = {
⇓
10, 9, 19, 7, 3}

This result is wrapped around past N = 3 to give yp[n] = {
⇓
17, 12, 19}, as before.

(c) We find the response of the system y[n]− 0.5y[n− 1] = x[n] to x[n] = {. . . , ⇓7, 0, 0, 7, 0, 0, . . .}.
The impulse response of the system is h[n] = (0.5)nu[n]. The input is periodic with period N = 3

and first period x1 = {⇓7, 0, 0}. The response due to this one period is just y1[n] = 7(0.5)nu[n]. The
complete periodic output is the periodic extension of y1[n] with period N = 3. Using the result that
the periodic extension of αnu[n] with period N is given by αn

1−αN , 0 ≤ n ≤ N − 1, we find one period
of the periodic output as

yp[n] =
(0.5)n

1− (0.5)3
, 0 ≤ n ≤ 2 = {⇓8, 4, 2}

DRILL PROBLEM 3.29

(a) A filter is described by h[n] = {⇓2, 1, 1, 3, 2}. Find one period of its periodic output if the input is

periodic with first period x1[n] = {⇓1, 0, 0, 2}.
(b) A filter is described by y[n]− 0.5y[n− 1] = 7x[n]. Find one period of its periodic output if the input

is periodic with first period x1[n] = {⇓1, 0, 0}.
(c) A filter is described by y[n]− 0.5y[n− 1] = 7x[n]? Find one period of its periodic output if the input

is periodic with first period x1[n] = {⇓1, 0, 1}.
Answers: (a) {⇓6, 3, 7, 11} (b) {⇓8, 4, 2} (c) {

⇓
12, 6, 10}
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3.13 Periodic Convolution
The regular convolution of two signals, both of which are periodic, does not exist. For this reason, we resort
to periodic convolution by using averages. If both xp[n] and hp[n] are periodic with identical period N ,
their periodic convolution generates a convolution result yp[n] that is also periodic with the same period N .
The periodic convolution or circular convolution yp[n] of xp[n] and hp[n] is denoted yp[n] = xp[n] ?©hp[n]
and, over one period (n = 0, 1, . . . , N − 1), it is defined by

yp[n] = xp[n] ?©hp[n] = hp[n] ?©xp[n] =
N−1∑

k=0

xp[k]hp[n− k] =
N−1∑

k=0

hp[k]xp[n− k] (3.50)

An averaging factor of 1/N is sometimes included with the summation. Periodic convolution can be imple-
mented using wraparound. We find the linear convolution of one period of xp[n] and hp[n], which will have
(2N − 1) samples. We then extend its length to 2N (by appending a zero), slice it in two halves (of length
N each), line up the second half with the first, and add the two halves to get the periodic convolution.

REVIEW PANEL 3.20
Periodic Convolution of Periodic Discrete-Time Signals with Identical Period N

1. Find the regular convolution of their one-period segments (this will have length 2N − 1).
2. Append a trailing zero. Wrap around the last N samples and add to the first N samples.

EXAMPLE 3.29 (Periodic Convolution)

(a) Find the periodic convolution of xp[n] = {⇓1, 0, 1, 1} and hp[n] = {⇓1, 2, 3, 1}.
The period is N = 4. First, we find the linear convolution y[n].

Index n 0 1 2 3 4 5 6
hp[n] 1 2 3 1
xp[n] 1 0 1 1

1 2 3 1
0 0 0 0

1 2 3 1
1 2 3 1

y[n] 1 2 4 4 5 4 1

Then, we append a zero, wrap around the last four samples, and add.

Index n 0 1 2 3
First half of y[n] 1 2 4 4
Wrapped around half of y[n] 5 4 1 0
Periodic convolution yp[n] 6 6 5 4

(b) Find the periodic convolution of xp[n] = {⇓1, 2, 3} and hp[n] = {⇓1, 0, 2}, with period N = 3.

The regular convolution is easily found to be yR[n] = {⇓1, 2, 5, 4, 6}.
Appending a zero and wrapping around the last three samples gives yp[n] = {⇓5, 8, 5}.
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DRILL PROBLEM 3.30

Find the periodic convolution of two identical signals whose first period is given by x1[n] = {⇓1, 2, 0, 2}.
Answer: {⇓9, 4, 8, 4}

3.13.1 Periodic Convolution By the Cyclic Method

To find the periodic convolution, we shift the folded signal xp[−n] past hp[n], one index at a time, and
find the convolution at each index as the sum of the pointwise product of their samples but only over a
one-period window (0, N − 1). Values of xp[n] and hp[n] outside the range (0, N − 1) are generated by
periodic extension. One way to visualize the process is to line up x[k] clockwise around a circle and h[k]
counterclockwise (folded), on a concentric circle positioned to start the convolution, as shown in Figure 3.8.

[0]=(1)(1)+(2)(2)+(0)(3) = 5y

(folded  h )

1

0 2

1

23

Rotate outer
sequence

clockwise

[1]=(0)(1)+(1)(2)+(2)(3) = 8y

(folded  h )

2

0

1

23

Rotate outer
sequence

clockwise

1

[2]=(2)(1)+(0)(2)+(1)(3) = 5y

1

2

0

1

23

Figure 3.8 The cyclic method of circular (periodic) convolution

Shifting the folded sequence turns it clockwise. At each turn, the convolution equals the sum of the
pairwise products. This approach clearly brings out the cyclic nature of periodic convolution.

3.13.2 Periodic Convolution By the Circulant Matrix

Periodic convolution may also be expressed as a matrix multiplication. We set up an N ×N matrix whose
columns equal x[n] and its cyclically shifted versions (or whose rows equal successively shifted versions of
the first period of the folded signal x[−n]). This is called the circulant matrix or convolution matrix.
An N ×N circulant matrix Cx for x[n] has the general form

Cx =




x[0] x[N − 1] . . . x[2] x[1]
x[1] x[0] . . . x[2]
x[2] x[1] . . . x[3]
...

...
...

x[N − 2] . . . x[0] x[N − 1]
x[N − 1] x[N − 2] . . . x[1] x[0]




(3.51)

Note that each diagonal of the circulant matrix has equal values. Such a constant diagonal matrix is also
called a Toeplitz matrix. Its matrix product with an N × 1 column matrix h describing h[n] yields the
periodic convolution y = Ch as an N × 1 column matrix.
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EXAMPLE 3.30 (Periodic Convolution By the Circulant Matrix)

Consider x[n] = {⇓1, 0, 2} and h[n] = {⇓1, 2, 3}, described over one period (N = 3).

(a) The circulant matrix Cx and periodic convolution y1[n] are given by

Cx =




1 2 0
0 1 2
2 0 1


 h =




1
2
3


 y1[n] =




1 2 0
0 1 2
2 0 1







1
2
3


 =




5
8
5




Comment: Though not required, normalization by N = 3 gives yp1[n] =
y1[n]

3
= {

⇓
5
3 , 8

3 , 5
3}.

(b) The periodic convolution y2[n] of x[n] and h[n] over a two-period window yields

C2 =




1 2 0 1 2 0
0 1 2 0 1 2
2 0 1 2 0 1
1 2 0 1 2 0
0 1 2 0 1 2
2 0 1 2 0 1




h2 =




1
2
3
1
2
3




y2[n] =




10
16
10
10
16
10




We see that y2[n] has double the length (and values) of y1[n], but it is still periodic with N = 3.

Comment: Normalization by a two-period window width (6 samples) gives

yp2[n] =
y2[n]

6
= {

⇓
5
3 , 8

3 , 5
3 , 5

3 , 8
3 , 5

3}
Note that one period (N = 3) of yp2[n] is identical to the normalized result yp1[n] of part (a).

3.13.3 Regular Convolution from Periodic Convolution

The linear convolution of x[n] (with length Nx) and h[n] (with length Nh) may also be found using the
periodic convolution of two zero-padded signals xz[n] and hz[n] (each of length Ny = Nx + Nh − 1). The
regular convolution of the original, unpadded sequences equals the periodic convolution of the zero-padded
sequences.

REVIEW PANEL 3.21
Regular Convolution from Periodic Convolution by Zero-Padding
x[n] ? h[n] = Periodic convolution of their zero-padded (each to length Nx + Nh − 1) versions.

EXAMPLE 3.31 (Regular Convolution by the Circulant Matrix)

Let x[n] = {⇓2, 5, 0, 4} and h[n] = {⇓4, 1, 3}. Their regular convolution has S = M + N − 1 = 6 samples.
Using trailing zeros, we create the padded sequences

xzp[n] = {⇓2, 5, 0, 4, 0, 0} hzp[n] = {⇓4, 1, 3, 0, 0, 0}
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The periodic convolution xzp[n] ?©hzp[n], using the circulant matrix, equals

Cxzp =




2 0 0 4 0 5
5 2 0 0 4 0
0 5 2 0 0 4
4 0 5 2 0 0
0 4 0 5 2 0
0 0 4 0 5 2




hzp =




4
1
3
0
0
0




yp[n] =




8
22
11
31
4

12




This is identical to the regular convolution y[n] = x[n] ? h[n] obtained previously by several other methods
in previous examples.

DRILL PROBLEM 3.31

Let x[n] = {⇓1, 2, 0, 2, 2} and h[n] = {⇓3, 2}.
(a) How many zeros must be appended to x[n] and h[n] in order to generate their regular convolution
from the periodic convolution of the zero-padded sequences.
(b) What is the regular convolution of the zero-padded sequences?
(c) What is the regular convolution of the original sequences?

Answers: (a) 1, 4 (b) {⇓3, 8, 4, 6, 10, 4, 0, 0, 0, 0, 0} (c) {⇓3, 8, 4, 6, 10, 4}

3.14 Deconvolution
Given the system impulse response h[n], the response y[n] of the system to an input x[n] is simply the
convolution of x[n] and h[n]. Given x[n] and y[n] instead, how do we find h[n]? This situation arises very
often in practice and is referred to as deconvolution or system identification.

For discrete-time systems, we have a partial solution to this problem. Since discrete convolution may
be thought of as polynomial multiplication, discrete deconvolution may be regarded as polynomial division.
One approach to discrete deconvolution is to use the idea of long division, a familiar process, illustrated in
the following example.

3.14.1 Deconvolution By Recursion

Deconvolution may also be recast as a recursive algorithm. The convolution

y[n] = x[n] ? h[n] =
n∑

k=0

h[k]x[n− k] (3.52)

when evaluated at n = 0, provides the seed value h[0] as

y[0] = x[0]h[0] h[0] =
y[0]
x[0]

(3.53)

We now separate the term containing h[n] in the convolution relation

y[n] =
n∑

k=0

h[k]x[n− k] = h[n]x[0] +
n−1∑

k=0

h[k]x[n− k] (3.54)
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and evaluate h[n] for successive values of n > 0 from

h[n] =
1

x[0]

[
y[n]−

n−1∑

k=0

h[k]x[n− k]

]
, n > 0 (3.55)

If all goes well, we need to evaluate h[n] only at M −N + 1 points, where M and N are the lengths of y[n]
and x[n], respectively.

Naturally, problems arise if a remainder is involved. This may well happen in the presence of noise,
which could modify the values in the output sequence even slightly. In other words, the approach is quite
susceptible to noise or roundoff error and not very practical.

REVIEW PANEL 3.22
Deconvolution May Be Regarded as Polynomial Division or Matrix Inversion

EXAMPLE 3.32 (Deconvolution)

(a) (Deconvolution by Polynomial Division)

Consider x[n] = {⇓2, 5, 0, 4} and y[n] = {⇓8, 22, 11, 31, 4, 12}. We regard these as being the
coefficients, in descending order, of the polynomials

x(w) = 2w3 + 5w2 + 0w + 4 y(w) = 8w5 + 22w4 + 11w3 + 31w2 + 4w + 12

The polynomial h(w) may be deconvolved out of x(w) and y(w) by performing the division y(w)/x(w):

2w3 + 5w2 + 0w + 4
)4w2 + w + 3
8w5 + 22w4 + 11w3 + 31w2 + 4w + 12
8w5 + 20w4 + 0w3 + 16w2

2w4 + 11w3 + 15w2 +4w + 12
2w4 + 5w3 + 0w2 + 4w

6w3 + 15w2 + 0w + 12
6w3 + 15w2 + 0w + 12

0

The coefficients of the quotient polynomial describe the sequence h[n] = {⇓4, 1, 3}.

(b) (Deconvolution by Recursion)

Let x[n] = {⇓2, 5, 0, 4} and y[n] = {⇓8, 22, 11, 31, 4, 12}. We note that x[n] is of length N = 4 and
y[n] is of length M = 4. So, we need only M −N + 1 = 6− 4 + 1 = 3 recursive evaluations to obtain
h[n]. We compute

h[0] =
y[0]
x[0]

= 4
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h[1] =
1

x[0]

[
y[1]−

0∑

k=0

h[k]x[1− k]

]
=

y[1]− h[0]x[1]
x[0]

= 1

h[2] =
1

x[0]

[
y[2]−

1∑

k=0

h[k]x[2− k]

]
=

y[2]− h[0]x[2]− h[1]x[1]
x[0]

= 3

As before, h[n] = {4, 1, 3}.

DRILL PROBLEM 3.32

The input x[n] = {⇓1, 2} to an LTI system produces the output y[n] = {⇓2, 3, 1, 6}. Use deconvolution to
find the impulse response h[n].

Answer: {⇓2, −1, 3}

3.15 Discrete Correlation
Correlation is a measure of similarity between two signals and is found using a process similar to convolution.
The discrete cross-correlation (denoted ??) of x[n] and h[n] is defined by

rxh[n] = x[n] ??h[n] =
∞∑

k=−∞
x[k]h[k − n] =

∞∑

k=−∞
x[k + n]h[k] (3.56)

rhx[n] = h[n] ??x[n] =
∞∑

k=−∞
h[k]x[k − n] =

∞∑

k=−∞
h[k + n]x[k] (3.57)

Some authors prefer to switch the definitions of rxh[n] and rhx[n].
To find rxh[n], we line up the last element of h[n] with the first element of x[n] and start shifting h[n]

past x[n], one index at a time. We sum the pointwise product of the overlapping values to generate the
correlation at each index. This is equivalent to performing the convolution of x[n] and the folded signal
h[−n]. The starting index of the correlation equals the sum of the starting indices of x[n] and h[−n].
Similarly, rhx[n] equals the convolution of x[−n] and h[n], and its starting index equals the sum of the
starting indices of x[−n] and h[n]. However, rxh[n] does not equal rhx[n]. The two are folded versions of
each other and related by rxh[n] = rhx[−n].

REVIEW PANEL 3.23
Correlation Is the Convolution of One Signal with a Folded Version of the Other

rxh[n] = x[n] ??h[n] = x[n] ? h[−n] rhx[n] = h[n] ??x[n] = h[n] ? x[−n]
Correlation length: Nx + Nh − 1 Correlation sum:

∑
r[n] = (

∑
x[n])(

∑
h[n])
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EXAMPLE 3.33 (Discrete Autocorrelation and Cross-Correlation)

(a) Let x[n] = {2,
⇓
5, 0, 4} and h[n] = {⇓3, 1, 4}.

To find rxh[n], we compute the convolution of x[n] and h[−n] = {4, 1,
⇓
3}. The starting index of rxh[n]

is n = −3. We use this to set up the index array and generate the result (using the sum-by-column
method for convolution) as follows:

n −3 −2 −1 0 1 2
x[n] 2 5 0 4

h[−n] 4 1 3
8 20 0 16

2 5 0 4
6 15 0 12

rxh[n] 8 22 11
⇓
31 4 12

So, rxh[n] = {8, 22, 11,
⇓
31, 4, 12}

(b) Let x[n] = {2,
⇓
5, 0, 4} and h[n] = {⇓3, 1, 4}.

To find rhx[n], we compute the convolution of x[−n] = {4, 0,
⇓
5, 2} and h[n]. The starting index of

rhx[n] is n = −2. We use this to set up the index array and generate the result (using the sum-by-
column method for convolution) as follows:

n −2 −1 0 1 2 3
x[−n] 4 0 5 2

h[n] 3 1 4
12 0 15 6

4 0 5 2
16 0 20 8

rhx[n] 12 4
⇓
31 11 22 8

So, rxh[n] = {12, 4,
⇓
31, 11, 22, 8}.

Note that rxh[n] and rxh[n] are folded versions of each other with rxh[n] = rxh[−n].

(c) Let x[n] = {⇓3, 1, −4}.

To find rxx[n], we compute the convolution of x[n] and x[−n] = {−4, 1,
⇓
3}. The starting index of rxx[n]

is n = −2. We use this to set up the index array and generate the result (using the sum-by-column
method for convolution) as follows:
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n −2 −1 0 1 2
x[n] 3 1 −4

x[−n] −4 1 3
−12 −4 16

3 1 −4
9 3 −12

rxx[n] −12 −1
⇓
26 −1 −12

So, rxx[n] = {−12, −1,
⇓
26, −1, −12}. Note that rxx[n] is even symmetric about the origin n = 0.

DRILL PROBLEM 3.33

Let x[n] = {⇓2, 1, 3} and h[n] = {3,
⇓
−2, 1}. Find rxh[n], rhx[n], rxx[n] and rhh[n]

Answers: {2,
⇓
−3, 7, −3, 9} {9, −3, 7,

⇓
−3, 2} {6, 5,

⇓
14, 5, 6} {3, −8,

⇓
14, −8, 3}

3.15.1 Autocorrelation

The correlation rxx[n] of a signal x[n] with itself is called the autocorrelation. It is an even symmetric
function (rxx[n] = rxx[−n]) with a maximum at n = 0 and satisfies the inequality |rxx[n]| ≤ rxx[0].

Correlation is an effective method of detecting signals buried in noise. Noise is essentially uncorrelated
with the signal. This means that if we correlate a noisy signal with itself, the correlation will be due only to
the signal (if present) and will exhibit a sharp peak at n = 0.

REVIEW PANEL 3.24
The Autocorrelation Is Always Even Symmetric with a Maximum at the Origin

rxx[n] = x[n] ??x[n] = x[n] ? x[−n] rxx[n] = rxx[−n] rxx[n] ≤ rxx[0]

EXAMPLE 3.34 (Discrete Autocorrelation and Cross-Correlation)
(a) Let x[n] = (0.5)nu[n] and h[n] = (0.4)nu[n]. We compute the cross-correlation rxh[n] as follows:

rxh[n] =
∞∑

k=−∞
x[k]h[k − n] =

∞∑

k=−∞
(0.5)k(0.4)k−nu[k]u[k − n]

This summation requires evaluation over two ranges of n. If n < 0, the shifted step u[k−n] is nonzero
for some k < 0. But since u[k] = 0, k < 0, the lower limit on the summation reduces to k = 0 and we
get

(n < 0) rxh[n] =
∞∑

k=0

(0.5)k(0.4)k−n = (0.4)−n
∞∑

k=0

(0.2)k =
(0.4)−n

1− 0.2
= 1.25(0.4)−nu[−n− 1]

If n ≥ 0, the shifted step u[k−n] is zero for k < n, the lower limit on the summation reduces to k = n
and we obtain

(n ≥ 0) rxh[n] =
∞∑

k=n

(0.5)k(0.4)k−n
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With the change of variable m = k − n, we get

(n ≥ 0) rxh[n] =
∞∑

m=0

(0.5)m+n(0.4)m = (0.5)n
∞∑

m=0

(0.2)m =
(0.5)n

1− 0.2
= 1.25(0.5)nu[n]

So, rxh[n] = 1.25(0.4)−nu[−n− 1] + 1.25(0.5)nu[n].

(b) Let x[n] = anu[n], |a| < 1. To compute rxx[n] which is even symmetric, we need compute the result
only for n ≥ 0 and create its even extension. Following the previous part, we have.

(n ≥ 0) rxx[n] =
∞∑

k=−∞
x[k]x[k − n] =

∞∑

k=n

akak−n =
∞∑

m=0

am+nam = an
∞∑

m=0

a2m =
an

1− a2
u[n]

The even extension of this result gives rxx[n] =
a|n|

1− a2
.

(c) Let x[n] = anu[n], |a| < 1, and y[n] = rect(n/2N). To find rxy[n], we shift y[k] and sum the products
over different ranges. Since y[k − n] shifts the pulse to the right over the limits (−N + n, N + n), the
correlation rxy[n] equals zero until n = −N . We then obtain

−N ≤ n ≤ N − 1 (partial overlap): rxy[n] =
∞∑

k=−∞
x[k]y[k − n] =

N+1∑

k=0

ak =
1− aN+n+1

1− a

n ≥ N (total overlap): rxy[n] =
N+1∑

k=−N+1

ak =
2N∑

m=0

am−N+1 = a−N+1 1− a2N+1

1− a

DRILL PROBLEM 3.34
(a) Let x[n] = (0.5)nu[n] and h[n] = u[n]. Find their correlation.
(b) Let x[n] = (0.5)nu[n] and h[n] = (0.5)−nu[−n]. Find their correlation.
Answers: (a) 2u[−n− 1] + 2(0.5)nu[n] (b) (n + 1)(0.5)n]u[n]

3.15.2 Periodic Discrete Correlation

For periodic sequences with identical period N , the periodic discrete correlation is defined as

rxhp[n] = x[n] ?© ?©h[n] =
N−1∑

k=0

x[k]h[k − n] rhxp[n] = h[n] ?© ?©x[n] =
N−1∑

k=0

h[k]x[k − n] (3.58)

As with discrete periodic convolution, an averaging factor of 1/N is sometimes included in the summation. We
can find one period of the periodic correlation rxhp[n] by first computing the linear correlation of one period
segments and then wrapping around the result. We find that rhxp[n] is a circularly folded version of rxhp[n]
with rhxp[n] = rxhp[−n]. We also find that the periodic autocorrelation rxxp[n] or rhhp[n] always displays
circular even symmetry. This means that the periodic extension of rxxp[n] or rhhp[n] is even symmetric about
the origin n = 0. The periodic autocorrelation function also attains a maximum at n = 0.
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EXAMPLE 3.35 (Discrete Periodic Autocorrelation and Cross-Correlation)

Consider two periodic signals whose first period is given by x1[n] = {⇓2, 5, 0, 4} and h1[n] = {⇓3, 1, −1, 2}.

(a) To find the periodic cross-correlation rxhp[n], we first evaluate the linear cross-correlation

rxh[n] = x1[n] ? h1[−n] = {4, 8, −3,
⇓
19, 11, 4, 12}

Wraparound gives the periodic cross-correlation as rxhp = {15, 12, 9,
⇓
19}.

We invoke periodicity and describe the result in terms of its first period as rxhp = {
⇓
19, 15, 12, 9}.

(b) To find the periodic cross-correlation rhxp[n], we first evaluate the linear cross-correlation

rhx[n] = rxh[−n] = {12, 4, 11,
⇓
19, −3, 8, 4}

Wraparound gives the periodic cross-correlation as rhxp = {9, 12, 15,
⇓
19}.

We rewrite the result in terms of its first period as rhxp = {
⇓
19, 9, 12, 15}.

Note that rhxp[n] is a circularly folded version of rxhp[n] with rhxp[n] = rxhp[−n]

(c) To find the periodic autocorrelation rxxp[n], we first evaluate the linear autocorrelation

rxx[n] = x1[n] ? x1[−n] = {8, 20, 10,
⇓
45, 10, 20, 8}

Wraparound gives the periodic autocorrelation as rxxp = {18, 40, 18,
⇓
45}.

We rewrite the result in terms of its first period as rhxp = {
⇓
45, 18, 40, 18}.

This displays circular even symmetry (its periodic extension is even symmetric about the origin n = 0).

(d) To find the periodic autocorrelation rhhp[n], we first evaluate the linear autocorrelation

rhh[n] = h1[n] ? h1[−n] = {6, −1, 0,
⇓
15, 0, −1, 6}

Wraparound gives the periodic autocorrelation as rxxp = {6, −2, 6,
⇓
15}.

We rewrite the result in terms of its first period as rhxp = {
⇓
15, 6, −2, 6}.

This displays circular even symmetry (its periodic extension is even symmetric about n = 0).
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DRILL PROBLEM 3.35

Let x1[n] = {⇓2, −1, 0, 3} and h1[n] = {1,
⇓
0, 3, 2} describe one-period segments of two periodic signals.

Find the first period of rxxp[n], rhhp[n], rxhp[n] and rhxp[n]

Answers: {
⇓
14, 4, −6, 4} {

⇓
14, 8, 6, 8} {⇓0, 8, 12, 4} {⇓0, 4, 12, 8}

3.15.3 Matched Filtering and Target Ranging

Correlation finds widespread use in applications such as target ranging and estimation of periodic signals
buried in noise. For target ranging, a sampled interrogating signal x[n] is transmitted toward the target.
The signal reflected from the target is s[n] = αx[n − D] + p[n], a delayed (by D) and attenuated (by α)
version of x[n], contaminated by noise p[n]. The reflected signal s[n] is correlated with the interrogating
signal x[n]. If the noise is uncorrelated with the signal x[n], its correlation with x[n] is essentially zero. The
correlation of x[n] and its delayed version αx[n−D] yield a result that attains a peak at n = D. It is thus
quite easy to identify the index D from the correlation peak (rather than from the reflected signal directly),
even in the presence of noise. The (round-trip) delay index D may then be related to the target distance d
by d = 0.5vD/S, where v is the propagation velocity and S is the rate at which the signal is sampled. The
device that performs the correlation of the received signal s[n] and x[n] is called a correlation receiver.
The correlation of s[n] with x[n] is equivalent to the convolution of s[n] with x[−n], a folded version of the
interrogating signal. This means that the impulse response of the correlation receiver is h[n] = x[−n] and is
matched to the transmitted signal. For this reason, such a receiver is also called a matched filter.

Figure 3.9 illustrates the concept of matched filtering. The transmitted signal is a rectangular pulse.
The impulse response of the matched filter is its folded version and is noncausal. In an ideal situation, the
received signal is simply a delayed version of the transmitted signal and the output of the matched filter
yields a peak whose location gives the delay. This can also be identified from the ideal received signal itself.
In practice, the received signal is contaminated by noise and it is difficult to identify where the delayed pulse
is located. The output of the matched filter, however, provides a clear indication of the delay even for low
signal-to-noise ratios.

Correlation also finds application in pattern recognition. For example, if we need to establish whether
an unknown pattern belongs to one of several known patterns or templates, it can be compared (correlated)
with each template in turn. A match occurs if the autocorrelation of the template matches (or resembles)
the cross-correlation of the template and the unknown pattern.

Identifying Periodic Signals in Noise

Correlation methods may also be used to identify the presence of a periodic signal x[n] buried in the noisy
signal s[n] = x[n]+p[n], where p[n] is the noise component (presumably uncorrelated with the signal), and to
extract the signal itself. The idea is to first identify the period of the signal from the periodic autocorrelation
of the noisy signal. If the noisy signal contains a periodic component, the autocorrelation will show peaks
at multiples of the period N . Once the period N is established, we can recover x[n] as the periodic cross-
correlation of an impulse train i[n] = δ(n − kN), with period N , and the noisy signal s[n]. Since i[n] is
uncorrelated with the noise, the periodic cross-correlation of i[n] and s[n] yields (an amplitude scaled version
of) the periodic signal x[n].

Figure 3.10 illustrates the concept of identifying a periodic signal hidden in noise. A periodic sawtooth
signal is contaminated by noise to yield a noisy signal. The peaks in the periodic autocorrelation of the
noisy signal allows us to identify the period as N = 20. The periodic cross-correlation of the noisy signal
with the impulse train δ[n− 20k] extracts the signal from noise. Note that longer lengths of the noisy signal
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Figure 3.9 The concept of matched filtering and target ranging

(compared to the period N) will improve the match between the recovered and buried periodic signal.

REVIEW PANEL 3.25
How to Identify a Periodic Signal x[n] Buried in a Noisy Signal s[n]
Find the period N of x[n] from the periodic autocorrelation of the noisy signal s[n].
Find the signal x[n] as the periodic cross-correlation of s[n] and an impulse train with period N .

3.16 Discrete Convolution and Transform Methods
Discrete-time convolution provides a connection between the time-domain and frequency-domain methods
of system analysis for discrete-time signals. It forms the basis for every transform method described in this
text, and its role in linking the time domain and the transformed domain is intimately tied to the concept
of discrete eigensignals and eigenvalues. The everlasting exponential zn is an eigensignal of discrete-time
linear systems. In this complex exponential zn, the quantity z has the general form z = rej2πF . If the input
to an LTI system is zn the output has the same form and is given by Czn where C is a (possibly complex)
constant. Similarly, the everlasting discrete-time harmonic z = ej2πnF (a special case with r = 1) is also an
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Figure 3.10 Extraction of a periodic signal buried in noise

eigensignal of discrete-time systems.

3.16.1 The z-Transform

For an input x[n] = rnej2πnF =
(
rej2πF

)n = zn, where z is complex, with magnitude |z| = r, the response
may be written as

y[n] = x[n] ? h[n] =
∞∑

k=−∞
zn−kh[k] = zn

∞∑

k=−∞
h[k]z−k = x[n]H(z) (3.59)

The response equals the input (eigensignal) modified by the system function H(z), where

H(z) =
∞∑

k=−∞
h[k]z−k (two-sided z-transform) (3.60)

The complex quantity H(z) describes the z-transform of h[n] and is not, in general, periodic in z. Denoting
the z-transform of x[n] and y[n] by X(z) and Y (z), we write

Y (z) =
∞∑

k=−∞
y[k]z−k =

∞∑

k=−∞
x[k]H(z)z−k = H(z)X(z) (3.61)

Convolution in the time domain thus corresponds to multiplication in the z-domain.
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3.16.2 The Discrete-Time Fourier Transform

For the harmonic input x[n] = ej2πnF , the response y[n] equals

y[n] =
∞∑

k=−∞
ej2π(n−k)F h[k] = ej2πnF

∞∑

k=−∞
h[k]e−j2πkF = x[n]H(F ) (3.62)

This is just the input modified by the system function H(F ), where

H(F ) =
∞∑

k=−∞
h[k]e−j2πkF (3.63)

The quantity H(F ) describes the discrete-time Fourier transform (DTFT) or discrete-time frequency
response or spectrum of h[n]. Any signal x[n] may similarly be described by its DTFT X(F ). The response
y[n] = x[n]H[F ] may then be transformed to its DTFT Y [n] to give

Y (F ) =
∞∑

k=−∞
y[k]e−j2πFk =

∞∑

k=−∞
x[k]H(F )e−j2πFk = H(F )X(F ) (3.64)

Once again, convolution in the time domain corresponds to multiplication in the frequency domain. Note
that we obtain the DTFT of h[n] from its z-transform H(z) by letting z = ej2πF or |z| = 1 to give

H(F ) = H(z)|z=exp(j2πF ) = H(z)||z|=1 (3.65)

The DTFT is thus the z-transform evaluated on the unit circle |z| = 1. The system function H(F ) is also
periodic in F with a period of unity because e−j2πkF = e−j2πk(F+1). This periodicity is a direct consequence
of the discrete nature of h[n].
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CHAPTER 3 PROBLEMS

3.1 (Operators) Which of the following describe linear operators?

(a) O{ } = 4{ } (b) O{ } = 4{ }+ 3 (c) O{ } = α{ }

3.2 (System Classification) In each of the systems below, x[n] is the input and y[n] is the output.
Check each system for linearity, shift invariance, memory, and causality.

(a) y[n]− y[n− 1] = x[n] (b) y[n] + y[n + 1] = nx[n]
(c) y[n]− y[n + 1] = x[n + 2] (d) y[n + 2]− y[n + 1] = x[n]
(e) y[n + 1]− x[n]y[n] = nx[n + 2] (f) y[n] + y[n− 3] = x2[n] + x[n + 6]
(g) y[n]− 2ny[n] = x[n] (h) y[n] = x[n] + x[n− 1] + x[n− 2]

3.3 (System Classification) Classify the following systems in terms of their linearity, time invariance,
memory, causality, and stability.

(a) y[n] = 3nx[n] (b) y[n] = ejnπx[n]
(c) y[n] = cos(0.5nπ)x[n] (d) y[n] = [1 + cos(0.5nπ)]x[n]
(e) y[n] = ex[n] (f) y[n] = x[n] + cos[0.5(n + 1)π]

3.4 (System Classification) Classify the following systems in terms of their linearity, time invariance,
memory, causality, and stability.
(a) y[n] = x[n/3] (zero interpolation)
(b) y[n] = cos(nπ)x[n] (modulation)
(c) y[n] = [1 + cos(nπ)]x[n] (modulation)
(d) y[n] = cos(nπx[n]) (frequency modulation)
(e) y[n] = cos(nπ + x[n]) (phase modulation)
(f) y[n] = x[n]− x[n− 1] (differencing operation)
(g) y[n] = 0.5x[n] + 0.5x[n− 1] (averaging operation)

(h) y[n] = 1
N

N−1∑

k=0

x[n− k] (moving average)

(i) y[n]− αy[n− 1] = αx[n], 0 < α < 1 (exponential averaging)
(j) y[n] = 0.4(y[n− 1] + 2) + x[n]

3.5 (Classification) Classify each system in terms of its linearity, time invariance, memory, causality,
and stability.
(a) The folding system y[n] = x[−n].
(b) The decimating system y[n] = x[2n].
(c) The zero-interpolating system y[n] = x[n/2].
(d) The sign-inversion system y[n] = sgn{x[n]}.
(e) The rectifying system y[n] = |x[n]|.

3.6 (Classification) Classify each system in terms of its linearity, time invariance, causality, and stability.

(a) y[n] = round{x[n]} (b) y[n] = median{x[n + 1], x[n], x[n− 1]}
(c) y[n] = x[n] sgn(n) (d) y[n] = x[n] sgn{x[n]}
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3.7 (Realization) Find the difference equation for each system realization shown in Figure P3.7.

[n]y[n]x

−1z

System 1

4

3

+ + +
Σ

+

2

Σ

[n]y[n]x

−1z

−1z System 2

2

4

3

+ + +
Σ

−
Σ

Figure P3.7 Filter realizations for Problem 3.7

[Hints and Suggestions: Compare with the generic first-order and second-order realizations to get
the difference equations.]

3.8 (Response by Recursion) Use recursion to find the response y[n] of the following systems for the
first few values of n and discern the general form for y[n].

(a) y[n]− ay[n− 1] = δ[n] y[−1] = 0
(b) y[n]− ay[n− 1] = u[n] y[−1] = 1
(c) y[n]− ay[n− 1] = u[n] y[−1] = 1
(d) y[n]− ay[n− 1] = nu[n] y[−1] = 0

[Hints and Suggestions: For parts (b)–(d), you may need to use a table of summations to simplify
the results for the general form.]

3.9 (Response by Recursion) Let y[n] + 4y[n − 1] + 3y[n − 2] = u[n − 2] with y[−1] = 0, y[−2] = 1.
Use recursion to compute y[n] up to n = 4. Can you discern a general form for y[n]?

3.10 (Forced Response) Find the forced response of the following systems.

(a) y[n]− 0.4y[n− 1] = 3u[n] (b) y[n]− 0.4y[n− 1] = (0.5)n

(c) y[n] + 0.4y[n− 1] = (0.5)n (d) y[n]− 0.5y[n− 1] = cos(nπ/2)

[Hints and Suggestions: For part (a), 3u[n] = 3, n ≥ 0 and implies that the forced response
(or its shifted version) is constant. So, choose yF [n] = C = yF [n − 1]. For part (c), pick yF [n] =
A cos(0.5nπ) + B sin(0.5nπ), expand terms like cos[0.5(n − 1)π] using trigonometric identities and
compare the coefficients of cos(0.5nπ) and sin(0.5nπ) to generate two equations to solve for A and B.]

3.11 (Zero-State Response) Find the zero-state response of the following systems.

(a) y[n]− 0.5y[n− 1] = 2u[n] (b) y[n]− 0.4y[n− 1] = (0.5)nu[n]
(c) y[n]− 0.4y[n− 1] = (0.4)nu[n] (d) y[n]− 0.5y[n− 1] = cos(nπ/2)

[Hints and Suggestions: Here, zero-state implies y[−1] = 0. Part (c) requires yF [n] = Cn(0.5)n

because the root of the characteristic equation is 0.5.]

3.12 (Zero-State Response) Consider the system y[n]− 0.5y[n− 1] = x[n]. Find its zero-state response
to the following inputs.

(a) x[n] = u[n] (b) x[n] = (0.5)nu[n] (c) x[n] = cos(0.5nπ)u[n]
(d) x[n] = (−1)nu[n] (e) x[n] = jnu[n] (f) x[n] = (

√
j)nu[n] + (

√
j)−nu[n]

[Hints and Suggestions: For part (e), pick the forced response as yF [n] = C(j)n. This will give
a complex response because the input is complex. For part (f), x[n] simplifies to a sinusoid by using√

j = ejπ/2 and Euler’s relation.]
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3.13 (Zero-State Response) Find the zero-state response of the following systems.

(a) y[n]− 1.1y[n− 1] + 0.3y[n− 2] = 2u[n] (b) y[n] + 0.7y[n− 1] + 0.1y[n− 2] = (0.5)n

(c) y[n]− 0.9y[n− 1] + 0.2y[n− 2] = (0.5)n (d) y[n]− 0.25y[n− 2] = cos(nπ/2)

[Hints and Suggestions: Zero-state implies y[−1] = y[−2] = 0. For part (b), use yF [n] = C(0.5)n,
but for part (c), pick yF [n] = Cn(0.5)n because one root of the characteristic equation is 0.5.]

3.14 (System Response) Let y[n]−0.5y[n−1] = x[n], with y[−1] = −1. Find the response of this system
due to the following inputs for n ≥ 0.

(a) x[n] = 2u[n] (b) x[n] = (0.25)nu[n] (c) x[n] = n(0.25)nu[n]
(d) x[n] = (0.5)nu[n] (e) x[n] = n(0.5)nu[n] (f) x[n] = (0.5)n cos(0.5nπ)u[n]

[Hints and Suggestions: For part (c), pick yF [n] = (C + Dn)(0.5)n (and compare coefficients of
like powers of n to solve for C and D). For part (d), pick yF [n] = Cn(0.5)n because the root of the
characteristic equation is 0.5. Part(e) requires yF [n] = n(C + Dn)(0.5)n for the same reason.]

3.15 (System Response) For the system realization shown in Figure P3.15, find the response to the
following inputs and initial conditions.

(a) x[n] = u[n] y[−1] = 0 (b) x[n] = u[n] y[−1] = 4
(c) x[n] = (0.5)nu[n] y[−1] = 0 (d) x[n] = (0.5)nu[n] y[−1] = 6
(e) x[n] = (−0.5)nu[n] y[−1] = 0 (f) x[n] = (−0.5)nu[n] y[−1] = −2

[n]x [n]y

−1z

+ Σ

0.5

−

Figure P3.15 System realization for Problem 3.15

[Hints and Suggestions: For part (e), pick the forced response as yF [n] = Cn(−0.5)n.]

3.16 (System Response) Find the response of the following systems.

(a) y[n]− 0.4y[n− 1] = 2(0.5)n−1u[n− 1] y[−1] = 0
(b) y[n]− 0.4y[n− 1] = (0.4)nu[n] + 2(0.5)n−1u[n− 1] y[−1] = 2.5
(c) y[n]− 0.4y[n− 1] = n(0.5)nu[n] + 2(0.5)n−1u[n− 1] y[−1] = 2.5

[Hints and Suggestions: Start with y[n] − 0.4y[n − 1] = 2(0.5)n, y[−1] = 0 and find its zero-state
response. Then use superposition and time invariance as required. For the input (0.4)n of part (b),
assume yF [n] = Cn(0.4)n. For the input n(0.5)n of part (c), assume yF [n] = (A + Bn)(0.5)n.]

3.17 (System Response) Find the impulse response of the following filters.

(a) y[n] = x[n]− x[n− 1] (differencing operation)
(b) y[n] = 0.5x[n] + 0.5x[n− 1] (averaging operation)

(c) y[n] = 1
N

N−1∑

k=0

x[n− k], N = 3 (moving average)

(d) y[n] = 2
N(N+1)

N−1∑

k=0

(N − k)x[n− k], N = 3 (weighted moving average)

(e) y[n]− αy[n− 1] = (1− α)x[n], N = 3, α = N−1
N+1 (exponential averaging)
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3.18 (System Response) It is known that the response of the system y[n] + αy[n− 1] = x[n], α 6= 0, is
given by y[n] = [5 + 3(0.5)n]u[n].

(a) Identify the natural response and forced response.
(b) Identify the values of α and y[−1].
(c) Identify the zero-input response and zero-state response.
(d) Identify the input x[n].

3.19 (System Response) It is known that the response of the system y[n]+0.5y[n−1] = x[n] is described
by y[n] = [5(0.5)n + 3(−0.5)n)]u[n].

(a) Identify the zero-input response and zero-state response.
(b) What is the zero-input response of the system y[n] + 0.5y[n− 1] = x[n] if y[−1] = 10?
(c) What is the response of the relaxed system y[n] + 0.5y[n− 1] = x[n− 2]?
(d) What is the response of the relaxed system y[n] + 0.5y[n− 1] = x[n− 1] + 2x[n]?

3.20 (System Response) It is known that the response of the system y[n] + αy[n− 1] = x[n] is described
by y[n] = (5 + 2n)(0.5)nu[n].

(a) Identify the zero-input response and zero-state response.
(b) What is the zero-input response of the system y[n] + αy[n− 1] = x[n] if y[−1] = 10?
(c) What is the response of the relaxed system y[n] + αy[n− 1] = x[n− 1])?
(d) What is the response of the relaxed system y[n] + αy[n− 1] = 2x[n− 1] + x[n]?
(e) What is the complete response of the y[n] + αy[n− 1] = x[n] + 2x[n− 1] if y[−1] = 4?

3.21 (System Response) Find the response of the following systems.

(a) y[n] + 0.1y[n− 1]− 0.3y[n− 2] = 2u[n] y[−1] = 0 y[−2] = 0
(b) y[n]− 0.9y[n− 1] + 0.2y[n− 2] = (0.5)n y[−1] = 1 y[−2] = −4
(c) y[n] + 0.7y[n− 1] + 0.1y[n− 2] = (0.5)n y[−1] = 0 y[−2] = 3
(d) y[n]− 0.25y[n− 2] = (0.4)n y[−1] = 0 y[−2] = 3
(e) y[n]− 0.25y[n− 2] = (0.5)n y[−1] = 0 y[−2] = 0

[Hints and Suggestions: For parts (b) and (e), pick yF [n] = Cn(0.5)n because one root of the
characteristic equation is 0.5.]

3.22 (System Response) Sketch a realization for each system, assuming zero initial conditions. Then
evaluate the complete response from the information given. Check your answer by computing the first
few values by recursion.

(a) y[n]− 0.4y[n− 1] = x[n] x[n] = (0.5)nu[n] y[−1] = 0
(b) y[n]− 0.4y[n− 1] = 2x[n] + x[n− 1] x[n] = (0.5)nu[n] y[−1] = 0
(c) y[n]− 0.4y[n− 1] = 2x[n] + x[n− 1] x[n] = (0.5)nu[n] y[−1] = 5
(d) y[n] + 0.5y[n− 1] = x[n]− x[n− 1] x[n] = (0.5)nu[n] y[−1] = 2
(e) y[n] + 0.5y[n− 1] = x[n]− x[n− 1] x[n] = (−0.5)nu[n] y[−1] = 0

[Hints and Suggestions: For parts (b)–(c), use the results of part (a) plus linearity (superposition)
and time invariance.]

3.23 (System Response) For each system, evaluate the natural, forced, and total response. Assume that
y[−1] = 0, y[−2] = 1. Check your answer for the total response by computing its first few values by
recursion.
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(a) y[n] + 4y[n− 1] + 3y[n− 2] = u[n] (b) {1− 0.5z−1}y[n] = (0.5)n cos(0.5nπ)u[n]
(c) y[n] + 4y[n− 1] + 8y[n− 2] = cos(nπ)u[n] (d) {(1 + 2z−1)2}y[n] = n(2)nu[n]
(e) {1 + 3

4z−1 + 1
8z−2}y[n] = ( 1

3 )nu[n] (f) {1 + 0.5z−1 + 0.25z−2}y[n] = cos(0.5nπ)u[n]

[Hints and Suggestions: For part (b), pick yF [n] = (0.5)n[A cos(0.5nπ) + B sin(0.5nπ)], expand
terms like cos[0.5(n − 1)π] using trigonometric identities and compare the coefficients of cos(0.5nπ)
and sin(0.5nπ) to generate two equations to solve for A and B. For part (d), pick yF [n] = (C+Dn)(2)n

and compare like powers of n to solve for C and D.]

3.24 (System Response) For each system, evaluate the zero-state, zero-input, and total response. Assume
that y[−1] = 0, y[−2] = 1.

(a) y[n] + 4y[n− 1] + 4y[n− 2] = 2nu[n] (b) {z2 + 4z + 4}y[n] = 2nu[n]

[Hints and Suggestions: In part (b), y[n + 2] + 4y[n + 1] + 4y[n] = (2)nu[n]. By time invariance,
y[n] + 4y[n− 1] + 4y[n− 2] = (2)n−2u[n− 2] and we shift the zero-state response of part (a) by 2 units
(n → n− 2) and add to the zero-input response to get the result.]

3.25 (System Response) For each system, set up a difference equation and compute the zero-state,
zero-input, and total response, assuming x[n] = u[n] and y[−1] = y[−2] = 1.

(a) {1− z−1 − 2z−2}y[n] = x[n] (b) {z2 − z − 2}y[n] = x[n]
(c) {1− 3

4z−1 + 1
8z−2}y[n] = x[n] (d) {1− 3

4z−1 + 1
8z−2}y[n] = {1 + z−1}x[n]

(e) {1− 0.25z−2}y[n] = x[n] (f) {z2 − 0.25}y[n] = {2z2 + 1}x[n]

[Hints and Suggestions: For part (b), use the result of part (a) and time-invariance to get the answer
as yzs[n−2]+yzi[n]. For part (d), use the result of part (c) to get the answer as yzi[n]+yzs[n]+yzs[n−1].
The answer for part (f) may be similarly obtained from part (e).]

3.26 (Impulse Response by Recursion) Find the impulse response h[n] by recursion up to n = 4 for
each of the following systems.
(a) y[n]− y[n− 1] = 2x[n] (b) y[n]− 3y[n− 1] + 6y[n− 2] = x[n− 1]
(c) y[n]− 2y[n− 3] = x[n− 1] (d) y[n]− y[n− 1] + 6y[n− 2] = nx[n− 1] + 2x[n− 3]

[Hints and Suggestions: For the impulse response, x[n] = 1, n = 0 and x[n] = 0, n 6= 0.]

3.27 (Analytical Form for Impulse Response) Classify each filter as recursive or FIR (nonrecursive),
and causal or noncausal, and find an expression for its impulse response h[n].

(a) y[n] = x[n] + x[n− 1] + x[n− 2] (b) y[n] = x[n + 1] + x[n] + x[n− 1]
(c) y[n] + 2y[n− 1] = x[n] (d) y[n] + 2y[n− 1] = x[n− 1]
(e) y[n] + 2y[n− 1] = 2x[n] + 6x[n− 1] (f) y[n] + 2y[n− 1] = x[n + 1] + 4x[n] + 6x[n− 1]
(g) {1 + 4z−1 + 3z−2}y[n] = {z−2}x[n] (h) {z2 + 4z + 4}y[n] = {z + 3}x[n]
(i) {z2 + 4z + 8}y[n] = x[n] (j) y[n] + 4y[n− 1] + 4y[n− 2] = x[n]− x[n + 2]

[Hints and Suggestions: To find the impulse response for the recursive filters, assume y[0] = 1 and
(if required) y[−1] = y[−2] = · · · = 0. If the right hand side of the recursive filter equation is anything
but x[n], start with the single input x[n] and then use superposition and time-invariance to get the
result for the required input. The results for (d)–(f) can be found from the results of (c) in this way.]

3.28 (Stability) Investigate the causality and stability of the following right-sided systems.

(a) y[n] = x[n− 1] + x[n] + x[n + 1] (b) y[n] = x[n] + x[n− 1] + x[n− 2]
(c) y[n]− 2y[n− 1] = x[n] (d) y[n]− 0.2y[n− 1] = x[n]− 2x[n + 2]
(e) y[n] + y[n− 1] + 0.5y[n− 2] = x[n] (f) y[n]− y[n− 1] + y[n− 2] = x[n]− x[n + 1]
(g) y[n]− 2y[n− 1] + y[n− 2] = x[n]− x[n− 3] (h) y[n]− 3y[n− 1] + 2y[n− 2] = 2x[n + 3]
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[Hints and Suggestions: Remember that FIR filters are always stable and for right-sided systems,
every root of the caracteristic equation must have a magnitude (absolute value) less than 1.]

3.29 (System Interconnections) Two systems are said to be in cascade if the output of the first system
acts as the input to the second. Find the response of the following cascaded systems if the input is a
unit step and the systems are described as follows. In which instances does the response differ when the
order of cascading is reversed? Can you use this result to justify that the order in which the systems
are cascaded does not matter in finding the overall response if both systems are LTI?

(a) System 1: y[n] = x[n]− x[n− 1] System 2: y[n] = 0.5y[n− 1] + x[n]
(b) System 1: y[n] = 0.5y[n− 1] + x[n] System 2: y[n] = x[n]− x[n− 1]
(c) System 1: y[n] = x2[n] System 2: y[n] = 0.5y[n− 1] + x[n]
(d) System 1: y[n] = 0.5y[n− 1] + x[n] System 2: y[n] = x2[n]

3.30 (Systems in Cascade and Parallel) Consider the realization of Figure P3.30.

[n]y

−1z

−1z

−1z

[n]x

α

β

++

++

+−

Σ

Σ Σ

Figure P3.30 System realization for Problem 3.30

(a) Find its impulse response if α 6= β. Is the overall system FIR or IIR?
(b) Find its difference equation and impulse response if α = β. Is the overall system FIR or IIR?
(c) Find its difference equation and impulse response if α = β = 1. What is the function of the

overall system?

3.31 (Difference Equations from Impulse Response) Find the difference equations describing the
following systems.

(a) h[n] = δ[n] + 2δ[n− 1] (b) h[n] = {2,
⇓
3, −1}

(c) h[n] = (0.3)nu[n] (d) h[n] = (0.5)nu[n]− (−0.5)nu[n]

[Hints and Suggestions: For part (c), the left hand side of the difference equation is y[n]−0.3y[n−1].
So, h[n]− 0.3h[n− 1] simplified to get impulses leads to the right hand side. For part (d), start with
the left hand side as y[n]− 0.25y[n− 2].]

3.32 (Difference Equations from Impulse Response) A system is described by the impulse response
h[n] = (−1)nu[n]. Find the difference equation of this system. Then find the difference equation of
the inverse system. Does the inverse system describe an FIR filter or IIR filter? What function does
it perform?

3.33 (Difference Equations) For the filter realization shown in Figure P3.33, find the difference equation
relating y[n] and x[n] if the impulse response of the filter is given by

(a) h[n] = δ[n]− δ[n− 1] (b) h[n] = 0.5δ[n] + 0.5δ[n− 1]
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[n]x [n]y

−1z

+ Σ
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Filter

Figure P3.33 Filter realization for Problem 3.33

3.34 (Difference Equations from Differential Equations) This problem assumes some familiarity
with analog theory. Consider an analog system described by y′′(t) + 3y′(t) + 2y(t) = 2u(t).

(a) Confirm that this describes a stable analog system.
(b) Convert this to a difference equation using the backward Euler algorithm and check the stability

of the resulting digital filter.
(c) Convert this to a difference equation using the forward Euler algorithm and check the stability

of the resulting digital filter.
(d) Which algorithm is better in terms of preserving stability? Can the results be generalized to any

arbitrary analog system?

3.35 (Inverse Systems) Are the following systems invertible? If not, explain why; if invertible, find the
inverse system.

(a) y[n] = x[n]− x[n− 1] (differencing operation)
(b) y[n] = 1

3 (x[n] + x[n− 1] + x[n− 2]) (moving average operation)
(c) y[n] = 0.5x[n] + x[n− 1] + 0.5x[n− 2] (weighted moving average operation)
(d) y[n]− αy[n− 1] = (1− α)x[n], 0 < α < 1 (exponential averaging operation)
(e) y[n] = cos(nπ)x[n] (modulation)
(f) y[n] = cos(x[n])
(g) y[n] = ex[n]

[Hints and Suggestions: The inverse system is found by swithcing input and output and rearranging.
Only one of these systems is not invertible.]

3.36 (An Echo System and Its Inverse) An echo system is described by y[n] = x[n] + 0.5x[n − N ].
Assume that the echo arrives after 1 ms and the sampling rate is 2 kHz.

(a) What is the value of N? Sketch a realization of this echo system.
(b) What is the impulse response and step response of this echo system?
(c) Find the difference equation of the inverse system. Then, sketch its realization and find its

impulse response and step response.

3.37 (Reverb) A reverb filter is described by y[n] = x[n] + 0.25y[n −N ]. Assume that the echoes arrive
every millisecond and the sampling rate is 2 kHz.

(a) What is the value of N? Sketch a realization of this reverb filter.
(b) What is the impulse response and step response of this reverb filter?
(c) Find the difference equation of the inverse system. Then, sketch its realization and find its

impulse response and step response.

3.38 (Periodic Signal Generators) Find the difference equation of a filter whose impulse response is a

periodic sequence with first period x[n] = {⇓1, 2, 3, 4, 6, 7, 8}. Sketch a realization for this filter.
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3.39 (Recursive and IIR Filters) The terms recursive and IIR are not always synonymous. A recursive
filter could in fact have a finite impulse response. Use recursion to find the the impulse response h[n]
for each of the following recursive filters. Which filters (if any) describe IIR filters?

(a) y[n]− y[n− 1] = x[n]− x[n− 2]
(b) y[n]− y[n− 1] = x[n]− x[n− 1]− 2x[n− 2] + 2x[n− 3]

3.40 (Recursive Forms of FIR Filters) An FIR filter may always be recast in recursive form by the
simple expedient of including identical factors on the left-hand and right-hand side of its difference
equation in operational form. For example, the filter y[n] = (1 − z−1)x[n] is FIR, but the identical
filter (1+ z−1)y[n] = (1+ z−1)(1− z−1)x[n] has the difference equation y[n]+y[n−1] = x[n]−x[n−2]
and can be implemented recursively. Find two different recursive difference equations (with different
orders) for each of the following filters.

(a) y[n] = x[n]− x[n− 2] (b) h[n] = {1,
⇓
2, 1}

3.41 (Nonrecursive Forms of IIR Filters) An FIR filter may always be exactly represented in recursive
form, but we can only approximately represent an IIR filter by an FIR filter by truncating its impulse
response to N terms. The larger the truncation index N , the better is the approximation. Consider the
IIR filter described by y[n]−0.8y[n−1] = x[n]. Find its impulse response h[n] and truncate it to three
terms to obtain h3[n], the impulse response of the approximate FIR equivalent. Would you expect the
greatest mismatch in the response of the two filters to identical inputs to occur for lower or higher
values of n? Compare the step response of the two filters up to n = 6 to justify your expectations.

3.42 (Nonlinear Systems) One way to solve nonlinear difference equations is by recursion. Consider the
nonlinear difference equation y[n]y[n− 1]− 0.5y2[n− 1] = 0.5Au[n].

(a) What makes this system nonlinear?
(b) Using y[−1] = 2, recursively obtain y[0], y[1], and y[2].
(c) Use A = 2, A = 4, and A = 9 in the results of part (b) to confirm that this system finds the

square root of A.
(d) Repeat parts (b) and (c) with y[−1] = 1 to check whether the choice of the initial condition

affects system operation.

3.43 (LTI Concepts and Stability) Argue that neither of the following describes an LTI system. Then,
explain how you might check for their stability and determine which of the systems are stable.

(a) y[n] + 2y[n− 1] = x[n] + x2[n] (b) y[n]− 0.5y[n− 1] = nx[n] + x2[n]

3.44 (Response of Causal and Noncausal Systems) A difference equation may describe a causal or
noncausal system depending on how the initial conditions are prescribed. Consider a first-order system
governed by y[n] + αy[n− 1] = x[n].

(a) With y[n] = 0, n < 0, this describes a causal system. Assume y[−1] = 0 and find the first few
terms y[0], y[1], . . . of the impulse response and step response, using recursion, and establish the
general form for y[n].

(b) With y[n] = 0, n > 0, we have a noncausal system. Assume y[0] = 0 and rewrite the difference
equation as y[n − 1] = {−y[n] + x[n]}/α to find the first few terms y[0], y[−1], y[−2], . . . of the
impulse response and step response, using recursion, and establish the general form for y[n].
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3.45 (Folding) For each signal x[n], sketch g[k] = x[3− k] vs. k and h[k] = x[2 + k] vs. k.

(a) x[n] = {⇓1, 2, 3, 4} (b) x[n] = {3, 3,
⇓
3, 2, 2, 2}

[Hints and Suggestions: Note that g[k] and h[k] will be plotted against the index k.]

3.46 (Closed-Form Convolution) Find the convolution y[n] = x[n] ? h[n] for the following:

(a) x[n] = u[n] h[n] = u[n]
(b) x[n] = (0.8)nu[n] h[n] = (0.4)nu[n]
(c) x[n] = (0.5)nu[n] h[n] = (0.5)n{u[n + 3]− u[n− 4]}
(d) x[n] = αnu[n] h[n] = αnu[n]
(e) x[n] = αnu[n] h[n] = βnu[n]
(f) x[n] = αnu[n] h[n] = rect(n/2N)

[Hints and Suggestions: The summations will be over the index k and functions of n should be
pulled out before evaluating them using tables. For (a), (b), (d) and (e), summations will be from
k = 0 to k = n. For part (c) and (f), use superposition. For (a) and (d), the sum Σ(1)k = Σ(1) from
k = 0 to k = n equals n + 1.]

3.47 (Convolution with Impulses) Find the convolution y[n] = x[n] ? h[n] of the following signals.

(a) x[n] = δ[n− 1] h[n] = δ[n− 1]
(b) x[n] = cos(0.25nπ) h[n] = δ[n]− δ[n− 1]
(c) x[n] = cos(0.25nπ) h[n] = δ[n]− 2δ[n− 1] + δ[n− 2]
(d) x[n] = (−1)n h[n] = δ[n] + δ[n− 1]

[Hints and Suggestions: Start with δ[n] ? g[n] = g[n] and use linearity and time invariance.]

3.48 (Convolution) Find the convolution y[n] = x[n] ? h[n] for each pair of signals.

(a) x[n] = (0.4)−nu[n] h[n] = (0.5)−nu[n]
(b) x[n] = α−nu[n] h[n] = β−nu[n]
(c) x[n] = αnu[−n] h[n] = βnu[−n]
(d) x[n] = α−nu[−n] h[n] = β−nu[−n]

[Hints and Suggestions: For parts (a) and (b) write the exponentials in the form rn. For parts (c)
and (d) find the convolution of x[−n] and h[−n] and fold the result to get y[n].]

3.49 (Convolution of Finite Sequences) Find the convolution y[n] = x[n]?h[n] for each of the following
signal pairs. Use a marker to indicate the origin n = 0.

(a) x[n] = {⇓1, 2, 0, 1} h[n] = {⇓2, 2, 3}
(b) x[n] = {⇓0, 2, 4, 6} h[n] = {⇓6, 4, 2, 0}
(c) x[n] = {−3,−2,− ⇓

1, 0, 1} h[n] = {⇓4, 3, 2}
(d) x[n] = {3, 2,

⇓
1, 1, 2} h[n] = {4,

⇓
2, 3, 2}

(e) x[n] = {3, 0, 2, 0,
⇓
1, 0, 1, 0, 2} h[n] = {4, 0,

⇓
2, 0, 3, 0, 2}

(f) x[n] = {⇓0, 0, 0, 3, 1, 2} h[n] = {4,
⇓
2, 3, 2}

[Hints and Suggestions: Since the starting index of the convolution equals the sum of the starting
indices of the sequences convolved, ignore markers during convolution and assign as the last step.]

c©Ashok Ambardar, September 1, 2003



114 Chapter 3 Time-Domain Analysis

3.50 (Convolution of Symmetric Sequences) The convolution of sequences that are symmetric about
their midpoint is also endowed with symmetry (about its midpoint). Compute y[n] = x[n] ? h[n] for
each pair of signals and use the results to establish the type of symmetry (about the midpoint) in
the convolution if the convolved signals are both even symmetric (about their midpoint), both odd
symmetric (about their midpoint), or one of each type.

(a) x[n] = {2, 1, 2} h[n] = {1, 0, 1}
(b) x[n] = {2, 1, 2} h[n] = {1, 1}
(c) x[n] = {2, 2} h[n] = {1, 1}
(d) x[n] = {2, 0, −2} h[n] = {1, 0, −1}
(e) x[n] = {2, 0, −2} h[n] = {1, −1}
(f) x[n] = {2, −2} h[n] = {1, −1}
(g) x[n] = {2, 1, 2} h[n] = {1, 0, −1}
(h) x[n] = {2, 1, 2} h[n] = {1, −1}
(i) x[n] = {2, 2} h[n] = {1, −1}

3.51 (Properties) Let x[n] = h[n] = {⇓3, 4, 2, 1}. Compute the following:

(a) y[n] = x[n] ? h[n] (b) g[n] = x[−n] ? h[−n]
(c) p[n] = x[n] ? h[−n] (d) f [n] = x[−n] ? h[n]
(e) r[n] = x[n− 1] ? h[n + 1] (f) s[n] = x[n− 1] ? h[n + 4]

[Hints and Suggestions: The results for (b) and (d) can be found by folding the results for (a) and
(c) respectively. The result for (f) can be found by shifting the result for (e) (time-invariance).]

3.52 (Properties) Let x[n] = h[n] = {⇓2, 6, 0, 4}. Compute the following:
(a) y[n] = x[2n] ? h[2n]
(b) Find g[n] = x[n/2] ? h[n/2], assuming zero interpolation.
(c) Find p[n] = x[n/2] ? h[n], assuming step interpolation where necessary.
(d) Find r[n] = x[n] ? h[n/2], assuming linear interpolation where necessary.

3.53 (Application) Consider a 2-point averaging filter whose present output equals the average of the
present and previous input.
(a) Set up a difference equation for this system.
(b) What is the impulse response of this system?

(c) What is the response of this system to the sequence {⇓1, 2, 3, 4, 5}?
(d) Use convolution to show that the system performs the required averaging operation.

3.54 (Step Response) Given the impulse response h[n], find the step response s[n] of each system.

(a) h[n] = (0.5)nu[n] (b) h[n] = (0.5)n cos(nπ)u[n]
(c) h[n] = (0.5)n cos(nπ + 0.5π)u[n] (d) h[n] = (0.5)n cos(nπ + 0.25π)u[n]
(e) h[n] = n(0.5)nu[n] (f) h[n] = n(0.5)n cos(nπ)u[n]

[Hints and Suggestions: Note that s[n] = x[n] ? h[n] where x[n] = u[n]. In part (b) and (f), note
that cos(nπ) = (−1)n. In part (d) expand cos(nπ + 0.25π) and use the results of parts (b).]

3.55 (Convolution and System Response) Consider the system y[n]− 0.5y[n− 1] = x[n].
(a) What is the impulse response h[n] of this system?
(b) Find its output if x[n] = (0.5)nu[n] by convolution.
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(c) Find its output if x[n] = (0.5)nu[n] and y[−1] = 0 by solving the difference equation.
(d) Find its output if x[n] = (0.5)nu[n] and y[−1] = 2 by solving the difference equation.
(e) Are any of the outputs identical? Should they be? Explain.

[Hints and Suggestions: For part (e), remember that convolution finds the zero-state response.]

3.56 (Convolution and Interpolation) Let x[n] = {⇓2, 4, 6, 8}.
(a) Find the convolution y[n] = x[n] ? x[n].
(b) Find the convolution y1[n] = x[2n] ? x[2n]. Is y1[n] related to y[n]? Should it be? Explain.
(c) Find the convolution y2[n] = x[n/2] ? x[n/2], assuming zero interpolation. Is y2[n] related to

y[n]? Should it be? Explain.
(d) Find the convolution y3[n] = x[n/2] ? x[n/2], assuming step interpolation. Is y3[n] related to

y[n]? Should it be? Explain.
(e) Find the convolution y4[n] = x[n/2] ? x[n/2], assuming linear interpolation. Is y4[n] related to

y[n]? Should it be? Explain.

3.57 (Linear Interpolation) Consider a system that performs linear interpolation by a factor of N . One
way to construct such a system, as shown, is to perform up-sampling by N (zero interpolation between
signal samples) and pass the up-sampled signal through a filter with impulse response h[n] whose
output y[n] is the linearly interpolated signal.

x[n] −→ up-sample (zero interpolate) by N −→ filter −→ y[n]

(a) What should h[n] be for linear interpolation by a factor of N?
(b) Let x[n] = 4tri(0.25n). Find y1[n] = x[n/2] by linear interpolation.
(c) Find the system output y[n] for N = 2. Does y[n] equal y1[n]?

3.58 (Causality) Argue that the impulse response h[n] of a causal system must be zero for n < 0. Based
on this result, if the input to a causal system starts at n = n0, when does the response start?

3.59 (Stability) Investigate the causality and stability of the following systems.

(a) h[n] = (2)nu[n− 1] (b) y[n] = 2x[n + 1] + 3x[n]− x[n− 1]

(c) h[n] = (−0.5)nu[n] (d) h[n] = {3, 2,
⇓
1, 1, 2}

(e) h[n] = (0.5)−nu[−n] (f) h[n] = (0.5)|n|

[Hints and Suggestions: Only one of these is unstable. For part (e), note that summing |h[n]| is
equivalent to summing its folded version.]

3.60 (Numerical Convolution) The convolution y(t) of two analog signals x(t) and h(t) may be approx-
imated by sampling each signal at intervals ts to obtain the signals x[n] and h[n], and folding and
shifting the samples of one function past the other in steps of ts (to line up the samples). At each
instant kts, the convolution equals the sum of the product samples multiplied by ts. This is equivalent
to using the rectangular rule to approximate the area. If x[n] and h[n] are convolved using the sum-
by-column method, the columns make up the product, and their sum multiplied by ts approximates
y(t) at t = kts.

(a) Let x(t) = rect(t/2) and h(t) = rect(t/2). Find y(t) = x(t) ? h(t) and compute y(t) at intervals
of ts = 0.5 s.
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(b) Sample x(t) and h(t) at intervals of ts = 0.5 s to obtain x[n] and h[n]. Compute y[n] = x[n]?h[n]
and the convolution estimate yR(nts) = tsy[n]. Do the values of yR(nts) match the exact result
y(t) at t = nts? If not, what are the likely sources of error?

(c) Argue that the trapezoidal rule for approximating the convolution is equivalent to subtracting
half the sum of the two end samples of each column from the discrete convolution result and
then multiplying by ts. Use this rule to obtain the convolution estimate yT (nts). Do the values
of yT (nts) match the exact result y(t) at t = nts? If not, what are the likely sources of error?

(d) Obtain estimates based on the rectangular rule and trapezoidal rule for the convolution y(t) of
x(t) = 2 tri(t) and h(t) = rect(t/2) by sampling the signals at intervals of ts = 0.5 s. Which rule
would you expect to yield a better approximation, and why?

3.61 (Convolution) Let x[n] = rect(n/2) and h[n] = rect(n/4).

(a) Find f [n] = x[n] ? x[n] and g[n] = h[n] ? h[n].
(b) Express these results as f [n] = A tri(n/M) and g[n] = B tri(n/K) by selecting appropriate values

for the constants A, M, B and K.
(c) Generalize the above results to show that rect(n/2N) ? rect(n/2N) = (2N + 1)tri( n

2N+1 ).

3.62 (Impulse Response of Difference Algorithms) Two systems to compute the forward difference
and backward difference are described by
Forward difference: yF [n] = x[n + 1]− x[n] Backward difference: yB [n] = x[n]− x[n− 1]

(a) What is the impulse response of each system?
(b) Which of these systems is stable? Which of these systems is causal?
(c) Find the impulse response of their parallel connection. Is the parallel system stable? Is it causal?
(d) What is the impulse response of their cascade? Is the cascaded system stable? Is it causal?

3.63 (System Response) Find the response of the following filters to the unit step x[n] = u[n], and to
the alternating unit step x[n] = (−1)nu[n], using convolution concepts.

(a) h[n] = δ[n]− δ[n− 1] (differencing operation)

(b) h[n] = {
⇓

0.5, 0.5} (2-point average)

(c) h[n] = 1
N

N−1∑

k=0

δ[n− k], N = 3 (moving average)

(d) h[n] = 2
N(N+1)

N−1∑

k=0

(N − k)δ[n− k], N = 3 (weighted moving average)

(e) y[n] + N−1
N+1y[n− 1] = 2

N+1x[n], N = 3 (exponential average)

3.64 (Convolution and Interpolation) Consider the following system with x[n] = {⇓0, 3, 9, 12, 15, 18}.
x[n] −→ zero interpolate by N −→ filter −→ y[n]

(a) Find the response y[n] if N = 2 and the filter impulse response is h[n] = {⇓1, 1}. Show that,
except for end effects, the output describes a step interpolation between the samples of x[n].

(b) Find the response y[n] if N = 3 and the filter impulse response is h[n] = {⇓1, 1, 1}. Does the
output describe a step interpolation between the samples of x[n]?
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(c) Pick N and h[n] if the system is to perform step interpolation by 4.

3.65 (Convolution and Interpolation) Consider the following system with x[n] = {⇓0, 3, 9, 12, 15, 18}.
x[n] −→ zero interpolate by N −→ filter −→ y[n]

(a) Find the response y[n] if N = 2 and the filter impulse response is h[n] = tri(n/2). Show that,
except for end effects, the output describes a linear interpolation between the samples of x[n].

(b) Find the response y[n] if N = 3 and the filter impulse response is h[n] = tri(n/3). Does the
output describe a linear interpolation between the samples of x[n]?

(c) Pick N and h[n] if the system is to perform linear interpolation by 4.

3.66 (Interconnected Systems) Consider two systems described by

h1[n] = δ[n] + αδ[n− 1] h2[n] = (0.5)nu[n]

Find the response to the input x[n] = (0.5)nu[n] if

(a) The two systems are connected in parallel with α = 0.5.
(b) The two systems are connected in parallel with α = −0.5.
(c) The two systems are connected in cascade with α = 0.5.
(d) The two systems are connected in cascade with α = −0.5.

3.67 (Systems in Cascade and Parallel) Consider the realization of Figure P3.67.
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Figure P3.67 System realization for Problem 3.67

(a) Find its impulse response if α 6= β. Is the overall system FIR or IIR?
(b) Find its impulse response if α = β. Is the overall system FIR or IIR?
(c) Find its impulse response if α = β = 1. What does the overall system represent?

3.68 (Cascading) The impulse response of two cascaded systems equals the convolution of their impulse
responses. Does the step response sC [n] of two cascaded systems equal s1[n] ? s2[n], the convolution of
their step responses? If not, how is sC [n] related to s1[n] and s2[n]?

3.69 (Cascading) System 1 is a squaring circuit, and system 2 is an exponential averager described by
h[n] = (0.5)nu[n]. Find the output of each cascaded combination. Will their output be identical?
Should it be? Explain.

(a) 2(0.5)nu[n] −→ system 1 −→ system 2 −→ y[n]

(b) 2(0.5)nu[n] −→ system 2 −→ system 1 −→ y[n]
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3.70 (Cascading) System 1 is an IIR filter with the difference equation y[n] = 0.5y[n − 1] + x[n], and
system 2 is a filter with impulse response h[n] = δ[n] − δ[n − 1]. Find the output of each cascaded
combination. Will their output be identical? Should it be? Explain.

(a) 2(0.5)nu[n] −→ system 1 −→ system 2 −→ y[n]

(b) 2(0.5)nu[n] −→ system 2 −→ system 1 −→ y[n]

3.71 (Cascading) System 1 is an IIR filter with the difference equation y[n] = 0.5y[n − 1] + x[n], and
system 2 is a filter with impulse response h[n] = δ[n]− (0.5)nu[n].

(a) Find the impulse response hP [n] of their parallel connection.
(b) Find the impulse response h12[n] of the cascade of system 1 and system 2.
(c) Find the impulse response h21[n] of the cascade of system 2 and system 1.
(d) Are h12[n] and h21[n] identical? Should they be? Explain.
(e) Find the impulse response hI [n] of a system whose parallel connection with h12[n] yields hP [n].

3.72 (Cascading) System 1 is a lowpass filter described by y[n] = 0.5y[n − 1] + x[n], and system 2 is
described by h[n] = δ[n]− 0.5δ[n− 1].

(a) What is the output of the cascaded system to the input x[n] = 2(0.5)nu[n]?
(b) What is the output of the cascaded system to the input x[n] = δ[n]?
(c) How are the two systems related?

3.73 (Convolution in Practice) Often, the convolution of a long sequence x[n] and a short sequence h[n]
is performed by breaking the long signal into shorter pieces, finding the convolution of each short piece
with h[n], and “gluing” the results together. Let x[n] = {1, 1, 2, 3, 5, 4, 3, 1} and h[n] = {4, 3, 2, 1}.
(a) Split x[n] into two equal sequences x1[n] = {1, 1, 2, 3} and x2[n] = {5, 4, 3, 1}.
(b) Find the convolution y1[n] = h[n] ? x1[n].
(c) Find the convolution y2[n] = h[n] ? x2[n].
(d) Find the convolution y[n] = h[n] ? x[n].
(e) How can you find y[n] from y1[n] and y2[n]?

[Hints and Suggestions: For part (e), use superposition and add the shifted version of y2[n] to y1[n]
to get y[n]. This forms the basis for the overlap-add method of convolution.]

3.74 (Periodic Convolution) Find the regular convolution y[n] = x[n] ? h[n] of one period of each pair
of periodic signals. Then, use wraparound to compute the periodic convolution yp[n] = x[n] ?©h[n]. In
each case, specify the minimum number of padding zeros we must use if we wish to find the regular
convolution from the periodic convolution of the zero-padded signals.

(a) x[n] = {⇓1, 2, 0, 1} h[n] = {⇓2, 2, 3, 0}
(b) x[n] = {⇓0, 2, 4, 6} h[n] = {⇓6, 4, 2, 0}
(c) x[n] = {−3, −2,

⇓
−1, 0, 1} h[n] = {⇓4, 3, 2, 0, 0}

(d) x[n] = {3, 2, 1,
⇓
1, 2} h[n] = {4, 2, 3,

⇓
2, 0}

[Hints and Suggestions: First assign the marker for the regular convolution. After wraparound,
this also corresponds to the marker for the periodic convolution.]
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3.75 (Periodic Convolution) Find the periodic convolution yp[n] = x[n] ?©h[n] for each pair of signals
using the circulant matrix for x[n].

(a) x[n] = {⇓1, 2, 0, 1} h[n] = {⇓2, 2, 3, 0}
(b) x[n] = {⇓0, 2, 4, 6} h[n] = {⇓6, 4, 2, 0}

3.76 (Periodic Convolution) Consider a system whose impulse response is h[n] = (0.5)nu[n]. Show that

one period of its periodic extension with period N is given by hpe[n] =
(0.5)n

1− (0.5)N
, 0 ≤ n ≤ N − 1.

Use this result to find the response of this system to the following periodic inputs.

(a) x[n] = cos(nπ) (b) x[n] = {⇓1, 1, 0, 0}, with N = 4
(c) x[n] = cos(0.5nπ) (d) x[n] = (0.5)n, 0 ≤ n ≤ 3, with N = 4

[Hints and Suggestions: In each case, compute N samples of hpe[n] and then get the periodic
convolution. For example, the period of x[n] in part (a) is N = 2.]

3.77 (Correlation) For each pair of signals, compute the autocorrelation rxx[n], the autocorrelation rhh[n],
the cross-correlation rxh[n], and the cross-correlation rhx[n]. For each result, indicate the location of
the origin n = 0 by a marker.

(a) x[n] = {⇓1, 2, 0, 1} h[n] = {⇓2, 2, 3}
(b) x[n] = {⇓0, 2, 4, 6} h[n] = {⇓6, 4, 2}
(c) x[n] = {−3,−2,

⇓
−1, 2} h[n] = {⇓4, 3, 2}

(d) x[n] = {3, 2,
⇓
1, 1, 2} h[n] = {4,

⇓
2, 3, 2}

[Hints and Suggestions: Use convolution to get the correlation results. For example, rxh[n] =
x[n] ? h[−n] and the marker for the result is based on x[n] and h[−n] (the sequences convolved).]

3.78 (Correlation) Let x[n] = rect[(n− 4)/2] and h[n] = rect[n/4].

(a) Find the autocorrelation rxx[n].
(b) Find the autocorrelation rhh[n].
(c) Find the cross-correlation rxh[n].
(d) Find the cross-correlation rhx[n].
(e) How are the results of parts (c) and (d) related?

3.79 (Correlation) Find the correlation rxh[n] of the following signals.

(a) x[n] = αnu[n] h[n] = αnu[n]
(b) x[n] = nαnu[n] h[n] = αnu[n]
(c) x[n] = rect(n/2N) h[n] = rect(n/2N)

[Hints and Suggestions: In parts (a) and (b), each correlation will cover two ranges. For n ≥ 0, the
signals overlap over n ≤ k ≤ ∞ and for n < 0, the overlap is for 0 ≤ k ≤ ∞. For part (c), x[n] and
h[n] are identical and even symmetric and their correlation equals their convolution.]

3.80 (Periodic Correlation) For each pair of periodic signals described for one period, compute the
periodic autocorrelations rpxx[n] and rphh[n], and the periodic cross-correlations rpxh[n] and rphx[n].
For each result, indicate the location of the origin n = 0 by a marker.
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(a) x[n] = {⇓1, 2, 0, 1} h[n] = {⇓2, 2, 3, 0}
(b) x[n] = {⇓0, 2, 4, 6} h[n] = {⇓6, 4, 2, 0}
(c) x[n] = {−3,−2,

⇓
−1, 2} h[n] = {0,

⇓
4, 3, 2}

(d) x[n] = {3, 2,
⇓
1, 1, 2} h[n] = {4,

⇓
2, 3, 2, 0}

[Hints and Suggestions: First get the regular correlation (by regular convolution) and then use
wraparound. For example, rxh[n] = x[n] ? h[−n] and the marker for the result is based on x[n] and
h[−n] (the sequences convolved). Then, use wraparound to get rpxh[n] (the marker may get wrapped
around in some cases).]

3.81 (Mean and Variance from Autocorrelation) The mean value mx of a random signal x[n] (with
nonzero mean value) may be computed from its autocorrelation function rxx[n] as m2

x = lim
|n|→∞

rxx[n].

The variance of x[n] is then given by σ2
x = rxx(0)−m2

x. Find the mean, variance, and average power

of a random signal whose autocorrelation function is rxx[n] = 10
(

1 + 2n2

2 + 5n2

)
.

COMPUTATION AND DESIGN

3.82 (Numerical Integration Algorithms) Numerical integration algorithms approximate the area y[n]
from y[n− 1] or y[n− 2] (one or more time steps away). Consider the following integration algorithms.

(a) y[n] = y[n− 1] + tsx[n] (rectangular rule)
(b) y[n] = y[n− 1] + ts

2 (x[n] + x[n− 1]) (trapezoidal rule)
(c) y[n] = y[n− 1] + ts

12 (5x[n] + 8x[n− 1]− x[n− 2]) (Adams-Moulton rule)
(d) y[n] = y[n− 2] + ts

3 (x[n] + 4x[n− 1] + x[n− 2]) (Simpson’s rule)
(e) y[n] = y[n− 3] + 3ts

8 (x[n] + 3x[n− 1] + 3x[n− 2] + x[n− 3]) (Simpson’s three-eighths rule)

Use each of the rules to approximate the area of x(t) = sinc(t), 0 ≤ t ≤ 3, with ts = 0.1 s and ts = 0.3 s,
and compare with the expected result of 0.53309323761827. How does the choice of the time step ts
affect the results? Which algorithm yields the most accurate results?

3.83 (System Response) Use the Matlab routine filter to obtain and plot the response of the filter
described by y[n] = 0.25(x[n] + x[n− 1] + x[n− 2] + x[n− 3]) to the following inputs and comment on
your results.

(a) x[n] = 1, 0 ≤ n ≤ 60
(b) x[n] = 0.1n, 0 ≤ n ≤ 60
(c) x[n] = sin(0.1nπ), 0 ≤ n ≤ 60
(d) x[n] = 0.1n + sin(0.5nπ), 0 ≤ n ≤ 60

(e) x[n] =
∞∑

k=−∞
δ[n− 5k], 0 ≤ n ≤ 60

(f) x[n] =
∞∑

k=−∞
δ[n− 4k], 0 ≤ n ≤ 60
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3.84 (System Response) Use the Matlab routine filter to obtain and plot the response of the filter
described by y[n] − y[n − 4] = 0.25(x[n] + x[n − 1] + x[n − 2] + x[n − 3]) to the following inputs and
comment on your results.

(a) x[n] = 1, 0 ≤ n ≤ 60
(b) x[n] = 0.1n, 0 ≤ n ≤ 60
(c) x[n] = sin(0.1nπ), 0 ≤ n ≤ 60
(d) x[n] = 0.1n + sin(0.5nπ), 0 ≤ n ≤ 60

(e) x[n] =
∞∑

k=−∞
δ[n− 5k], 0 ≤ n ≤ 60

(f) x[n] =
∞∑

k=−∞
δ[n− 4k], 0 ≤ n ≤ 60

3.85 (System Response) Use Matlab to obtain and plot the response of the following systems over the
range 0 ≤ n ≤ 199.

(a) y[n] = x[n/3], x[n] = (0.9)nu[n] (assume zero interpolation)
(b) y[n] = cos(0.2nπ)x[n], x[n] = cos(0.04nπ) (modulation)
(c) y[n] = [1 + cos(0.2nπ)]x[n], x[n] = cos(0.04nπ) (modulation)

3.86 (System Response) Use Matlab to obtain and plot the response of the following filters, using direct
commands (where possible) and also using the routine filter, and compare your results. Assume that
the input is given by x[n] = 0.1n + sin(0.1nπ), 0 ≤ n ≤ 60. Comment on your results.

(a) y[n] = 1
N

N−1∑

k=0

x[n− k], N = 4 (moving average)

(b) y[n] = 2
N(N+1)

N−1∑

k=0

(N − k)x[n− k], N = 4 (weighted moving average)

(c) y[n]− αy[n− 1] = (1− α)x[n], N = 4, α = N−1
N+1 (exponential average)

3.87 (System Response) Use Matlab to obtain and plot the response of the following filters, using
direct commands and using the routine filter, and compare your results. Use an input that consists
of the sum of the signal x[n] = 0.1n + sin(0.1nπ), 0 ≤ n ≤ 60 and uniformly distributed random noise
with a mean of 0. Comment on your results.

(a) y[n] = 1
N

N−1∑

k=0

x[n− k], N = 4 (moving average)

(b) y[n] = 2
N(N+1)

N−1∑

k=0

(N − k)x[n− k], N = 4 (weighted moving average)

(c) y[n]− αy[n− 1] = (1− α)x[n], N = 4, α = N−1
N+1 (exponential averaging)

3.88 (System Response) Use the Matlab routine filter to obtain and plot the response of the following
FIR filters. Assume that x[n] = sin(nπ/8), 0 ≤ n ≤ 60. Comment on your results. From the results,
can you describe the the function of these filters?

(a) y[n] = x[n]− x[n− 1] (first difference)
(b) y[n] = x[n]− 2x[n− 1] + x[n− 2] (second difference)
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(c) y[n] = 1
3 (x[n] + x[n− 1] + x[n− 2]) (moving average)

(d) y[n] = 0.5x[n] + x[n− 1] + 0.5x[n− 2] (weighted average)

3.89 (System Response in Symbolic Form) Determine the response y[n] of the following filters and
plot over 0 ≤ n ≤ 30.
(a) The step response of y[n]− 0.5y[n− 1] = x[n]
(b) The impulse response of y[n]− 0.5y[n− 1] = x[n]
(c) The zero-state response of y[n]− 0.5y[n− 1] = (0.5)nu[n]
(d) The complete response of y[n]− 0.5y[n− 1] = (0.5)nu[n], y[−1] = −4
(e) The complete response of y[n] + y[n− 1] + 0.5y[n− 2] = (0.5)nu[n], y[−1] = −4, y[−2] = 3

3.90 (Inverse Systems and Echo Cancellation) A signal x(t) is passed through the echo-generating
system y(t) = x(t) + 0.9x(t − τ) + 0.8x(t − 2τ), with τ = 93.75 ms. The resulting echo signal y(t) is
sampled at S = 8192 Hz to obtain the sampled signal y[n].
(a) The difference equation of a digital filter that generates the output y[n] from x[n] may be written

as y[n] = x[n] + 0.9x[n−N ] + 0.8x[n− 2N ]. What is the value of the index N?
(b) What is the difference equation of an echo-canceling filter (inverse filter) that could be used to

recover the input signal x[n]?
(c) The echo signal is supplied on the author’s website as echosig.mat. Load this signal into Matlab

(using the command load echosig). Listen to this signal using the Matlab command sound.
Can you hear the echoes? Can you make out what is being said?

(d) Filter the echo signal using your inverse filter and listen to the filtered signal. Have you removed
the echoes? Can you make out what is being said? Do you agree with what is being said?

3.91 (Nonrecursive Forms of IIR Filters) An FIR filter may always be exactly represented in recursive
form, but we can only approximately represent an IIR filter by an FIR filter by truncating its impulse
response to N terms. The larger the truncation index N , the better is the approximation. Consider
the IIR filter described by y[n]− 0.8y[n− 1] = x[n]. Find its impulse response h[n] and truncate it to
20 terms to obtain hA[n], the impulse response of the approximate FIR equivalent. Would you expect
the greatest mismatch in the response of the two filters to identical inputs to occur for lower or higher
values of n?
(a) Use the Matlab routine filter to find and compare the step response of each filter up to n = 15.

Are there any differences? Should there be? Repeat by extending the response to n = 30. Are
there any differences? For how many terms does the response of the two systems stay identical,
and why?

(b) Use the Matlab routine filter to find and compare the response to x[n] = 1, 0 ≤ n ≤ 10 for
each filter up to n = 15. Are there any differences? Should there be? Repeat by extending the
response to n = 30. Are there any differences? For how many terms does the response of the
two systems stay identical, and why?

3.92 (Convolution of Symmetric Sequences) The convolution of sequences that are symmetric about
their midpoint is also endowed with symmetry (about its midpoint). Use the Matlab command
conv to find the convolution of the following sequences and establish the type of symmetry (about the
midpoint) in the convolution.

(a) x[n] = sin(0.2nπ), −10 ≤ n ≤ 10 h[n] = sin(0.2nπ), −10 ≤ n ≤ 10
(b) x[n] = sin(0.2nπ), −10 ≤ n ≤ 10 h[n] = cos(0.2nπ), −10 ≤ n ≤ 10
(c) x[n] = cos(0.2nπ), −10 ≤ n ≤ 10 h[n] = cos(0.2nπ), −10 ≤ n ≤ 10
(d) x[n] = sinc(0.2n), −10 ≤ n ≤ 10 h[n] = sinc(0.2n), −10 ≤ n ≤ 10
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3.93 (Extracting Periodic Signals Buried in Noise) Extraction of periodic signals buried in noise
requires autocorrelation (to identify the period) and cross-correlation (to recover the signal itself).

(a) Generate the signal x[n] = sin(0.1nπ), 0 ≤ n ≤ 499. Add some uniform random noise (with a
noise amplitude of 2 and a mean of 0) to obtain the noisy signal s[n]. Plot each signal. Can you
identify any periodicity from the plot of x[n]? If so, what is the period N? Can you identify any
periodicity from the plot of s[n]?

(b) Obtain the periodic autocorrelation rpx[n] of x[n] and plot. Can you identify any periodicity
from the plot of rpx[n]? If so, what is the period N? Is it the same as the period of x[n]?

(c) Use the value of N found above (or identify N from x[n] if not) to generate the 500-sample
impulse train i[n] =

∑
δ[n − kN ], 0 ≤ n ≤ 499. Find the periodic cross-correlation y[n] of

s[n] and i[n]. Choose a normalizing factor that makes the peak value of y[n] unity. How is the
normalizing factor related to the signal length and the period N?

(d) Plot y[n] and x[n] on the same plot. Is y[n] a close match to x[n]? Explain how you might
improve the results.
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Chapter 4

z-TRANSFORM ANALYSIS

4.0 Scope and Objectives
This chapter deals with the z-transform as a method of system analysis in a transformed domain. Even
though its genesis was outlined in the previous chapter, we develop the z-transform as an independent
transformation method in order to keep the discussion self-contained. We concentrate on the operational
properties of the z-transform and its applications in systems analysis. Connections with other transform
methods and system analysis methods are explored in later chapters.

4.1 The Two-Sided z-Transform
The two-sided z-transform X(z) of a discrete signal x[n] is defined as

X(z) =
∞∑

k=−∞
x[k]z−k (two-sided z-transform) (4.1)

The relation between x[n] and X(z) is denoted symbolically by

x[n] ⇐ zt ⇒ X(z) (4.2)

Here, x[n] and X(z) form a transform pair, and the double arrow implies a one-to-one correspondence
between the two.

4.1.1 What the z-Transform Reveals

The complex quantity z generalizes the concept of digital frequency F or Ω to the complex domain and is
usually described in polar form as

z = |r|ej2πF = |r|ejΩ (4.3)

Values of the complex quantity z may be displayed graphically in the z-plane in terms of its real and
imaginary parts or in terms of its magnitude and angle.

The defining relation for the z-transform is a power series (Laurent series) in z. The term for each index
k is the product of the sample value x[k] and z−k.

For the sequence x[n] = {−7, 3,
⇓
1, 4, −8, 5}, for example, the z-transform may be written as

X(z) = −7z2 + 3z1 + z0 + 4z−1 − 8z−2 + 5z−3
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Comparing x[n] and X(z), we observe that the quantity z−1 plays the role of a unit delay operator. The
sample location n = 2 in x[n], for example, corresponds to the term with z−2 in X(z). In concept, then, it
is not hard to go back and forth between a sequence and its z-transform if all we are given is a finite number
of samples.

REVIEW PANEL 4.1
The Two-Sided z-Transform of Finite Sequences Is a Power Series in z

DRILL PROBLEM 4.1

(a) Let x[n] = {⇓2, 1, 0, 4}. Find its z-transform X(z).

(b) Let x[n] = {2, −3,
⇓
1, 0, 4}. Find its z-transform X(z).

(c) Let X(z) = 3z2 + z − 3z−1 + 5z−2. Find x[n].

Answers: (a) 2 + z−1 + 4z−3 (b) 2z2 − 3z + 1 + 4z−2 (c) {3, 1,
⇓
0, −3, 5}

Since the defining relation for X(z) describes a power series, it may not converge for all z. The values of
z for which it does converge define the region of convergence (ROC) for X(z). Two completely different
sequences may produce the same two-sided z-transform X(z), but with different regions of convergence. It is
important that we specify the ROC associated with each X(z), especially when dealing with the two-sided
z-transform.

4.1.2 Some z-Transform Pairs Using the Defining Relation

Table 17.1 lists the z-transforms of some useful signals. We provide some examples using the defining relation
to find z-transforms. For finite-length sequences, the z-transform may be written as a polynomial in z. For
sequences with a large number of terms, the polynomial form can get to be unwieldy unless we can find
closed-form solutions.

EXAMPLE 4.1 (The z-Transform from the Defining Relation)
(a) Let x[n] = δ[n]. Its z-transform is X(z) = 1. The ROC is the entire z-plane.

(b) Let x[n] = 2δ[n + 1] + δ[n]− 5δ[n− 1] + 4δ[n− 2]. This describes the sequence x[n] = {2,
⇓
1,−5, 4}. Its

z-transform is evaluated as X(z) = 2z + 1− 5z−1 + 4z−2. No simplifications are possible. The ROC is
the entire z-plane, except z = 0 and z = ∞ (or 0 < |z| < ∞).

(c) Let x[n] = u[n] − u[n − N ]. This represents a sequence of N samples, and its z-transform may be
written as

X(z) = 1 + z−1 + z−2 + · · ·+ z−(N−1)

Its ROC is |z| > 0 (the entire z-plane except z = 0). A closed-form result for X(z) may be found using
the defining relation as follows:

X(z) =
N−1∑

k=0

z−k =
1− z−N

1− z−1
, z 6= 1
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Table 4.1 A Short Table of z-Transform Pairs

Entry Signal z-Transform ROC

Finite Sequences

1 δ[n] 1 all z

2 u[n]− u[n−N ] 1− z−N

1− z−1
z 6= 0

Causal Signals

3 u[n]
z

z − 1
|z| > 1

4 αnu[n]
z

z − α
|z| > |α|

5 (−α)nu[n]
z

z + α
|z| > |α|

6 nu[n]
z

(z − 1)2
|z| > 1

7 nαnu[n]
zα

(z − α)2
|z| > |α|

8 cos(nΩ)u[n] z2 − z cosΩ
z2 − 2z cosΩ + 1

|z| > 1

9 sin(nΩ)u[n] z sin Ω
z2 − 2z cosΩ + 1

|z| > 1

10 αn cos(nΩ)u[n] z2 − αz cosΩ
z2 − 2αz cosΩ + α2

|z| > |α|

11 αn sin(nΩ)u[n] αz sinΩ
z2 − 2αz cosΩ + α2

|z| > |α|

Anti-Causal Signals

12 −u[−n− 1]
z

z − 1
|z| < 1

13 −nu[−n− 1]
z

(z − 1)2
|z| < 1

14 −αnu[−n− 1]
z

z − α
|z| < |α|

15 −nαnu[−n− 1]
zα

(z − α)2
|z| < |α|
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(d) Let x[n] = u[n]. We evaluate its z-transform using the defining relation as follows:

X(z) =
∞∑

k=0

z−k =
∞∑

k=0

(z−1)k =
1

1− z−1
=

z

z − 1
, ROC: |z| > 1

Its ROC is |z| > 1 and is based on the fact that the geometric series
∞∑

k=0

rk converges only if |r| < 1.

(e) Let x[n] = αnu[n]. Using the defining relation, its z-transform and ROC are

X(z) =
∞∑

k=0

αkz−k =
∞∑

k=0

(α

z

)k

=
1

1− (α/z)
=

z

z − α
, ROC: |z| > |α|

Its ROC (|z| > α) is also based on the fact that the geometric series
∞∑

k=0

rk converges only if |r| < 1.

DRILL PROBLEM 4.2
(a) Let x[n] = (0.5)nu[n]. Find its z-transform X(z) and ROC.
(b) Let y[n] = (−0.5)nu[n]. Find its z-transform Y (z) and ROC.
(c) Let g[n] = −(0.5)nu[−n− 1]. Find its z-transform G(z) and ROC.

Answers: (a) X(z) =
z

z − 0.5
, |z| > 0.5 (b) Y (z) =

z

z + 0.5
, |z| > 0.5 (c) G(z) =

z

z − 0.5
, |z| < 0.5

4.1.3 More on the ROC

For a finite sequence x[n], the z-transform X(z) is a polynomial in z or z−1 and converges (is finite) for all
z, except z = 0, if X(z) contains terms of the form z−k (or x[n] is nonzero for n > 0), and/or z = ∞ if X(z)
contains terms of the form zk (or x[n] is nonzero for n < 0). Thus, the ROC for finite sequences is the entire
z-plane, except perhaps for z = 0 and/or z = ∞, as applicable.

In general, if X(z) is a rational function in z, as is often the case, its ROC actually depends on the one-
or two-sidedness of x[n], as illustrated in Figure 4.1.

The ROC excludes all pole locations (denominator roots) where X(z) becomes infinite. As a result,
the ROC of right-sided signals is |z| > |p|max and lies exterior to a circle of radius |p|max, the magnitude
of the largest pole. The ROC of causal signals, with x[n] = 0, n < 0, excludes the origin and is given
by 0 > |z| > p|max. Similarly, the ROC of a left-sided signal x[n] is |z| < |p|min and lies interior to a
circle of radius |p|min, the smallest pole magnitude of X(z). Finally, the ROC of a two-sided signal x[n] is
|p|min < |z| < |p|max, an annulus whose radii correspond to the smallest and largest pole locations in X(z).
We use inequalities of the form |z| < |α| (and not |z| ≤ |α|), for example, because X(z) may not converge
at the boundary |z| = |α|.
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z

z

]

Im[

Re[Re[

] Im[ z

z Re[ z ]]

] z ]Im[

ROC

ROC (shaded) of two-sided signals

ROC
ROC

ROC (shaded) of right-sided signals ROC (shaded) of left-sided signals

Figure 4.1 The ROC (shown shaded) of the z-transform for various sequences

REVIEW PANEL 4.2
The ROC of the z-Transform X(z) Determines the Nature of the Signal x[n]
Finite-length x[n]: ROC of X(z) is all the z-plane, except perhaps for z = 0 and/or z = ∞.
Right-sided x[n]: ROC of X(z) is outside a circle whose radius is the largest pole magnitude.
Left-sided x[n]: ROC of X(z) is inside a circle whose radius is the smallest pole magnitude.
Two-sided x[n]: ROC of X(z) is an annulus bounded by the largest and smallest pole radius.

Why We Must Specify the ROC

Consider the signal y[n] = −αnu[−n− 1] = −1, n = −1,−2, . . . . The two-sided z-transform of y[n], using a
change of variables, can be written as

Y (z) =
−1∑

k=−∞
−αkz−k = −

∞∑
m=1

( z

α

)m

= − z/α

1− (z/α)
=

z

z − α
, ROC: |z| < |α|

The ROC of Y (z) is |z| < |α|. Recall that the z-transform of x[n] = αnu[n] is X(z) =
z

z − α
. This is

identical to Y (z) but the ROC of X(z) is |z| > |α|. So, we have a situation where two entirely different
signals may possess an identical z-transform and the only way to distinguish between the them is by their
ROC. In other words, we cannot uniquely identify a signal from its transform alone. We must also specify
the ROC. In this book, we shall assume a right-sided signal if no ROC is specified.

EXAMPLE 4.2 (Identifying the ROC)

(a) Let x[n] = {4, −3,
⇓
2, 6}. The ROC of X(z) is 0 < |z| < ∞ and excludes z = 0 and z = ∞ because

x[n] is nonzero for n < 0 and n > 0.

(b) Let X(z) =
z

z − 2
+

z

z + 3
.

Its ROC depends on the nature of x[n].
If x[n] is assumed right-sided, the ROC is |z| > 3 (because |p|max = 3).
If x[n] is assumed left-sided, the ROC is |z| < 2 (because |p|min = 2).
If x[n] is assumed two-sided, the ROC is 2 < |z| < 3.
The region |z| < 2 and |z| > 3 does not correspond to a valid region of convergence because we must
find a region that is common to both terms.
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DRILL PROBLEM 4.3

(a) Let X(z) =
z + 0.5

z
. What is its ROC?

(b) Let Y (z) =
z + 1

(z − 0.1)(z + 0.5)
. What is its ROC if x[n] is right-sided?

(c) Let G(z) =
z

z + 2
+

z

z − 1
. What is its ROC if g[n] is two-sided?

(d) Let H(z) =
(z + 3)

(z − 2)(z + 1)
. What is its ROC if h[n] is left-sided?

Answers: (a) |z| 6= 0 (b) |z| > 0.5 (c) 1 < |z| < 2 (d) |z| < 1

4.2 Properties of the Two-Sided z-Transform
The z-transform is a linear operation and obeys superposition. The properties of the z-transform, listed in
Table 4.2, are based on the linear nature of the z-transform operation.

Table 4.2 Properties of the Two-Sided z-Transform

Entry Property Signal z-Transform

1 Shifting x[n−N ] z−NX(z)

2 Reflection x[−n] X
(1

z

)

3 Anti-causal x[−n]u[−n− 1] X
(1

z

)
− x[0] (for causal x[n])

4 Scaling αnx[n] X
( z

α

)

5 Times-n nx[n] −z
dX(z)

dz

6 Times-cos cos(nΩ)x[n] 0.5
[
X(zejΩ) + X(ze−jΩ)

]

7 Times-sin sin(nΩ)x[n] j0.5
[
X(zejΩ)−X(ze−jΩ)

]

8 Convolution x[n] ? h[n] X(z)H(z)

Time Shift: To prove the time-shift property of the two-sided z-transform, we use a change of variables.
We start with the pair x[n] ⇐ zt ⇒ X(z). If y[n] = x[n−N ], its z-transform is

Y (z) =
∞∑

k=−∞
x[k −N ]z−k (4.4)

With the change of variable m = k −N , the new summation index m still ranges from −∞ to ∞ (since N
is finite), and we obtain

Y (z) =
∞∑

m=−∞
x[m]z−(m+N) = z−N

∞∑
m=−∞

x[m]z−m = z−NX(z) (4.5)
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The factor z−N with X(z) induces a right shift of N in x[n].

REVIEW PANEL 4.3

Time-Shift Property for the Two-Sided z-Transform: x[n−N ] ⇐ zt ⇒ z−NX(z)

DRILL PROBLEM 4.4
(a) Let X(z) = 2 + 5z−1. Find the z-transform of y[n] = x[n− 3].

(b) Use the result (0.5)nu[n] ⇐ zt ⇒ z

z − 0.5
to find g[n] if G(z)

1
z − 0.5

.

Answers: (a) Y (z) = 2z−3 + 5z−4 (b) g[n] = (0.5)n−1u[n− 1]

Times-n: The times-n property is established by taking derivatives, to yield

X(z) =
∞∑

k=−∞
x[k]z−k dX(z)

dz
=

∞∑

k=−∞

d

dz

[
x[k]z−k

]
=

∞∑

k=−∞
−kx[k]z−(k+1) (4.6)

Multiplying both sides by −z, we obtain

− z
dX(z)

dz
=

∞∑

k=−∞
kx[k]z−k (4.7)

This represents the transform of nx[n].

REVIEW PANEL 4.4

The Times-n Property: nx[n] ⇐ zt ⇒ −z
dX(z)

dz

DRILL PROBLEM 4.5
(a) Let X(z) = 2 + 5z−1 − 4z−2. Find the z-transform of y[n] = nx[n].

(b) Let G(z) =
z

z − 0.5
, ROC : |z| > 0.5. Find the z-transform of h[n] = ng[n] and its ROC.

Answers: (a) Y (z) = 5z−1 − 8z−2 (b) H(z) =
0.5z

(z − 0.5)2
, |z| > 0.5

Scaling: The scaling property follows from the transform of y[n] = αnx[n], to yield

Y (z) =
∞∑

k=−∞
αkx[k]z−k =

∞∑

k=−∞
x[k]

( z

α

)−k

= X
( z

α

)
(4.8)

If the ROC of X(z) is |z| > |K|, the scaling property changes the ROC of Y (z) to |z| > |Kα|. In particular,
if α = −1, we obtain the useful result (−1)nx[n] ⇐ zt ⇒ X(−z). This result says that if we change the
sign of alternating (odd indexed) samples of x[n] to get y[n], its z-transform Y (z) is given by Y (z) = X(−z)
and has the same ROC.
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REVIEW PANEL 4.5
The Scaling Property: αnx[n] ⇐ zt ⇒ X(z/α) and (−1)nx[n] ⇐ zt ⇒ X(−z)

DRILL PROBLEM 4.6
(a) Let X(z) = 2− 3z−2. Find the z-transform of y[n] = (2)nx[n] and its ROC.

(b) Let G(z) =
z

z − 0.5
, |z| > 0.5. Find the z-transform of h[n] = (−0.5)ng[n] and its ROC.

(c) Let F (z) = 2 + 5z−1 − 4z−2. Find the z-transform of p[n] = −f [n] and its ROC.

Answers: (a) 2− 12z−2, z 6= 0 (b)
z

z + 0.25
, |z| > 0.25 (c) 2− 5z−1 − 4z−2, z 6= 0

If x[n] is multiplied by ejnΩ or
(
ejΩ

)n, we then obtain the pair ejnΩx[n] ⇐ zt ⇒ X(ze−jΩ). An
extension of this result, using Euler’s relation, leads to the times-cos and times-sin properties:

cos(nΩ)x[n] = 0.5x[n]
(
ejnΩ + e−jnΩ

) ⇐ zt ⇒ 0.5
[
X

(
zejΩ

)
+ X

(
ze−jΩ

)]
(4.9)

sin(nΩ)x[n] = −j0.5x[n]
(
ejnΩ − e−jnΩ

) ⇐ zt ⇒ j0.5
[
X

(
zejΩ

)−X
(
ze−jΩ

)]
(4.10)

The ROC is not affected by the times-cos and time-sin properties.

DRILL PROBLEM 4.7

(a) Let X(z) =
z

z − 1
, |z| > 1. Find the z-transform of y[n] = cos(0.5nπ)x[n] and its ROC.

(b) Let G(z) =
z

z − 0.5
, |z| > 0.5. Find the z-transform of h[n] = sin(0.5nπ)g[n] and its ROC.

Answers: (a) Y (z) =
z2

z2 + 1
, |z| > 1 (b) H(z) =

0.5z

z2 + 0.25
, |z| > 0.5

Convolution: The convolution property is based on the fact that multiplication in the time domain cor-
responds to convolution in any transformed domain. The z-transforms of sequences are polynomials, and
multiplication of two polynomials corresponds to the convolution of their coefficient sequences. This property
finds extensive use in the analysis of systems in the transformed domain.

REVIEW PANEL 4.6
The Convolution Property: x[n] ? h[n] ⇐ zt ⇒ X(z)H(z)

Folding: With x[n] ⇐ zt ⇒ X(z) and y[n] = x[−n], we use k → −k in the defining relation to give

Y (z) =
∞∑

k=−∞
x[−k]z−k =

∞∑

k=−∞
x[k]zk =

∞∑

k=−∞
x[k](1/z)−k = X(1/z) (4.11)

If the ROC of x[n] is |z| > |α|, the ROC of the folded signal x[−n] becomes |1/z| > |α| or |z| < 1/|α|.

REVIEW PANEL 4.7
The Folding Property of the Two-Sided z-Transform

x[−n] ⇐ zt ⇒ X(1/z) (the ROC changes from |z| > |α| to |z| < 1/|α|)
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DRILL PROBLEM 4.8
(a) Let X(z) = 2 + 3z−1, z 6= 0. Find the z-transform of y[n] = x[−n] and its ROC.

(b) Let G(z) =
z

z − 0.5
, |z| > 0.5. Find the z-transform of h[n] = g[−n] and its ROC.

Answers: (a) Y (z) = 3z + 2, |z| 6= ∞ (b) H(z) =
1

1− 0.5z
, |z| < 2

The Folding Property and Symmetric Signals

The folding property is useful in checking for signal symmetry from its z-transform. For a signal x[n] that
has even symmetry about the origin n = 0, we have x[n] = x[−n], and thus X(z) = X(1/z). Similarly, if
x[n] has odd symmetry about n = 0, we have x[n] = x[−n], and thus X(z) = −X(1/z). If x[n] is symmetric
about its midpoint and the center of symmetry is not n = 0, we observe that X(z) = zMX(1/z) for even
symmetry and X(z) = −zMX(1/z) for odd symmetry. The factor zM , where M is an integer, accounts for
the shift of the center of symmetry from the origin.

REVIEW PANEL 4.8
A Property of the z-Transform of Symmetric Sequences
Even symmetry: x[n] = x[−n] X(z) = zMX(1/z) Odd symmetry: x[n] = −x[−n] X(z) =
−zMX(1/z)

DRILL PROBLEM 4.9

(a) Let x[n] = {⇓0, 1, 5, 1}. Show that X(z) = zMX(1/z) and find M .

(b) Let y[n] = {2,
⇓
2}. Show that Y (z) = zMY (1/z) and find M .

(c) Let g[n] = {3,
⇓
0, −2}. Show that G(z) = −zMG(1/z) and find M .

Answers: (a) M = −4 (b) M = 1 (c) M = 0

The Folding Property and Anti-Causal Signals

The folding property is also useful in finding the transform of anti-causal signals. From the causal signal
x[n]u[n] ⇐ zt ⇒ X(z) (with ROC |z| > |α|), we find the transform of x[−n]u[−n] as X(1/z) (whose ROC
is |z| < 1/|α|). The anti-causal signal y[n] = x[−n]u[−n− 1] (which excludes the sample at n = 0) can then
be written as y[n] = x[−n]u[−n]− x[0]δ[n], as illustrated in Figure 4.2.

[n][n]x u

n

[−n ]x [−n−1]u [−n ]u[−n ]x [0]x [n]δ

=
n n n

Figure 4.2 Finding the z-transform of an anti-causal signal from a causal version
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With x[n]u[n] ⇐ zt ⇒ X(z), |z| > |α|, the z-transform of y[n] = x[−n]u[−n− 1] gives

y[n] = x[−n]u[−n− 1] ⇐ zt ⇒ Y (z) = X(1/z)− x[0], |z| < 1/|α| (4.12)

REVIEW PANEL 4.9
How to Find the z-Transform of a Left-Sided Signal from Its Right-Sided Version
If x[n]u[n] ⇐ zt ⇒ X(z), |z| > |α|, then x[−n]u[−n− 1] ⇐ zt ⇒ X(1/z)− x[0], |z| < 1/|α|.

DRILL PROBLEM 4.10
(a) Let x[n]u[n] ⇐ zt ⇒ 2 + 5z−1, z 6= 0. Find the z-transform of y[n] = x[−n]u[−n− 1] and its ROC.

(b) Let f [n]u[n] ⇐ zt ⇒ z + 1
z − 0.5

, |z| > 0.5. Find the z-transform of g[n] = f [−n]u[−n−1] and its ROC.

Answers: (a) Y (z) = 5z, |z| 6= ∞ (b) G(z) =
0.5z

0.5z + 1
, |z| < 2

EXAMPLE 4.3 (z-Transforms Using Properties)
(a) Using the times-n property, the z-transform of y[n] = nu[n] is

Y (z) = −z
d

dz

[
z

z − 1

]
= −z

[ −z

(z − 1)2
+

1
z − 1

]
=

z

(z − 1)2

(b) With x[n] = αnnu[n], we use scaling to obtain the z-transform:

X(z) =
z/α

[(z/α)− 1]2
=

zα

(z − α)2

(c) We find the transform of the N -sample exponential pulse x[n] = αn(u[n] − u[n − N ]). We let y[n] =
u[n]− u[n−N ]. Its z-transform is

Y (z) =
1− z−N

1− z−1
, |z| 6= 1

Then, the z-transform of x[n] = αny[n] becomes

X[z] =
1− (z/α)−N

1− (z/α)−1
, z 6= α

(d) The z-transforms of x[n] = cos(nΩ)u[n] and y[n] = sin(nΩ)u[n] are found using the times-cos and
times-sin properties:

X(z) = 0.5
[

zejΩ

zejΩ − 1
+

ze−jΩ

ze−jΩ − 1

]
=

z2 − z cosΩ
z2 − 2z cosΩ + 1

Y (z) = j0.5
[

zejΩ

zejΩ − 1
− ze−jΩ

ze−jΩ − 1

]
=

z sinΩ
z2 − 2z cosΩ + 1
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(e) The z-transforms of f [n] = αn cos(nΩ)u[n] and g[n] = αn sin(nΩ)u[n] follow from the results of part
(d) and the scaling property:

F (z) =
(z/α)2 − (z/α)cosΩ

(z/α)2 − 2(z/α)cosΩ + 1
=

z2 − αz cosΩ
z2 − 2αz cos Ω + α2

G(z) =
(z/α)sinΩ

(z/α)2 − 2(z/α)cosΩ + 1
=

αz sinΩ
z2 − 2αz cosΩ + α2

(f) We use the folding property to find the transform of y[n] = α−nu[−n−1]. We start with the transform
pair x[n] = αnu[n] ⇐ zt ⇒ z/(z − α), ROC: |z| > |α|. With x[0] = 1, we find

y[n] = α−nu[−n− 1] ⇐ zt ⇒ X(1/z)− x[0] =
1/z

1/z − α
− 1 =

αz

1− αz
, ROC: |z| < 1

|α|
If we replace α by 1/α, and change the sign of the result, we get

−αnu[−n− 1] ⇐ zt ⇒ z

z − α
, ROC: |z| < |α|

This is listed as a standard transform pair in tables of z-transforms.

(g) We use the folding property to find the transform of x[n] = α|n|, |α| < 1 (a two-sided decaying
exponential). We write this as x[n] = αnu[n] + α−nu[n]− δ[n] (a one-sided decaying exponential and
its folded version, less the extra sample included at the origin), as illustrated in Figure E4.3G.

| n |α αn [n]u −nα [−n ]u [n]δ

=
1

n

1

n

1

n n

1

Figure E4.3G The signal for Example 4.3(g)

Its z-transform then becomes

X(z) =
z

z − α
+

1/z

(1/z)− α
− 1 =

z

z − α
− z

z − (1/α)
, ROC: |α| < |z| < 1

|α|
Note that the ROC is an annulus that corresponds to a two-sided sequence, and describes a valid region
only if |α| < 1.

4.3 Poles, Zeros, and the z-Plane
The z-transform of many signals is a rational function of the form

X(z) =
N(z)
D(z)

=
BMzM + BM−1z

M−1 + · · ·+ B2z
2 + B1z + B0

ANzN + AN−1zN−1 + · · ·+ A2z2 + A1z + A0
(4.13)
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Denoting the roots of N(z) by zi, i = 1, 2, . . . , M and the roots of D(z) by pk, k = 1, 2, . . . , N , we may also
express X(z) in factored form as

X(z) = K
N(z)
D(z)

= K
(z − z1)(z − z2) · · · (z − zM )
(z − p1)(z − p2) · · · (z − pN )

(4.14)

The roots of N(z) are termed zeros and the roots of D(z) are termed poles. A plot of the poles (shown
as ×) and zeros (shown as o) in the z-plane constitutes a pole-zero plot, and provides a visual picture of
the root locations. For multiple roots, we indicate their multiplicity next to the root location on the plot.
Clearly, we can also find X(z) in its entirety from a pole-zero plot of the root locations but only if the value
of the multiplicative constant K is also displayed on the plot.

EXAMPLE 4.4 (Pole-Zero Plots)
(a) Let H(z) =

2z(z + 1)
(z − 1

3 )(z2 + 1
4 )(z2 + 4z + 5)

.

The numerator degree is 2. The two zeros are z = 0 and z = −1.
The denominator degree is 5. The five finite poles are at z = 1

3 , z = ±j 1
2 , and z = −2± j.

The multiplicative factor is K = 2. The pole-zero plot is shown in Figure E4.4(a).

= 2K

Im[ z ]

Re[ z ]

= 1K

Im[ z ]

Re[ z ]

−2 −1 1/3
−0.5

0.5

1

2

−2

−0.5

0.5

12

(a) (b)

Figure E4.4 Pole-zero plots for Example 4.4(a and b)

(b) What is the z-transform corresponding to the pole-zero pattern of Figure E4.4(b)? Does it represent a
symmetric signal?
If we let X(z) = KN(z)/D(z), the four zeros correspond to the numerator N(z) given by

N(z) = (z − j0.5)(z + j2)(z + j0.5)(z − j2) = z4 + 4.25z2 + 1

The two poles at the origin correspond to the denominator D(z) = z2. With K = 1, the z-transform
is given by

X(z) = K
N(z)
D(z)

=
z4 + 4.25z2 + 1

z2
= z2 + 4.25 + z−2

Checking for symmetry, we find that X(z) = X(1/z), and thus x[n] is even symmetric. In fact,

x[n] = δ[n + 2] + 4.25δ[n] + δ[n − 2] = {1,
⇓

4.25, 1}. We also note that each zero is paired with its
reciprocal (j0.5 with −j2, and −j0.5 with j2), a characteristic of symmetric sequences.
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4.4 The Transfer Function
The response y[n] of a system with impulse response h[n], to an arbitrary input x[n], is given by the
convolution y[n] = x[n] ? h[n]. Since the convolution operation transforms to a product, we have

Y (z) = X(z)H(z) or H(z) =
Y (z)
X(z)

(4.15)

The time-domain and z-domain equivalence of these operations is illustrated in Figure 4.3.

h[n] x[n]*=h[n]x[n]*=
x[n] and h[n]

Input Outputx[n] y[n]
h[n]

Input System Output
and

Y(z) = H(z)X(z)
H(z) X(z)

X(z)

System

Output = product of 

impulse response =

transfer function = H(z)

Output = convolution of

Figure 4.3 System description in the time domain and z-domain

The transfer function is defined only for relaxed LTI systems, either as the ratio of the output Y (z) and
input X(z), or as the z-transform of the system impulse response h[n].

A relaxed LTI system is also described by the difference equation:

y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (4.16)

Its z-transform results in the transfer function:

H(z) =
Y (z)
X(z)

=
B0 + B1z

−1 + · · ·+ BMz−M

1 + A1z−1 + · · ·+ ANz−N
(4.17)

The transfer function is thus a ratio of polynomials in z. An LTI system may be described by its transfer
function, its impulse response, its difference equation or its pole-zero plot and given one form, it is possible
to obtain any of the other forms.

REVIEW PANEL 4.10
The Transfer Function of Relaxed LTI Systems Is a Rational Function of z

H(z) =
Y (z) (transformed output)
X(z) (transformed input)

H(z) = Z{h[n]} (z-transform of impulse response)

DRILL PROBLEM 4.11
(a) Find the transfer function of the digital filter described by y[n]− 0.4y[n− 1] = 2x[n].

(b) Find the difference equation of the digital filter described by H(z) =
z − 1

z + 0.5
.

(c) Find the difference equation of the digital filter described by h[n] = (0.5)nu[n]− δ[n].

Answers: (a) H(z) =
2z

z − 0.4
(b) y[n]+0.5y[n−1] = x[n]−x[n−1] (c) y[n]−0.5y[n−1] = 0.5x[n−1]
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The poles of a transfer function H(z) are called natural modes or natural frequencies. The poles of
Y (z) = H(z)X(z) determine the form of the system response. Clearly, the natural frequencies in H(z) will
always appear in the system response, unless they are canceled by any corresponding zeros in X(z). The
zeros of H(z) may be regarded as the (complex) frequencies that are blocked by the system.

4.5 Interconnected Systems
The z-transform is well suited to the study of interconnected LTI systems. Figure 4.4 shows the intercon-
nection of two relaxed systems in cascade and in parallel.

H1(z) H2(z) H1(z) H2(z)

H1(z)

H2(z)

H1(z) H2(z)+

X(z) Y(z) X(z) Y(z)

X(z) Y(z)

Y(z)X(z)

Two LTI systems in cascade Equivalent LTI system

Two LTI systems in parallel

Equivalent LTI systemΣ+ +

Figure 4.4 Cascade and parallel systems and their equivalents

The overall transfer function of a cascaded system is the product of the individual transfer functions.
For n systems in cascade, the overall impulse response hC [n] is the convolution of the individual impulse
responses h1[n], h2[n], . . . . Since the convolution operation transforms to a product, we have

HC(z) = H1(z)H2(z) · · ·Hn(z) (for n systems in cascade) (4.18)

We can also factor a given transfer function H(z) into the product of first-order and second-order transfer
functions and realize H(z) in cascaded form.

For systems in parallel, the overall transfer function is the sum of the individual transfer functions. For
n systems in parallel,

HP (z) = H1(z) + H2(z) + · · ·+ Hn(z) (for n systems in parallel) (4.19)

We can also use partial fractions to express a given transfer function H(z) as the sum of first-order and/or
second-order subsystems, and realize H(z) as a parallel combination.

REVIEW PANEL 4.11
Overall Impulse Response and Transfer Function of Systems in Cascade and Parallel
Cascade: Convolve individual impulse responses. Multiply individual transfer functions.
Parallel: Add individual impulse responses. Add individual transfer functions.
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EXAMPLE 4.5 (Systems in Cascade and Parallel)

(a) Two digital filters are described by h1[n] = αnu[n] and h2[n] = (−α)nu[n]. The transfer function of
their cascade is HC(z) and of their parallel combination is HP (z). How are HC(z) and HP (z) related?

The transfer functions of the two filters are H1(z) =
z

z − α
and H2(z) =

z

z + α
. Thus,

HC(z) = H1(z)H2(z) =
z2

z2 − α2
HP (z) = H1(z) + H2(z) =

2z2

z2 − α2

So, HP (z) = 2HC(z).

(b) Is the cascade or parallel combination of two linear-phase filters also linear phase? Explain.

Linear-phase filters are described by symmetric impulse response sequences.

The impulse response of their cascade is also symmetric because it is the convolution of two symmetric
sequences. So, the cascade of two linear-phase filters is always linear phase.

The impulse response of their parallel combination is the sum of their impulse responses. Since the
sum of symmetric sequences is not always symmetric (unless both are odd symmetric or both are even
symmetric), the parallel combination of two linear-phase filters is not always linear phase.

DRILL PROBLEM 4.12

(a) Find the transfer function of the parallel connection of two filters described by h1[n] = {⇓1, 3} and

h2[n] = {2,
⇓
−1}.

(b) The transfer function of the cascade of two filters is HC(z) = 1. If the impulse response of one filter
is h1[n] = 2(0.5)nu[n], find the impulse response of the second.
(c) Two filters are described by y[n] − 0.4y[n − 1] = x[n] and h2[n] = 2(0.4)nu[n]. Find the transfer
function of their parallel combination and cascaded combination.

Answers: (a) 2z + 3z−1 (b) {
⇓

0.5, −0.25} (c) HP (z) =
3z

z − 0.4
, HC(z) =

2z2

(z − 0.4)2

4.6 Transfer Function Realization
The realization of digital filters described by transfer functions parallels the realization based on difference
equations. The nonrecursive and recursive filters described by

HN (z) = B0 + B1z
−1 + · · ·+ BMz−M y[n] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (4.20)

HR(z) =
1

1 + A1z−1 + · · ·+ ANz−N
y[n] = −A1y[n− 1]− · · · −ANy[n−N ] + x[n] (4.21)

can be realized using the feed-forward (nonrecursive) structure and feedback (recursive) structure, as
shown in Figure 4.5.

Now, consider the general difference equation

y[n] = −A1y[n− 1]− · · · −ANy[n−N ] + B0x[n] + B1x[n− 1] + · · ·+ BNx[n−N ] (4.22)
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Figure 4.5 Realization of a nonrecursive (left) and recursive (right) digital filter

We choose M = N with no loss of generality, since some of the coefficients Bk may always be set to zero.
The transfer function (with M = N) then becomes

H(z) =
B0 + B1z

−1 + · · ·+ BNz−N

1 + A1z−1 + A2z−2 + · · ·+ ANz−N
= HN (z)HR(z) (4.23)

The transfer function H(z) = HN (z)HR(z) is the product of the transfer functions of a recursive and a
nonrecursive system. Its realization is thus a cascade of the realizations for the recursive and nonrecursive
portions, as shown in Figure 4.6(a). This form describes a direct form I realization. It uses 2N delay
elements to realize an Nth-order difference equation and is therefore not very efficient.
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Figure 4.6 Direct form I (left) and canonical, or direct form II (right), realization of a digital filter

Since LTI systems can be cascaded in any order, we can switch the recursive and nonrecursive parts to get
the structure of Figure 4.6(b). This structure suggests that each pair of feed-forward and feedback signals
can be obtained from a single delay element instead of two. This allows us to use only N delay elements
and results in the direct form II, or canonic, realization. The term canonic implies a realization with the
minimum number of delay elements.

c©Ashok Ambardar, September 1, 2003



140 Chapter 4 z-Transform Analysis

If M and N are not equal, some of the coefficients (Ak or Bk) will equal zero and will result in missing
signal paths corresponding to these coefficients in the filter realization.

REVIEW PANEL 4.12
Digital Filter Realization
FIR: No feedback paths IIR: Both feed-forward and feedback paths

4.6.1 Transposed Realization

The direct form II also yields a transposed realization if we turn the realization around (and reverse the
input and input), replace summing junctions by nodes (and vice versa), and reverse the direction of signal
flow. Such a realization is developed in Figure 4.7.
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Figure 4.7 Direct form II (left) and transposed (right) realization of a digital filter

EXAMPLE 4.6 (Direct Form II and Transposed Realizations)
Consider a system described by 2y[n]− y[n− 2]− 4y[n− 3] = 3x[n− 2]. Its transfer function is

H(z) =
3z−2

2− z−2 − 4z−3
=

1.5z

z3 − 0.5z − 2

This is a third-order system. To sketch its direct form II and transposed realizations, we compare H(z) with
the generic third-order transfer function to get

H(z) =
B0z

3 + B1z
2 + B2z + B3

z3 + A1z2 + A2z + A3

The nonzero constants are B2 = 1.5, A2 = −0.5, and A3 = −2. Using these, we obtain the direct form II
and transposed realizations shown in Figure E4.6.
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Figure E4.6 Direct form II (left) and transposed (right) realization of the system for Example 4.6

4.6.2 Cascaded and Parallel Realization

The overall transfer function of a cascaded system is the product of the individual transfer functions.

HC(z) = H1(z)H2(z) · · ·Hn(z) (for n systems in cascade) (4.24)

As a consequence, we can factor a given transfer function H(z) into the product of several transfer functions
to realize H(z) in cascaded form. Typically, an N -th order transfer function is realized as a cascade of
second-order sections (with an additional first-order section if N is odd).

For systems in parallel, the overall transfer function is the sum of the individual transfer functions. For
n systems in parallel,

HP (z) = H1(z) + H2(z) + · · ·+ Hn(z) (for n systems in parallel) (4.25)

As a result, we may use partial fractions to express a given transfer function H(z) as the sum of first-order
and/or second-order subsystems, and realize H(z) as a parallel combination.

EXAMPLE 4.7 (System Realization)

(a) Find a cascaded realization for H(z) =
z2(6z − 2)

(z − 1)(z2 − 1
6z − 1

6 )
.

This system may be realized as a cascade H(z) = H1(z)H2(z), as shown in Figure E4.7A, where

H1(z) =
z2

z2 − 1
6z − 1

6

H2(z) =
6z − 2
z − 1
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Figure E4.7A Cascade realization of the system for Example 4.7(a)

(b) Find a parallel realization for H(z) =
z2

(z − 1)(z − 0.5)

Using partial fractions, we find H(z) =
2z

z − 1
− z

z − 0.5
= H1(z)−H2(z).

The two subsystems H1(z) and H2(z) may now be used to obtain the parallel realization, as shown in
Figure E4.7B.

[n]y[n]x

−1z

−1z

0.5

2++

+
+

+

−

Σ

Σ Σ

Figure E4.7B Parallel realization of the system for Example 4.7(b)

4.7 Causality and Stability of LTI Systems
In the time domain, a causal system requires a causal impulse response h[n] with h[n] = 0, n < 0. If H(z)
describes the transfer function of this system, the number of zeros cannot exceed the number of poles. In
other words, the degree of the numerator polynomial in H(z) cannot exceed the degree of the denominator
polynomial. This means that the transfer function of a causal system must be proper and its ROC must be
outside a circle of finite radius.

For an LTI system to be BIBO (bounded-input, bounded-output) stable, every bounded input must
result in a bounded output. In the time domain, BIBO stability of an LTI system requires an absolutely
summable impulse response h[n]. For a causal system, this is equivalent to requiring the poles of the transfer
function H(z) to lie entirely within the unit circle in the z-plane. This equivalence stems from the following
observations:

Poles outside the unit circle (|z| > 1) lead to exponential growth even if the input is bounded.
Example: H(z) = z/(z − 3) results in the growing exponential (3)nu[n].
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Multiple poles on the unit circle always result in polynomial growth.
Example: H(z) = 1/[z(z − 1)2] produces a ramp function in h[n].

Simple (non-repeated) poles on the unit circle can also lead to an unbounded response.
Example: A simple pole at z = 1 leads to H(z) with a factor z/(z−1). If X(z) also contains a pole at z = 1,
the response Y (z) will contain the term z/(z − 1)2 and exhibit polynomial growth.

None of these types of time-domain terms is absolutely summable, and their presence leads to system
instability. Formally, for BIBO stability, all the poles of H(z) must lie inside (and exclude) the unit circle
|z| = 1. This is both a necessary and sufficient condition for the stability of causal systems.

If a system has simple (non-repeated) poles on the unit circle, it is sometimes called marginally stable.
If a system has all its poles and zeros inside the unit circle, it is called a minimum-phase system.

4.7.1 Stability and the ROC

For any LTI system, causal or otherwise, to be stable, the ROC must include the unit circle. The various
situations are illustrated in Figure 4.8.

]

Re[ z ]

z

ROC

1

Im[ zIm[

Re[ z ]
ROC

1

Im[] ]

Re[ z ]

z

ROC

1

causal, stable system two-sided, stable system
ROC (shaded) of

anti-causal, stable system
ROC (shaded) ofROC (shaded) of

Figure 4.8 The ROC of stable systems (shown shaded) always includes the unit circle

The stability of a causal system requires all the poles to lie inside the unit circle. Thus, the ROC includes
the unit circle. The stability of an anti-causal system requires all the poles to lie outside the unit circle.
Thus, the ROC once again includes the unit circle. Similarly, the ROC of a stable system with a two-sided
impulse response is an annulus that includes the unit circle and all its poles lie outside this annulus. The
poles inside the inner circle of the annulus contribute to the causal portion of the impulse response while
poles outside the outer circle of the annulus make up the anti-causal portion of the impulse response.

REVIEW PANEL 4.13
The ROC of Stable LTI Systems Always Includes the Unit Circle
Stable, causal system: All the poles must lie inside the unit circle.
Stable, anti-causal system: All the poles must lie outside the unit circle.
Stability from impulse response: h[n] must be absolutely summable (

∑ |h[k]| < ∞).

EXAMPLE 4.8 (Stability of a Recursive Filter)
(a) Let H(z) =

z

z − α
.

If the ROC is |z| > |α|, its impulse response is h[n] = αnu[n], and the system is causal.
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For stability, we require |α| < 1 (for the ROC to include the unit circle).

(b) Let H(z) =
z

z − α
, as before.

If the ROC is |z| < |α|, its impulse response is h[n] = −αnu[−n− 1], and the system is anti-causal.

For stability, we require |α| > 1 (for the ROC to include the unit circle).

DRILL PROBLEM 4.13

(a) Is the filter described by H(z) =
2z + 1

(z − 0.5)(z + 0.5)
, |z| > 0.5 stable? Causal?

(b) Is the filter described by H(z) =
2z + 1

(z − 1.5)(z + 0.5)
, |z| > 1.5 stable? Causal?

(c) Is the filter described by H(z) =
2z + 1

(z − 1.5)(z + 0.5)
, 0.5 < |z| < 1.5 stable? Causal?

Answers: (a) Stable, causal (b) Unstable, causal (c) Stable, two-sided

4.7.2 Inverse Systems

The inverse system corresponding to a transfer function H(z) is denoted by H−1(z), and defined as

H−1(z) = HI(z) =
1

H(z)
(4.26)

The cascade of a system and its inverse has a transfer function of unity:

HC(z) = H(z)H−1(z) = 1 hC [n] = δ[n] (4.27)

This cascaded system is called an identity system, and its impulse response equals hC [n] = δ[n]. The
inverse system can be used to undo the effect of the original system. We can also describe hC [n] by the
convolution h[n] ? hI [n]. It is far easier to find the inverse of a system in the transformed domain.

REVIEW PANEL 4.14
Relating the Impulse Response and Transfer Function of a System and Its Inverse
If the system is described by H(z) and h[n] and its inverse by HI(z) and hI [n], then

H(z)HI(z) = 1 h[n] ? hI [n] = δ[n]

EXAMPLE 4.9 (Inverse Systems)
(a) Consider a system with the difference equation y[n] + αy[n− 1] = x[n] + βx[n− 1].

To find the inverse system, we evaluate H(z) and take its reciprocal. Thus,

H(z) =
1 + βz−1

1 + αz−1
HI(z) =

1
H(z)

=
1 + αz−1

1 + βz−1

The difference equation of the inverse system is y[n] + βy[n − 1] = x[n] + αx[n − 1]. Note that, in
general, the inverse of an IIR filter is also an IIR filter.
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(b) Consider an FIR filter whose system equation is y[n] = x[n] + 2x[n− 1] + 3x[n− 2].

To find the inverse system, we evaluate H(z) and take its reciprocal. Thus,

H(z) = 1 + 2z−1 + 3z−2 HI(z) =
1

H(z)
=

1
1 + 2z−1 + 3z−2

The difference equation of the inverse system is y[n] + 2y[n − 1] + 3y[n − 2] = x[n]. Note that the
inverse of an FIR filter is an IIR filter.

DRILL PROBLEM 4.14
(a) The inverse of an FIR filter is always an IIR filter. True or false? If false, give a counterexample.
(b) The inverse of an IIR filter is always an FIR filter. True or false? If false, give a counterexample.

Answers: (a) True (b) False. For example, the inverse of H(z) =
z − 0.4
z − 0.5

is also IIR.

4.8 The Inverse z-Transform
The formal inversion relation that yields x[n] from X(z) actually involves complex integration and is described
by

x[n] =
1

j2π

∮

Γ

X(z)zn−1 dz (4.28)

Here, Γ describes a clockwise contour of integration (such as the unit circle) that encloses the origin. Eval-
uation of this integral requires knowledge of complex variable theory. In this text, we pursue simpler
alternatives, which include long division and partial fraction expansion.

4.8.1 Inverse z-Transform of Finite Sequences

For finite-length sequences, X(z) has a polynomial form that immediately reveals the required sequence x[n].
The ROC can also be discerned from the polynomial form of X(z).

EXAMPLE 4.10 (Inverse Transform of Sequences)
(a) Let X(z) = 3z−1 + 5z−3 + 2z−4. This transform corresponds to a causal sequence. We recognize x[n]

as a sum of shifted impulses given by

x[n] = 3δ[n− 1] + 5δ[n− 3] + 2δ[n− 4]

This sequence can also be written as x[n] = {⇓0, 3, 0, 5, 2}.

(b) Let X(z) = 2z2 − 5z + 5z−1 − 2z−2. This transform corresponds to a noncausal sequence. Its inverse
transform is written, by inspection, as

x[n] = {2, −5,
⇓
0, 5, −2}

Comment: Since X(z) = −X(1/z), x[n] should possess odd symmetry. It does.
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4.8.2 Inverse z-Transform by Long Division

A second method requires X(z) as a rational function (a ratio of polynomials) along with its ROC. For a
right-sided signal (whose ROC is |z| > |α|), we arrange the numerator and denominator in ascending powers
of z, and use long division to obtain a power series in decreasing powers of z, whose inverse transform
corresponds to the right-sided sequence.

For a left-sided signal (whose ROC is |z| < |α|), we arrange the numerator and denominator in descending
powers of z, and use long division to obtain a power series in increasing powers of z, whose inverse transform
corresponds to the left-sided sequence.

This approach, however, becomes cumbersome if more than just the first few terms of x[n] are required.
It is not often that the first few terms of the resulting sequence allow its general nature or form to be
discerned. If we regard the rational z-transform as a transfer function H(z) = P (z)/Q(z), the method of
long division is simply equivalent to finding the first few terms of its impulse response recursively from its
difference equation.

REVIEW PANEL 4.15
Finding Inverse Transforms of X(z) = N(z)/D(z) by Long Division
Right-sided: Put N(z), D(z) in ascending powers of z. Obtain a power series in decreasing powers of z.
Left-sided: Put N(z), D(z) in descending powers of z. Obtain a power series in increasing powers of z.

EXAMPLE 4.11 (Inverse Transforms by Long Division)

(a) We find the right-sided inverse of H(z) =
z − 4

1− z + z2
.

We arrange the polynomials in descending powers of z and use long division to get

z2 − z + 1
)z−1 − 3z−2 − 4z−3 · · ·
z − 4

z − 1 + z−1

− 3− z−1

− 3 + 3z−1 − 3z−2

− 4z−1 + 3z−2

− 4z−1 + 4z−2 − 4z−3

− z−2 + 4z−3

· · ·

This leads to H(z) = z−1 − 3z−2 − 4z−3 + · · ·. The sequence h[n] can be written as

h[n] = δ(n− 1)− 3δ[n− 2]− 4δ[n− 3] + · · · or h[n] = {⇓0, 1, −3, −4, . . .}

(b) We could also have found the inverse by setting up the the difference equation corresponding to
H(z) = Y (z)/X(z), to give

y[n]− y[n− 1] + y[n− 2] = x[n− 1]− 4x[n− 2]
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With x[n] = δ[n], its impulse response h[n] is

h[n]− h[n− 1] + h[n− 2] = δ[n]− 4δ[n− 2]

With h[−1] = h[−2] = 0, (a relaxed system), we recursively obtain the first few values of h[n] as

n = 0: h[0] = h[−1]− h[−2] + δ[−1]− 4δ[−2] = 0− 0 + 0− 0 = 0
n = 1: h[1] = h[0]− h[−1] + δ[0]− 4δ[−1] = 0− 0 + 1− 0 = 1
n = 2: h[2] = h[1]− h[0] + δ[1]− 4δ[0] = 1− 0 + 0− 4 = −3
n = 3: h[3] = h[2]− h[1] + δ[2]− 4δ[1] = −3− 1 + 0 + 0 = −4

These are identical to the values obtained using long division in part (a).

(c) We find the left-sided inverse of H(z) =
z − 4

1− z + z2
.

We arrange the polynomials in descending powers of z and use long division to obtain

1− z + z2
)−4− 3z + z2 · · ·
−4 + z

−4 + 4z − 4z2

− 3z + 4z2

−3z + 3z2 − 3z3

z2 + 3z3

z2 − z3 + z4

4z3 − z4

· · ·
Thus, H(z) = −4− 3z + z2 + · · ·. The sequence h[n] can then be written as

h[n] = −4δ[n]− 3δ[n + 1] + δ[n + 2] + · · · or h[n] = {. . . , 1, −3, − ⇓
4}

(d) We could also have found the inverse by setting up the the difference equation in the form

h[n− 2] = h[n− 1] + δ[n− 1]− 4δ[n− 2]

With h[1] = h[2] = 0, we can generate h[0], h[−1], h[−2], . . . , recursively, to obtain the same result as
in part (c).

DRILL PROBLEM 4.15

(a) Let H(z) =
z − 4
z2 + 1

, |z| > 1. Find the first few terms of h[n] by long division.

(b) Let H(z) =
z − 4
z2 + 4

, |z| < 2. Find the first few terms of h[n] by long division.

Answers: (a) {0,
⇓
1, −4, −1, 4, . . .} (b) {. . . , −0.6250, 0.25, 0.25,

⇓
−1}
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4.8.3 Inverse z-Transform from Partial Fractions

A much more useful method for inversion of the z-transform relies on its partial fraction expansion into terms
whose inverse transform can be identified using a table of transform pairs. This is analogous to finding inverse
Laplace transforms, but with one major difference. Since the z-transform of standard sequences in Table 4.1
involves the factor z in the numerator, it is more convenient to perform the partial fraction expansion for
Y (z) = X(z)/z rather than for X(z). We then multiply through by z to obtain terms describing X(z) in a
form ready for inversion. This also implies that, for partial fraction expansion, it is Y (z) = X(z)/z and not
X(z) that must be a proper rational function. The form of the expansion depends on the nature of the poles
(denominator roots) of Y (z). The constants in the partial fraction expansion are often called residues.

Distinct Linear Factors

If Y (z) contains only distinct poles, we express it in the form:

Y (z) =
P (z)

(z + p1)(z + p2) · · · (z + pN )
=

K1

z + p1
+

K2

z + p2
+ · · ·+ KN

z + pN
(4.29)

To find the mth coefficient Km, we multiply both sides by (z + pm) to get

(z + pm)Y (z) = K1
(z + pm)
(z + p1)

+ · · ·+ Km + · · ·+ KN
(z + pm)
(z + pN )

(4.30)

With both sides evaluated at z = −pm, we obtain Km as

Km = (z + pm)Y (z)
∣∣∣
z=−pm

(4.31)

In general, Y (z) will contain terms with real constants and terms with complex conjugate residues, and may
be written as

Y (z) =
K1

z + p1
+

K2

z + p2
+ · · ·+ A1

z + r1
+

A∗1
z + r∗1

+
A2

z + r2
+

A∗2
z + r∗2

+ · · · (4.32)

For a real root, the residue (coefficient) will also be real. For each pair of complex conjugate roots, the
residues will also be complex conjugates, and we thus need compute only one of these.

Repeated Factors

If the denominator of Y (z) contains the repeated term (z + r)k, the partial fraction expansion corresponding
to the repeated terms has the form

Y (z) = (other terms) +
A0

(z + r)k
+

A1

(z + r)k−1
+ · · ·+ Ak−1

z + r
(4.33)

Observe that the constants Aj ascend in index j from 0 to k− 1, whereas the denominators (z + r)n descend
in power n from k to 1. Their evaluation requires (z + r)kY (z) and its derivatives. We successively find

A0 = (z + r)kY (z)
∣∣∣
z=−r

A2 =
1
2!

d2

dz2
[(z + r)kY (z)]

∣∣∣
z=−r

A1 =
d

dz
[(z + r)kY (z)]

∣∣∣
z=−r

An =
1
n!

dn

dzn
[(z + r)kY (z)]

∣∣∣
z=−r

(4.34)

Even though this process allows us to find the coefficients independently of each other, the algebra in finding
the derivatives can become tedious if the multiplicity k of the roots exceeds 2 or 3. Table 4.3 lists some
transform pairs useful for inversion of the z-transform of causal signals by partial fractions.
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Table 4.3 Inverse z-Transform of Partial Fraction Expansion (PFE) Terms

Entry PFE Term X(z) Causal Signal x[n], n ≥ 0

Note 1: Where applicable, K̄ = Kejφ = C + jD

Note 2: For anti-causal sequences, we get the signal −x[n]u[−n− 1] where x[n] is as listed.

1
z

z − α
αn

2
z

(z − α)2
nα(n−1)

3
z

(z − α)N+1
(N > 1) n(n− 1) · · · (n−N + 1)

N !
α(n−N)

4 zK̄

z − αejΩ
+

zK̄∗

z − αe−jΩ
2Kαn cos(nΩ + φ) = 2αn[C cos(nΩ)−D sin(nΩ)]

5 zK̄

(z − αejΩ)2
+

zK̄∗

(z − αe−jΩ)2
2Knαn−1 cos[(n− 1)Ω + φ]

6 zK̄

(z − αejΩ)N+1
+

zK̄∗

(z − αe−jΩ)N+1 2K
n(n− 1) · · · (n−N + 1)

N !
α(n−N) cos[(n−N)Ω + φ]

REVIEW PANEL 4.16
Partial Fraction Expansion of Y (z) = X(z)/z Depends on Its Poles (Denominator Roots)

Distinct roots: Y (z) =
N∏

m=1

P (z)
z + pm

=
N∑

m=1

Km

z + pm
, where Km = (z + pm)Y (z)|z=−pm

Repeated: 1

(z + r)k

N∏
m=1

P (z)

z + pm
=

N∑
m=1

Km

z + pm
+

k−1∑
n=0

An

(z + r)k−n
, where An =

1

n!

dn

dzn
[(z + r)kY (z)]

∣∣∣
z=−r

EXAMPLE 4.12 (Inverse Transform of Right-Sided Signals)

(a) (Non-Repeated Roots) We find the causal inverse of X(z) =
1

(z − 0.25)(z − 0.5)
.

We first form Y (z) =
X(z)

z
, and expand Y (z) into partial fractions, to obtain

Y (z) =
X(z)

z
=

1
z(z − 0.25)(z − 0.5)

=
8
z
− 16

z − 0.25
+

8
z − 0.5

Multiplying through by z, we get

X(z) = 8− 16z

z − 0.25
+

8z

z − 0.5
x[n] = 8δ[n]− 16(0.25)nu[n] + 8(0.5)nu[n]

Its first few samples, x[0] = 0, x[1] = 0, x[2] = 1, and x[3] = 0.75 can be checked by long division.
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Comment: An alternate approach (not recommended) is to expand X(z) itself as

X(z) =
−4

z − 0.25
+

4
z − 0.5

x[n] = −4(0.25)n−1u[n− 1] + 4(0.5)n−1u[n− 1]

Its inverse requires the shifting property. This form is functionally equivalent to the previous case. For
example, we find that x[0] = 0, x[1] = 0, x[2] = 1, and x[3] = 0.25, as before.

(b) (Repeated Roots) We find the inverse of X(z) =
z

(z − 1)2(z − 2)
.

We obtain Y (z) =
X(z)

z
, and set up its partial fraction expansion as

Y (z) =
X(z)

z
=

1
(z − 1)2(z − 2)

=
A

z − 2
+

K0

(z − 1)2
+

K1

z − 1

The constants in the partial fraction expansion are

A =
1

(z − 1)2

∣∣∣∣
z=2

= 1 K0 =
1

z − 2

∣∣∣∣
z=1

= −1 K1 =
d

dz

[
1

z − 2

]∣∣∣∣
z=1

= −1

Substituting into Y (z) and multiplying through by z, we get

X(z) =
z

z − 2
− z

(z − 1)2
− z

z − 1
x[n] = (2)nu[n]− nu[n]− u[n] = (2n − n− 1)u[n]

The first few values x[0] = 0, x[1] = 0, x[2] = 1, x[3] = 4, and x[4] = 11 can be easily checked by long
division.

(c) (Complex Roots) We find the causal inverse of X(z) =
z2 − 3z

(z − 2)(z2 − 2z + 2)
.

We set up the partial fraction expansion for Y (z) =
X(z)

z
as

Y (z) =
X(z)

z
=

z − 3
(z − 2)(z − 1− j)(z − 1 + j)

=
A

z − 2
+

K̄

z −√2ejπ/4
+

K̄∗

z −√2e−jπ/4

We evaluate the constants A and K̄, to give

A =
z − 3

z2 − 2z + 2

∣∣∣∣
z=2

= −0.5 K̄ =
z − 3

(z − 2)(z − 1 + j)

∣∣∣∣
z=1+j

= 0.7906e−j71.56◦ = 0.25− j0.75

Multiplying through by z, we get

X(z) =
−0.5z

z − 2
+

zK̄

z −√2ejπ/4
+

zK̄∗

z −√2e−jπ/4

The inverse of the first term is easy. For the remaining pair, we use entry 4 of the table for inversion
of partial fraction forms with α =

√
2, Ω = π

4 , K = 0.7906, φ = −71.56◦, to give

x[n] = −0.5(2)nu[n] + 2(0.7906)(
√

2)n cos(nπ
4 − 71.56◦)u[n]
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With C = 0.25, D = −0.75, this may also be expressed in the alternate form

x[n] = −0.5(2)nu[n] + 2(
√

2)n[0.25 cos(nπ
4 ) + 0.75 sin(nπ

4 )]u[n]

(d) (Inverse Transform of Quadratic Forms) We find the causal inverse of X(z) =
z

z2 + 4
.

The numerator suggests the generic form x[n] = Bαn sin(nΩ)u[n] because

Bαn sin(nΩ)u[n] ⇐ zt ⇒ Bzα sinΩ
z2 − 2zα cosΩ + α2

Comparing denominators, we find that α2 = 4 and 2α cosΩ = 0. Thus, α = ±2. If we pick α = 2, we
get 4 cos Ω = 0 or cos Ω = 0 and thus Ω = π/2.

Finally, comparing numerators, Bzα sinΩ = z or B = 0.5. Thus,

x[n] = Bαn sin(nΩ)u[n] = 0.5(2)n sin(nπ/2)u[n]

(e) (Inverse Transform of Quadratic Forms) Let X(z) =
z2 + z

z2 − 2z + 4
.

The quadratic numerator suggests the form x[n] = Aαn cos(nΩ)u[n] + Bαn sin(nΩ)u[n] because

Aαn cos(nΩ)u[n] ⇐ zt ⇒ A(z2 − zα cosΩ)
z2 − 2zα cosΩ + α2

Bαn sin(nΩ)u[n] ⇐ zt ⇒ Bzα sinΩ
z2 − 2zα cosΩ + α2

Comparing denominators, we find α2 = 4 and 2α cosΩ = 2. Thus, α = ±2. If we pick α = 2, we get
cosΩ = 0.5 or Ω = π/3.

Now, A(z2 − zα cosΩ) = A(z2 − z) and Bzα sinΩ = Bz
√

3. We express the numerator of X(z) as
a sum of these forms to get z2 + z = (z2 − z) + 2z = (z2 − z) + (2/

√
3)(z

√
3) (with A = 1 and

B = 2/
√

3 = 1.1547). Thus,

x[n] = Aαn cos(nΩ)u[n] + Bαn sin(nΩ)u[n] = (2)n cos(nπ
3 )u[n] + 1.1547(2)n sin(nπ

3 )u[n]

The formal approach is to use partial fractions. With z2 − 2z + 4 = (z − 2ejπ/3)(z − 2e−jπ/3), we find

X(z)
z

=
z + 1

z2 − 2z + 4
=

K̄

z − 2ejπ/3
+

K̄∗

z − 2e−jπ/3

We find K̄ = 0.7638e−j49.11◦ = 0.5− j0.5774 and entry 4 of the table for inversion of partial fraction
forms (with α = 2, Ω = π

3 ) gives

x[n] = 1.5275(2)n cos(nπ
3 − 49.11◦)u[n] = (2)n cos(nπ

3 )u[n] + 1.1547(2)n sin(nπ
3 )u[n]

The second form of this result is identical to what was found earlier.
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4.8.4 The ROC and Inversion

We have so far been assuming right-sided sequences when no ROC is given. Only when the ROC is specified
do we obtain a unique sequence from X(z). Sometimes, the ROC may be specified indirectly by requiring
the system to be stable, for example. Since the ROC of a stable system includes the unit circle, this gives
us a clue to the type of inverse we require.

EXAMPLE 4.13 (Inversion and the ROC)
(a) Find all possible inverse transforms of X(z) =

z

(z − 0.25)(z − 0.5)
.

The partial fraction expansion of Y (z) =
X(z)

z
leads to X(z) =

−4z

z − 0.25
+

4z

z − 0.5
.

1. If the ROC is |z| > 0.5, x[n] is causal and stable, and we obtain

x[n] = −4(0.25)nu[n] + 4(0.5)nu[n]

2. If the ROC is |z| < 0.25, x[n] is anti-causal and unstable, and we obtain

x[n] = 4(0.25)nu[−n− 1]− 4(0.5)nu[−n− 1]

3. If the ROC is 0.25 < |z| < 0.5, x[n] is two-sided and unstable. This ROC is valid only if −4z
z−0.25

describes a causal sequence (ROC |z| > 0.25), and 4z
z−0.5 describes an anti-causal sequence (ROC

|z| < 0.5). With this in mind, we obtain

x[n] = −4(0.25)nu[n]︸ ︷︷ ︸
ROC: |z|>0.25

−4(0.5)nu[−n− 1]︸ ︷︷ ︸
ROC: |z|<0.5

(b) Find the unique inverse transforms of the following, assuming each system is stable:

H1(z) =
z

(z − 0.4)(z + 0.6)
H2(z) =

2.5z

(z − 0.5)(z + 2)
H3(z) =

z

(z − 2)(z + 3)

Partial fraction expansion leads to

H1(z) =
z

z − 0.4
− z

z + 0.6
H2(z) =

z

z − 0.5
− z

z + 2
H3(z) =

z

z − 2
− z

z + 3

To find the appropriate inverse, the key is to recognize that the ROC must include the unit circle.
Looking at the pole locations, we see that

H1(z) is stable if its ROC is |z| > 0.6.

Its inverse is causal, with h1[n] = (0.4)nu[n]− (−0.6)nu[n].

H2(z) is stable if its ROC is 0.5 < |z| < 2.

Its inverse is two-sided, with h2[n] = (0.5)nu[n] + (−2)nu[−n− 1].

H3(z) is stable if its ROC is |z| < 2.

Its inverse is anti-causal, with h3[n] = −(2)nu[−n− 1] + (−3)nu[−n− 1].
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4.9 The One-Sided z-Transform
The one-sided z-transform is particularly useful in the analysis of causal LTI systems. It is defined by

X(z) =
∞∑

k=0

x[k]z−k (one-sided z-transform) (4.35)

The lower limit of zero in the summation implies that the one-sided z-transform of an arbitrary signal x[n]
and its causal version x[n]u[n] are identical. Most of the properties of the two-sided z-transform also apply
to the one-sided version.

REVIEW PANEL 4.17
The Scaling, Times-n, and Convolution Properties of the One-Sided z-Transform

αnx[n] ⇐ zt ⇒ X(z/α) nx[n] ⇐ zt ⇒ −z
dX(z)

dz
x[n] ? h[n] ⇐ zt ⇒ X(z)H(z)

However, the shifting property of the two-sided z-transform must be modified for use with right-sided (or
causal) signals that are nonzero for n < 0. We also develop new properties, such as the initial value theorem
and the final value theorem, that are unique to the one-sided z-transform. These properties are summarized
in Table 4.4.

Table 4.4 Properties Unique to the One-Sided z-Transform

Property Signal One-Sided z-Transform

Right shift x[n− 1] z−1X(z) + x[−1]

x[n− 2] z−2X(z) + z−1x[−1] + x[−2]

x[n−N ] z−NX(z) + z−(N−1)x[−1] + z−(N−2)x[−2] + · · ·+ x[−N ]

Left shift x[n + 1] zX(z)− zx[0]

x[n + 2] z2X(z)− z2x[0]− zx[1]

x[n + N ] zNX(z)− zNx[0]− zN−1x[1]− · · · − zx[N − 1]

Switched

periodic
xp[n]u[n]

X1(z)
1− z−N

(x1[n] is the first period of xp[n])

Initial value theorem: x[0] = lim
z→∞

X(z)

Final value theorem: lim
n→∞

x[n] = lim
z→1

(z − 1)X(z)

EXAMPLE 4.14 (Properties of the One-Sided z-Transform)
(a) Find the z-transform of x[n] = n(4)0.5nu[n].

We rewrite this as x[n] = n(2)nu[n] to get X(z) =
2z

(z − 2)2
.
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(b) Find the z-transform of x[n] = (2)n+1u[n− 1].

We rewrite this as x[n] = (2)2(2)n−1u[n− 1] to get X(z) =
z−1(4z)
z − 2

=
4

z − 2
.

(c) Let x[n] ⇐ zt ⇒ 4z

(z + 0.5)2
= X(z), with ROC: |z| > 0.5. Find the z-transform of the signals

h[n] = nx[n] and y[n] = x[n] ? x[n].

By the times-n property, we have H(z) = −zX ′(z), which gives

H(z) = −z

[ −8z

(z + 0.5)3
+

4
(z + 0.5)2

]
=

4z2 − 2z

(z + 0.5)3

By the convolution property, Y (z) = X2(z) =
16z2

(z + 0.5)4
.

(d) Let (4)nu[n] ⇐ zt ⇒ X(z). Find the signal corresponding to F (z) = X2(z) and G(z) = X(2z).

By the convolution property, f [n] = (4)nu[n] ? (4)nu[n] = (n + 1)(4)nu[n].

By the scaling property, G(z) = X(2z) = X(z/0.5) corresponds to the signal g[n] = (0.5)nx[n].

Thus, we have g[n] = (2)nu[n].

4.9.1 The Right-Shift Property of the One-Sided z-Transform

The one-sided z-transform of a sequence x[n] and its causal version x[n]u[n] are identical. A right shift of
x[n] brings samples for n < 0 into the range n ≥ 0, as illustrated in Figure 4.9, and leads to the z-transforms

x[n− 1] ⇐ zt ⇒ z−1X(z) + x[−1] x[n− 2] ⇐ zt ⇒ z−2X(z) + z−1x[−1] + x[−2] (4.36)

x [−1]
x [−2]

[n]x

1 2−2 −1

x [−1]

x [−1] z−1X(z)

−1 1 2 3

[n−1]x

x [−2] x [−2]
x [−1]

x [−2] z−2X(z)x [−1]z−1

2 3 41

[n−2]xShift Shift

right right

X(z)

n

+

n

+ +

n

Figure 4.9 Illustrating the right-shift property of the one-sided z-transform

These results generalize to

x[n−N ] ⇐ zt ⇒ z−NX(z) + z−(N−1)x[−1] + z−(N−2)x[−2] + · · ·+ x[−N ] (4.37)

For causal signals (for which x[n] = 0, n < 0), this result reduces to x[n−N ] ⇐ zt ⇒ z−NX(z).
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REVIEW PANEL 4.18
The Right-Shift Property of the One-Sided z-Transform

x[n− 1] ⇐ zt ⇒ z−1X(z) + x[−1] x[n− 2] ⇐ zt ⇒ z−2X(z) + z−1x[−1] + x[−2]

4.9.2 The Left-Shift Property of the One-Sided z-Transform

A left shift of x[n]u[n] moves samples for n ≥ 0 into the range n < 0, and these samples no longer contribute
to the z-transform of the causal portion, as illustrated in Figure 4.10.

x [0]
x [1]

[n]x

x [1]x [0]

x [0]z

+1n[ ]x

x [0]
x [1]

x [1]z z 2X(z)

nx +2[ ]

z 2x [0]

Shift Shift

left left

X(z)

2 31
n

+

−1 1 2
n

zX(z)−

1−2 −1
n

− +−

Figure 4.10 Illustrating the left-shift property of the one-sided z-transform

This leads to the z-transforms

x[n + 1] ⇐ zt ⇒ zX(z)− zx[0] x[n + 2] ⇐ zt ⇒ z2X(z)− z2x[0]− zx[1] (4.38)

By successively shifting x[n]u[n] to the left, we obtain the general relation

X[n + N ] ⇐ zt ⇒ zNX(z)− zNx[0]− zN−1x[1]− · · · − zx[N − 1] (4.39)

The right-shift and left-shift properties of the one-sided z-transform form the basis for finding the response
of causal LTI systems with nonzero initial conditions.

REVIEW PANEL 4.19
The Left-Shift Property of the One-Sided z-Transform

x[n + 1] ⇐ zt ⇒ zX(z)− zx[0] x[n + 2] ⇐ zt ⇒ z2X(z)− z2x[0]− zx[1]

EXAMPLE 4.15 (Using the Shift Properties)
(a) Using the right-shift property and superposition, we obtain the z-transform of the first difference of

x[n] as

y[n] = x[n]− x[n− 1] ⇐ zt ⇒ X(z)− z−1X(z) = (1− z−1)X(z)

(b) Consider the signal x[n] = αn. Its one-sided z-transform is identical to that of αnu[n] and equals
X(z) = z/(z − α). If y[n] = x[n− 1], the right-shift property, with N = 1, yields

Y (z) = z−1X(z) + x[−1] =
1

z − α
+ α−1

The additional term α−1 arises because x[n] is not causal.
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(c) (The Left-Shift Property)

Consider the shifted step u[n + 1]. Its one-sided z-transform should be identical to that of u[n] since
u[n] and u[n + 1] are identical for n ≥ 0.

With u[n] ⇐ zt ⇒ z/(z − 1) and u[0] = 1, the left-shift property gives

u[n + 1] ⇐ zt ⇒ zU(z)− zu[0] =
z2

z − 1
− z =

z

z − 1

(d) With y[n] = αnu[n] ⇐ zt ⇒ z/(z − α) and y[0] = 1, the left-shift property gives

y[n + 1] = αn+1u[n + 1] ⇐ zt ⇒ z

[
z

z − α

]
− z =

αz

z − α

4.9.3 The Initial Value Theorem and Final Value Theorem

The initial value theorem and final value theorem apply only to the one-sided z-transform and the proper
part X(z) of a rational z-transform.

REVIEW PANEL 4.20
The Initial Value Theorem and Final Value Theorem for the One-Sided z-Transform
Initial value: x[0] = lim

z→∞
X(z) Final value: x[∞] = lim

z→1
(z − 1)X(z)

Final value theorem is meaningful only if: Poles of (z − 1)X(z) are inside unit circle.

With X(z) described by x[0] + x[1]z−1 + x[2]z−2 + · · ·, it should be obvious that only x[0] survives as
z →∞ and the initial value equals x[0] = lim

z→∞
X(z).

To find the final value, we evaluate (z−1)X(z) at z = 1. It yields meaningful results only when the poles
of (z − 1)X(z) have magnitudes smaller than unity (lie within the unit circle in the z-plane). As a result:

1. x[∞] = 0 if all poles of X(z) lie within the unit circle (since x[n] will then contain only exponentially
damped terms).

2. x[∞] is constant if there is a single pole at z = 1 (since x[n] will then include a step).

3. x[∞] is indeterminate if there are complex conjugate poles on the unit circle (since x[n] will then
include sinusoids). The final value theorem can yield absurd results if used in this case.

EXAMPLE 4.16 (Initial and Final Value Theorems)

Let X(z) =
z(z − 2)

(z − 1)(z − 0.5)
. We then find

The initial value: x[0] = lim
z→∞

X(z) = lim
z→∞

1− 2z−1

(1− z−1)(1− 0.5z−1)
= 1

The final value: lim
n→∞

x[n] = lim
z→1

(z − 1)X(z) = lim
z→1

z(z − 2)
z − 0.5

= −2
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4.9.4 The z-Transform of Switched Periodic Signals

Consider a causal signal x[n] = xp[n]u[n] where xp[n] is periodic with period N . If x1[n] describes the first
period of x[n] and has the z-transform X1(z), then the z-transform of x[n] can be found as the superposition
of the z-transform of the shifted versions of x1[n]:

X(z) = X1(z) + z−NX1(z) + z−2NX1(z) + · · · = X1(z)[1 + z−N + z−2N + · · ·] (4.40)

Expressing the geometric series in closed form, we obtain

X(z) =
1

1− z−N
X1(z) =

zN

zN − 1
X1(z) (4.41)

REVIEW PANEL 4.21
The z-Transform of a Switched Periodic Signal xp[n]u[n] with Period N

X(z) =
X1(z)

1− z−N
(X1(z) is z-transform of first period x1[n])

EXAMPLE 4.17 (z-Transform of Switched Periodic Signals)

(a) Find the z-transform of a periodic signal whose first period is x1[n] = {⇓0, 1, −2}.
The period of x[n] is N = 3. We then find the z-transform of x[n] as

X(z) =
X1(z)

1− z−N
=

z−1 − 2z−2

1− z−3

(b) Find the z-transform of x[n] = sin(0.5nπ)u[n].

The digital frequency of x[n] is F = 1
4 . So N = 4. The first period of x[n] is x1[n] = {⇓0, 1, 0, −1}.

The z-transform of x[n] is thus

X(z) =
X1(z)

1− z−N
=

z−1 − z−3

1− z−4
=

z−1

1 + z−2

(c) Find the causal signal corresponding to X(z) =
2 + z−1

1− z−3
.

Comparing with the z-transform for a switched periodic signal, we recognize N = 3 and X1(z) = 2+z−1.

Thus, the first period of x[n] is {⇓2, 1, 0}.

(d) Find the causal signal corresponding to X(z) =
z−1

1 + z−3
.

We first rewrite X(z) as

X(z) =
z−1(1− z−3)

(1 + z−3)(1− z−3)
=

z−1 − z−4

1− z−6

Comparing with the z-transform for a switched periodic signal, we recognize the period as N = 6, and

X1(z) = z−1 − z−4. Thus, the first period of x[n] is {⇓0, 1, 0, 0, −1, 0}.
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4.10 The z-Transform and System Analysis
The one-sided z-transform serves as a useful tool for analyzing LTI systems described by difference equations
or transfer functions. The key is of course that the solution methods are much simpler in the transformed
domain because convolution transforms to a multiplication. Naturally, the time-domain response requires
an inverse transformation, a penalty exacted by all methods in the transformed domain.

4.10.1 Systems Described by Difference Equations

For a system described by a difference equation, the solution is based on transformation of the difference
equation using the shift property and incorporating the effect of initial conditions (if present), and subsequent
inverse transformation using partial fractions to obtain the time-domain response. The response may be
separated into its zero-state component (due only to the input), and zero-input component (due to the
initial conditions), in the z-domain itself.

REVIEW PANEL 4.22
Solving Difference Equations Using the z-Transform
Relaxed system: Transform the difference equation, then find Y (z) and its inverse.
Not relaxed: Transform using the shift property and initial conditions. Find Y (z) and its inverse.

EXAMPLE 4.18 (Solution of Difference Equations)

(a) Solve the difference equation y[n]− 0.5y[n− 1] = 2(0.25)nu[n] with y[−1] = −2.

Transformation using the right-shift property yields

Y (z)− 0.5(z−1Y (z) + y[−1]) =
2z

z − 0.25
Y (z) =

z(z + 0.25)
(z − 0.25)(z − 0.5)

We use partial fractions to get
Y (z)

z
=

z + 0.25
(z − 0.25)(z − 0.5)

=
−2

z − 0.25
+

3
z − 0.5

.

Multiplying through by z and taking inverse transforms, we obtain

Y (z) =
−2z

z − 0.25
+

3z

z − 0.5
y[n] = [−2(0.25)n + 3(0.5)n]u[n]

(b) Let y[n + 1]− 0.5y[n] = 2(0.25)n+1u[n + 1] with y[−1] = −2.

We transform the difference equation using the left-shift property. The solution will require y[0].
By recursion, with n = −1, we obtain y[0]− 0.5y[−1] = 2 or y[0] = 2 + 0.5y[−1] = 2− 1 = 1.

Let x[n] = (0.25)nu[n]. Then, by the left-shift property x[n+1] ⇐ zt ⇒ zX(z)−zx[0] (with x[0] = 1),

(0.25)n+1u[n + 1] ⇐ zt ⇒ z

[
z

z − 0.25

]
− z =

0.25z

z − 0.25

We now transform the difference equation using the left-shift property:

zY (z)− zy[0]− 0.5Y (z) =
0.5z

z − 0.25
Y (z) =

z(z + 0.25)
(z − 0.25)(z − 0.5)
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This is identical to the result of part (a), and thus y[n] = −2(0.25)n + 3(0.5)n, as before.

Comment: By time invariance, this represents the same system as in part (a).

(c) (Zero-Input and Zero-State Response) Let y[n]− 0.5y[n− 1] = 2(0.25)nu[n], with y[−1] = −2.

Upon transformation using the right-shift property, we obtain

Y (z)− 0.5(z−1Y (z) + y[−1]) =
2z

z − 0.25
(1− 0.5z−1)Y (z) =

2z

z − 0.25
− 1

1. Zero-state response: For the zero-state response, we assume zero initial conditions to obtain

(1− 0.5z−1)Yzs(z) =
2z

z − 0.25
Yzs(z) =

2z2

(z − 0.25)(z − 0.5)

Upon partial fraction expansion, we obtain

Yzs(z)
z

=
2z

(z − 0.25)(z − 0.5)
= − 2

z − 0.25
+

4
z − 0.5

Multiplying through by z and inverse transforming the result, we get

Yzs(z) =
−2z

z − 0.25
+

4z

z − 0.5
yzs[n] = −2(0.25)nu[n] + 4(0.5)nu[n]

2. Zero-input response: For the zero-input response, we assume zero input (the right-hand side)
and use the right-shift property to get

Yzi(z)− 0.5(z−1Yzi(z) + y[−1]) = 0 Yzi(z) =
−z

z − 0.5

This is easily inverted to give yzi[n] = −( 1
2 )nu[n].

3. Total response: We find the total response as

y[n] = yzs[n] + yzi[n] = −2(0.25)nu[n] + 3(0.5)nu[n]

4.10.2 Systems Described by the Transfer Function

The response Y (z) of a relaxed LTI system equals the product X(z)H(z) of the transformed input and the
transfer function. It is often much easier to work with the transfer function description of a linear system.
If we let H(z) = N(z)/D(z), the zero-state response Y (z) of a relaxed system to an input X(z) may be
expressed as Y (z) = X(z)H(z) = X(z)N(z)/D(z). If the system is not relaxed, the initial conditions result
in an additional contribution, the zero-input response Yzi(z), which may be written as Yzi(z) = Nzi(z)/D(z).
To evaluate Yzi(z), we first set up the system difference equation, and then use the shift property to transform
it in the presence of initial conditions.

REVIEW PANEL 4.23
System Analysis Using the Transfer Function
Zero-state response: Evaluate Y (z) = X(z)H(z) and take inverse transform.
Zero-input response: Find difference equation. Transform this using the shift property and initial
conditions. Find the response in the z-domain and take inverse transform.
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EXAMPLE 4.19 (System Response from the Transfer Function)

(a) (A Relaxed System) Let H(z) =
3z

z − 0.4
. To find the zero-state response of this system to

x[n] = (0.4)nu[n], we first transform the input to X(z) =
z

z − 0.4
. Then,

Y (z) = H(z)X(z) =
3z2

(z − 0.4)2
y[n] = 3(n + 1)(0.4)nu[n]

(b) (Step Response) Let H(z) =
4z

z − 0.5
.

To find its step response, we let x[n] = u[n]. Then X(z) =
z

z − 1
, and the output equals

Y (z) = H(z)X(z) =
(

4z

z − 0.5

)(
z

z − 1

)
=

4z2

(z − 1)(z − 0.5)

Using partial fraction expansion of Y (z)/z, we obtain

Y (z)
z

=
4z

(z − 1)(z − 0.5)
=

8
z − 1

− 4
z − 0.5

Thus,

Y (z) =
8z

z − 1
− 4z

z − 0.5
y[n] = 8u[n]− 4(0.5)nu[n]

The first term in y[n] is the steady-state response, which can be found much more easily as described
shortly.

(c) (A Second-Order System) Let H(z) =
z2

z2 − 1
6z − 1

6

. Let the input be x[n] = 4u[n] and the initial

conditions be y[−1] = 0, y[−2] = 12.

1. Zero-state and zero-input response: The zero-state response is found directly from H(z) as

Yzs(z) = X(z)H(z) =
4z3

(z2 − 1
6z − 1

6 )(z − 1)
=

4z3

(z − 1
2 )(z + 1

3 )(z − 1)

Partial fractions of Yzs(z)/z and inverse transformation give

Yzs(z) =
−2.4z

z − 1
2

+
0.4z

z + 1
3

+
6z

z − 1
yzs[n] = −2.4( 1

2 )nu[n] + 0.4(− 1
3 )nu[n] + 6u[n]

To find the zero-input response, we first set up the difference equation. We start with

H(z) =
Y (z)
X(z)

=
z2

z2 − 1
6z − 1

6

, or (z2 − 1
6z − 1

6 )Y (z) = z2X(z). This gives

(1− 1
6z−1 − 1

6z−2)Y (z) = X(z) y[n]− 1
6y[n− 1]− 1

6y[n− 2] = x[n]
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We now set the right-hand side to zero (for zero input) and transform this equation, using the
right-shift property, to obtain the zero-input response from

Yzi(z)− 1
6 (z−1Yzi(z) + y[−1])− 1

6 (z−2Yzi(z) + z−1y[−1] + y[−2]) = 0

With y[−1] = 0 and y[−2] = 12, this simplifies to

Yzi(z) =
2z2

z2 − 1
6z − 1

6

=
2z2

(z − 1
2 )(z + 1

3 )

Partial fraction expansion of Yzi(z)/z and inverse transformation lead to

Yzi(z) =
1.2z

z − 1
2

+
0.8z

z + 1
3

yzi[n] = 1.2( 1
2 )nu[n] + 0.8(− 1

3 )nu[n]

Finally, we find the total response as

y[n] = yzs[n] + yzi[n] = −1.2( 1
2 )nu[n] + 1.2(− 1

3 )nu[n] + 6u[n]

2. Natural and forced response: By inspection, the natural and forced components of y[n] are

yN [n] = −1.2( 1
2 )nu[n] + 1.2(− 1

3 )nu[n] yF [n] = 6u[n]

Comment: Alternatively, we could transform the system difference equation to obtain

Y (z)− 1
6 (z−1Y (z) + y[−1])− 1

6 (z−2Y (z) + z−1y[−1] + y[−2]) =
4z

z − 1

This simplifies to

Y (z) =
z2(6z − 2)

(z − 1)(z2 − 1
6z − 1

6 )
=
−1.2z

z − 1
2

+
1.2z

z + 1
3

+
6z

z − 1

The steady-state response corresponds to terms of the form z/(z − 1) (step functions). For this
example, YF (z) = 6z

z−1 and yF [n] = 6u[n].
Since the poles of (z− 1)Y (z) lie within the unit circle, yF [n] can also be found by the final value
theorem:

yF [n] = lim
z→1

(z − 1)Y (z) = lim
z→1

z2(6z − 2)
z2 − 1

6z − 1
6

= 6

4.10.3 Forced and Steady-State Response from the Transfer Function

In the time domain, the forced response is found by assuming that it has the same form as the input
and then satisfying the difference equation describing the LTI system. If the LTI system is described
by its transfer function H(z), the forced response may also be found by evaluating H(z) at the complex
frequency z0 of the input. For example, the input x[n] = Kαn cos(nΩ + φ) has a complex frequency given
by z0 = αejΩ. Once H(z0) = H0e

jφ0 is evaluated as a complex quantity, the forced response equals
yF [n] = KH0α

n cos(nΩ+φ+φ0). For multiple inputs, we simply add the forced response due to each input.
For dc and sinusoidal inputs (with α = 1), the forced response is also called the steady-state response.
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EXAMPLE 4.20 (Finding the Forced Response)

(a) Find the steady-state response of the a filter described by H(z) =
z

z − 0.4
to the input x[n] =

cos(0.6nπ).

The complex input frequency is z0 = ej0.6π. We evaluate H(z) at z = z0 to give

H(z)
∣∣∣
z=ej0.6π

=
ej0.6π

ej0.6π − 0.4
= 0.843e−j18.7◦

The steady-state response is thus yF [n] = 0.843 cos(0.6nπ − 18.7◦).

(b) Find the forced response of the system H(z) =
z

z − 0.4
to the input x[n] = 5(0.6)n.

The complex input frequency is z0 = 0.6. We evaluate H(z) at z = 0.6 to give

H(z)
∣∣∣
z=0.6

=
0.6

0.6− 0.4
= 3

The forced response is thus yF [n] = (3)(5)(0.6)n = 15(0.6)n.

(c) Find the forced response of the system H(z) =
3z2

z2 − z + 1
. The input contains two components and

is given by x[n] = x1[n] + x2[n] = (0.6)n + 2(0.4)n cos(0.5nπ − 100◦).

The forced response will be the sum of the forced component y1[n] due to x1[n] and y2[n] due to x2[n].

The complex input frequency of x1[n] is z0 = 0.6. We evaluate H(z) at z = 0.6 to give

H(z)
∣∣∣
z=0.6

=
3(0.36)

0.36− 0.6 + 1
= 1.4211

So, y1[n] = 1.4211(0.6)n.

The complex input frequency of x2[n] is z0 = 0.4ej0.5π = j0.4. We evaluate H(z) at z = j0.4 to give

H(z)
∣∣∣
z=j0.4

=
3(−0.16)

−0.16− j0.4 + 1
= 0.5159ej154.54◦

So, y2[n] = (0.5159)(2)(0.4)n cos(0.5nπ − 100◦ + 154.54◦) = 1.0318(0.4)n cos(0.5nπ + 54.54◦).

Finally, by superposition, the complete forced response is

yF [n] = y1[n] + y2[n] = 1.4211(0.6)n + 1.0318(0.4)n cos(0.5nπ + 54.54◦)
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CHAPTER 4 PROBLEMS

4.1 (The z-Transform of Sequences) Use the defining relation to find the z-transform and its region
of convergence for the following:

(a) x[n] = {1, 2,
⇓
3, 2, 1} (b) y[n] = {−1, 2,

⇓
0, −2, 1}

(c) f [n] = {⇓1, 1, 1, 1} (d) g[n] = {1, 1, −1, − ⇓
1}

4.2 (z-Transforms) Find the z-transforms and specify the ROC for the following:

(a) x[n] = (2)n+2u[n] (b) y[n] = n(2)2nu[n]
(c) f [n] = (2)n+2u[n− 1] (d) g[n] = n(2)n+2u[n− 1]
(e) p[n] = (n + 1)(2)nu[n] (f) q[n] = (n− 1)(2)n+2u[n]

[Hints and Suggestions: For (a), (2)n+2 = (2)2(2)n = 4(2)n. For (b), (2)2n = ((22)n = (4)n. For
(e), use superposition with (n + 1)(2)n = n(2)n + (2)n.]

4.3 (The z-Transform of Sequences) Find the z-transform and its ROC for the following:

(a) x[n] = u[n + 2]− u[n− 2]
(b) y[n] = (0.5)n(u[n + 2]− u[n− 2])
(c) f [n] = (0.5)|n|(u[n + 2]− u[n− 2])

[Hints and Suggestions: First write each signal as a sequence of sample values.]

4.4 (z-Transforms) Find the z-transforms and specify the ROC for the following:

(a) x[n] = (0.5)2nu[n] (b) x[n] = n(0.5)2nu[n] (c) (0.5)−nu[n]
(d) (0.5)nu[−n] (e) (0.5)nu[−n− 1] (f) (0.5)−nu[−n− 1]

[Hints and Suggestions: For (a)–(b), (0.5)2n = (0.52)n = (0.25)n. For (c) and (f), (0.5)−n = (2)n.
For (d), fold the results of (c).]

4.5 (z-Transforms) Find the z-transforms and specify the ROC for the following:

(a) x[n] = cos(nπ
4 − π

4 )u[n] (b) y[n] = (0.5)n cos(nπ
4 )u[n]

(c) f [n] = (0.5)n cos(nπ
4 − π

4 )u[n] (d) g[n] = ( 1
3 )n(u[n]− u[n− 4])

(e) p[n] = n(0.5)n cos(nπ
4 )u[n] (f) q[n] = [(0.5)n − (−0.5)n]nu[n]

[Hints and Suggestions: For (a), cos(0.25nπ − 0.25π) = 0.7071 cos(0.25nπ) + 0.7071 sin(0.25nπ).
For (b), start with the transform of cos(0.25nπ) and use properties. For (c), start with the result for
(a) and use the times-αn property. For (e) start with the result for (b) and use the times-n property.]

4.6 (Two-Sided z-Transform) Find the z-transform X(z) and its ROC for the following:

(a) x[n] = u[−n− 1] (b) y[n] = (0.5)−nu[−n− 1]
(c) f [n] = (0.5)|n| (d) g[n] = u[−n− 1] + ( 1

3 )nu[n]
(e) p[n] = (0.5)−nu[−n− 1] + ( 1

3 )nu[n] (f) q[n] = (0.5)|n| + (−0.5)|n|

[Hints and Suggestions: For (a), start with the transform of u[n− 1] and use the folding property.
For (c), note that (0.5)|n| = (0.5)nu[n] + (0.5)−nu[−n] − δ[n]. For the ROC, note that (c)–(f) are
two-sided signals.]
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4.7 (The ROC) The transfer function of a system is H(z). What can you say about the ROC of H(z)
for the following cases?
(a) h[n] is a causal signal.
(b) The system is stable.
(c) The system is stable, and h[n] is a causal signal.

4.8 (Poles, Zeros, and the ROC) The transfer function of a system is H(z). What can you say about
the poles and zeros of H(z) for the following cases?
(a) The system is stable.
(b) The system is causal and stable.
(c) The system is an FIR filter with real coefficients.
(d) The system is a linear-phase FIR filter with real coefficients.
(e) The system is a causal, linear-phase FIR filter with real coefficients.

4.9 (z-Transforms and ROC) Consider the signal x[n] = αnu[n] + βnu[−n − 1]. Find its z-transform
X(z). Will X(z) represent a valid transform for the following cases?

(a) α > β (b) α < β (c) α = β

4.10 (z-Transforms) Find the z-transforms (if they exist) and specify their ROC.

(a) x[n] = (2)−nu[n] + 2nu[−n] (b) y[n] = (0.25)nu[n] + 3nu[−n]
(c) f [n] = (0.5)nu[n] + 2nu[−n− 1] (d) g[n] = (2)nu[n] + (0.5)nu[−n− 1]
(e) p[n] = cos(0.5nπ)u[n] (f) q[n] = cos(0.5nπ + 0.25π)u[n]
(g) s[n] = ejnπu[n] (h) t[n] = ejnπ/2u[n]
(i) v[n] = ejnπ/4u[n] (j) w[n] = (

√
j)nu[n] + (

√
j)−nu[n]

[Hints and Suggestions: Parts (a)–(c) are two-sided signals. Part (d) does not have a valid transform.
For (f), cos(0.5nπ + 0.25nπ) = 0.7071[cos(0.5nπ)− sin(0.5nπ)]. For part (j), use j = ejπ/2 and Euler’s
relation to express w[n] as a sinusoid.]

4.11 (z-Transforms and ROC) The causal signal x[n] = αnu[n] has the transform X(z) whose ROC is
|z| > α. Find the ROC of the z-transform of the following:
(a) y[n] = x[n− 5]
(b) p[n] = x[n + 5]
(c) g[n] = x[−n]
(d) h[n] = (−1)nx[n]
(e) p[n] = αnx[n]

4.12 (z-Transforms and ROC) The anti-causal signal x[n] = −αnu[−n − 1] has the transform X(z)
whose ROC is |z| < α. Find the ROC of the z-transform of the following:
(a) y[n] = x[n− 5]
(b) p[n] = x[n + 5]
(c) g[n] = x[−n]
(d) h[n] = (−1)nx[n]
(e) r[n] = αnx[n]

4.13 (z-Transforms) Find the z-transform X(z) of x[n] = α|n| and specify the region of convergence of
X(z). Consider the cases |α| < 1 and |α| > 1 separately.
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4.14 (Properties) Let x[n] = nu[n]. Find X(z), using the following:

(a) The defining relation for the z-transform
(b) The times-n property
(c) The convolution result u[n] ? u[n] = (n + 1)u[n + 1] and the shifting property
(d) The convolution result u[n] ? u[n] = (n + 1)u[n] and superposition

4.15 (Properties) The z-transform of x[n] is X(z) =
4z

(z + 0.5)2
, |z| > 0.5. Find the z-transform of the

following using properties and specify the region of convergence.

(a) y[n] = x[n− 2] (b) d[n] = (2)nx[n] (c) f [n] = nx[n]
(d) g[n] = (2)nnx[n] (e) h[n] = n2x[n] (f) p[n] = [n− 2]x[n]
(g) q[n] = x[−n] (h) r[n] = x[n]− x[n− 1] (i) s[n] = x[n] ? x[n]

[Hints and Suggestions: For (d)–(f), use the results of (c).]

4.16 (Properties) The z-transform of x[n] = (2)nu[n] is X(z). Use properties to find the time signal
corresponding to the following:

(a) Y (z) = X(2z) (b) F (z) = X(1/z) (c) G(z) = zX ′(z)

(d) H(z) =
zX(z)
z − 1

(e) D(z) =
zX(2z)
z − 1

(f) P (z) = z−1X(z)

(g) Q(z) = z−2X(2z) (h) R(z) = X2(z) (i) S(z) = X(−z)

[Hints and Suggestions: Parts(d)–(e) require the summation property.]

4.17 (Properties) The z-transform of a signal x[n] is X(z) =
4z

(z + 0.5)2
, |z| > 0.5. Find the z-transform

and its ROC for the following.

(a) y[n] = (−1)nx[n] (b) f [n] = x[2n]
(c) g[n] = (j)nx[n] (d) h[n] = x[n + 1] + x[n− 1]

[Hints and Suggestions: For part (b), find x[n] first and use it to get f [n] = x[2n] and F (z). For
the rest, use properties.]

4.18 (Properties) The z-transform of the signal x[n] = (2)nu[n] is X(z). Use properties to find the time
signal corresponding to the following.

(a) F (z) = X(−z) (b) G(z) = X(1/z) (c) H(z) = zX ′(−z)

4.19 (Properties) The z-transform of a causal signal x[n] is X(z) =
z

z − 0.4
.

(a) Let xe[n] be the even part of x[n]. Without computing x[n] or xe[n], find Xe(z) and its ROC.
(b) Confirm your answer by first computing xe[n] from x[n] and then finding its z-transform.
(c) Can you find Xe(z) if x[n] represents an anti-causal signal? Explain.

4.20 (Properties) Find the z-transform of x[n] = rect(n/2N) = u[n + N ]− u[n−N − 1]. Use this result
to evaluate the z-transform of y[n] = tri(n/M) where M = 2N + 1.

[Hints and Suggestions: Recall that rect(n/2N) ? rect(n/2N) = Mtri(n/M) where M = 2N + 1
and use the convolution property of z-transforms.]
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4.21 (Poles and Zeros) Make a rough sketch of the pole and zero locations of the z-transform of each of
the signals shown in Figure P4.21.

Signal 1

n

Signal 2

n

Signal 3

n

Signal 4

n

Signal 5

n

Figure P4.21 Figure for Problem 4.21

[Hints and Suggestions: Signal 1 has only three samples. Signals 2 and 3 appear to be exponentials.
Signal 4 is a ramp. Signal 5 appears to be a sinusoid.]

4.22 (Pole-Zero Patterns and Symmetry) Plot the pole-zero patterns for each X(z). Which of these
correspond to symmetric sequences?

(a) X(z) =
z2 + z − 1

z
(b) X(z) =

z4 + 2z3 + 3z2 + 2z + 1
z2

(c) X(z) =
z4 − z3 + z − 1

z2
(d) X(z) =

(z2 − 1)(z2 + 1)
z2

[Hints and Suggestions: If a sequence is symmetric about its midpoint, the zeros exhibit conjugate
reciprocal symmetry. Also, X(z) = ±X(1/z) for symmetry about the origin.]

4.23 (Realization) Sketch the direct form I, direct form II, and transposed realization for each filter.

(a) y[n]− 1
6y[n− 1]− 1

2y[n− 2] = 3x[n] (b) H(z) =
z − 2

z2 − 0.25

(c) y[n]− 3y[n− 1] + 2y[n− 2] = 2x[n− 2] (d) H(z) =
2z2 + z − 2

z2 − 1

[Hints and Suggestions: For each part, start with the generic second-order realization and delete
any signal paths corresponding to missing coefficients.]

4.24 (Realization) Find the transfer function and difference equation for each system realization shown
in Figure P4.24.

[n]y[n]x

−1z

System 1

4

3

+ + +
Σ

+

2

Σ

[n]y[n]x

−1z

−1z System 2

2

4

3

+ + +
Σ

−
Σ

Figure P4.24 Filter realizations for Problem 4.24

[Hints and Suggestions: Compare with the generic first-order and second-order realizations to get
the difference equations and transfer functions.]

4.25 (Realization) Find the transfer function and difference equation for each digital filter realization
shown in Figure P4.25.
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−1z

−1z

−1z

[n]y

[n]x

[n]x

[n ]y

−1z

−1z

Filter 1

2

3

4

+−

−
+

Filter 2

4

+
+

−
3 2

Σ

Σ Σ

Figure P4.25 Filter realizations for Problem 4.25

[Hints and Suggestions: For (a), compare with a generic third-order direct form II realization. For
(b), compare with a generic second-order transposed realization.]

4.26 (Inverse Systems) Find the transfer function of the inverse systems for each of the following. Which
inverse systems are causal? Which inverse systems are stable?

(a) H(z) =
z2 + 0.1
z2 − 0.2

(b) H(z) =
z + 2

z2 + 0.25
(c) y[n]− 0.5y[n− 1] = x[n] + 2x[n− 1] (d) h[n] = n(2)nu[n]

[Hints and Suggestions: For parts (c) and (d), set up H(z) and find HI(z) = 1/H(z).]

4.27 (Causality and Stability) How can you identify whether a system is a causal and/or stable system
from the following information?
(a) Its impulse response h[n]
(b) Its transfer function H(z) and its region of convergence
(c) Its system difference equation
(d) Its pole-zero plot

4.28 (Switched Periodic Signals) Find the z-transform of each switched periodic signal.

(a) x[n] = {⇓2, 1, 3, 0, . . .}, N = 4 (b) y[n] = cos(nπ/2)u[n]

(c) f [n] = {⇓0, 1, 1, 0, 0, . . .}, N = 5 (d) g[n] = cos(0.5nπ + 0.25π)u[n]

[Hints and Suggestions: For parts (b) and (d), the period is N = 4. Write out the sequence for the
first period to find the transform of the periodic signal.]

4.29 (Inverse Transforms of Polynomials) Find the inverse z-transform of the following:
(a) X(z) = 2− z−1 + 3z−3 (b) Y (z) = (2 + z−1)3

(c) F (z) = (z − z−1)2 (d) G(z) = (z − z−1)2(2 + z)

[Hints and Suggestions: For parts (b)–(d), expand the transform first.]

4.30 (Inverse Transforms by Long Division) Assuming right-sided signals, determine the ROC of the
following z-transforms and compute the inverse transform by long division up to n = 3.

(a) X(z) =
(z + 1)2

z2 + 1
(b) Y (z) =

z + 1
z2 + 2

(c) F (z) =
1

z2 − 0.25
(d) G(z) =

1− z−2

2 + z−1

[Hints and Suggestions: Before dividing, set up the numerator and denominator as polynomials in
descending powers of z and obtain the quotient in powers of z−1.]
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4.31 (Inverse Transforms by Partial Fractions) Assuming right-sided signals, determine the ROC of
the following z-transforms and compute the inverse transform using partial fractions.

(a) X(z) =
z

(z + 1)(z + 2)
(b) Y (z) =

16
(z − 2)(z + 2)

(c) F (z) =
3z2

(z2 − 1.5z + 0.5)(z − 0.25)
(d) G(z) =

3z3

(z2 − 1.5z + 0.5)(z − 0.25)

(e) P (z) =
3z4

(z2 − 1.5z + 0.5)(z − 0.25)
(f) Q(z) =

4z

(z + 1)2(z + 3)

[Hints and Suggestions: For part (e), P (z) is not proper. Use long division to get P (z) = 3z+P1(z)
and use partial fractions for P1(z). Only part (f) has repeated roots.]

4.32 (Inverse Transforms by Partial Fractions) Assuming right-sided signals, determine the ROC of
the following z-transforms and compute the inverse transform using partial fractions.

(a) X(z) =
z

(z2 + z + 0.25)(z + 1)
(b) Y (z) =

z

(z2 + z + 0.25)(z + 0.5)

(c) F (z) =
1

(z2 + z + 0.25)(z + 1)
(d) G(z) =

z

(z2 + z + 0.5)(z + 1)

(e) P (z) =
z3

(z2 − z + 0.5)(z − 1)
(f) Q(z) =

z2

(z2 + z + 0.5)(z + 1)

(g) S(z) =
2z

(z2 − 0.25)2
(h) T (z) =

2
(z2 − 0.25)2

(i) v(z) =
z

(z2 + 0.25)2
(j) w(z) =

z2

(z2 + 0.25)2

[Hints and Suggestions: Parts (a)–(c) and (g)–(h) have real repeated roots. Parts (d)–(f) have
complex roots. Parts (i)–(j) have complex repeated roots.]

4.33 (Inverse Transforms by Long Division) Assuming left-sided signals, determine the ROC of the
following z-transforms and compute the inverse transform by long division for n = −1,−2,−3.

(a) X(z) =
z2 + 4z

z2 − z + 2
(b) Y (z) =

z

(z + 1)2

(c) F (z) =
z2

z3 + z − 1
(d) G(z) =

z3 + 1
z2 + 1

[Hints and Suggestions: Before dividing, set up the numerator and denominator as polynomials in
ascending powers of z and obtain the quotient in ascending powers of z.]

4.34 (The ROC and Inverse Transforms) Let X(z) =
z2 + 5z

z2 − 2z − 3
. Which of the following describe a

valid ROC for X(z)? For each valid ROC, find x[n], using partial fractions.

(a) |z| < 1 (b) |z| > 3 (c) 1 < |z| < 3 (d) |z| < 1 and |z| > 3

4.35 (Inverse Transforms) For each X(z), find the signal x[n] for each valid ROC.

(a) X(z) =
z

(z + 0.4)(z − 0.6)
(b) X(z) =

3z2

z2 − 1.5z + 0.5

4.36 (Inverse Transforms) Consider the stable system described by y[n] + αy[n− 1] = x[n] + x[n− 1].
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(a) Find its causal impulse response h[n] and specify the range of α and the ROC of H(z).
(b) Find its anti-causal impulse response h[n] and specify the range of α and the ROC of H(z).

4.37 (Inverse Transforms) Each X(z) below represents the z-transform of a switched periodic signal
xp[n]u[n]. Find one period x1[n] of each signal. You may verify your results using inverse transformation
by long division.

(a) X(z) =
1

1− z−3
(b) X(z) =

1
1 + z−3

(c) X(z) =
1 + 2z−1

1− z−4
(d) X(z) =

3 + 2z−1

1 + z−4

[Hints and Suggestions: Set up X(z) in the form
X1(z)

1− z−N
in order to identify the period N and

the sequence representing the first period x1[n]. For part(b), for example, multiply the numerator and
denominator by (1− z−3).]

4.38 (Inverse Transforms) Let H(z) = z−2(z − 0.5)(2z + 4)(1− z−2).
(a) Find its inverse transform h[n].
(b) Does h[n] show symmetry about the origin?
(c) Does h[n] describe a linear phase sequence?

[Hints and Suggestions: Expand H(z) first.]

4.39 (Inverse Transforms) Let H(z) =
z

(z − 0.5)(z + 2)
.

(a) Find its impulse response h[n] if it is known that this represents a stable system. Is this system
causal?

(b) Find its impulse response h[n] if it is known that this represents a causal system. Is this system
stable?

4.40 (Inverse Transforms) Let H(z) =
z

(z − 0.5)(z + 2)
. Establish the ROC of H(z), find its impulse

response h[n], and investigate its stability for the following:

(a) A causal h[n] (b) An anti-causal h[n] (c) A two-sided h[n]

4.41 (Convolution) Simplify each convolution using the z-transform. You may verify your results by using
time-domain convolution.

(a) y[n] = {− ⇓
1, 2, 0, 3} ? {2, 0,

⇓
3} (b) y[n] = {−1, 2,

⇓
0,−2, 1} ? {−1, 2,

⇓
0,−2, 1}

(c) y[n] = (2)nu[n] ? (2)nu[n] (d) y[n] = (2)nu[n] ? (3)nu[n]

4.42 (Periodic Signal Generators) Find the transfer function H(z) of a filter whose impulse response

is a periodic sequence with first period x[n] = {⇓1, 2, 3, 4, 6, 7, 8}. Find the difference equation and
sketch a realization for this filter.

4.43 (Periodic Signal Generators) It is required to design a filter whose impulse response is a pure
cosine at a frequency of F0 = 0.25 and unit amplitude.
(a) What is the impulse response of this filter?
(b) Find the transfer function H(z) and the difference equation of this filter.
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(c) Sketch a realization for this filter.
(d) Find the step response of this filter.

4.44 (Initial Value and Final Value Theorems) Assuming right-sided signals, find the initial and final
signal values without using inverse transforms.

(a) X(z) =
2

z2 + 1
6z − 1

6

(b) Y (z) =
2z2

z2 + z + 0.25

(c) F (z) =
2z

z2 + z − 1
(d) G(z) =

2z2 + 0.25
(z − 1)(z + 0.25)

(e) P (z) =
z + 0.25
z2 + 0.25

(f) Q(z) =
2z + 1

z2 − 0.5z − 0.5
[Hints and Suggestions: To find the initial value, set up each transform as the ratio of polynomials
in z−1. The final value is nonzero only if there is a single pole at z = 1 and all other poles are inside
the unit circle. For part (c), the final value theorem does not hold.]

4.45 (System Representation) Find the transfer function and difference equation for the following causal
systems. Investigate their stability, using each system representation.

(a) h[n] = (2)nu[n] (b) h[n] = [1− ( 1
3 )n]u[n]

(c) h[n] = n( 1
3 )nu[n] (d) h[n] = 0.5δ[n]

(e) h[n] = δ[n]− (− 1
3 )nu[n] (f) h[n] = [(2)n − (3)n]u[n]

[Hints and Suggestions: To find the difference equation, set up H(z) as a ratio of polynomials in
z−1, equate with Y (z)/X(z), cross multiply and find the inverse transform.]

4.46 (System Representation) Find the difference equation of the following causal systems. Investigate
the stability of each system.

(a) y[n] + 3y[n− 1] + 2y[n− 2] = 2x[n] + 3x[n− 1]
(b) y[n] + 4y[n− 1] + 4y[n− 2] = 2x[n] + 3x[n− 1]
(c) y[n] = 0.2x[n]
(d) y[n] = x[n] + x[n− 1] + x[n− 2]

4.47 (System Representation) Set up the system difference equations of the following causal systems.
Investigate the stability of each system.

(a) H(z) =
3

z + 2
(b) H(z) =

1 + 2z + z2

(1 + z2)(4 + z2)

(c) H(z) =
2

1 + z
− 1

2 + z
(d) H(z) =

2z

1 + z
− 1

2 + z

[Hints and Suggestions: Set up H(z) as a ratio of polynomials in z−1, equate with Y (z)/X(z), cross
multiply and find the inverse transform.]

4.48 (Zero-State Response) Find the zero-state response of the following systems, using the z-transform.

(a) y[n]− 0.5y[n− 1] = 2u[n] (b) y[n]− 0.4y[n− 1] = (0.5)nu[n]
(c) y[n]− 0.4y[n− 1] = (0.4)nu[n] (d) y[n]− 0.5y[n− 1] = cos(nπ/2)

[Hints and Suggestions: Use the z-transform to get Y (z) assuming zero initial conditions. Then
find the inverse transform by partial fractions.]
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4.49 (System Response) Consider the system y[n] − 0.5y[n − 1] = x[n]. Find its zero-state response to
the following inputs, using the z-transform.

(a) x[n] = u[n] (b) x[n] = (0.5)nu[n] (c) x[n] = cos(nπ/2)u[n]
(d) x[n] = (−1)nu[n] (e) x[n] = (j)nu[n] (f) x[n] = (

√
j)nu[n] + (

√
j)−nu[n]

[Hints and Suggestions: In part (e), y[n] will be complex because the input is complex. In part (f),
using j = ejπ/2 and Euler’s relation, x[n] simplifies to a sinusoid. Therefore, the forced response yF [n]
is easy to find. Then, y[n] = K(0.5)n + yF [n] with y[−1] = 0.]

4.50 (Zero-State Response) Find the zero-state response of the following systems, using the z-transform.

(a) y[n]− 1.1y[n− 1] + 0.3y[n− 2] = 2u[n] (b) y[n]− 0.9y[n− 1] + 0.2y[n− 2] = (0.5)n

(c) y[n] + 0.7y[n− 1] + 0.1y[n− 2] = (0.5)n (d) y[n]− 0.25y[n− 2] = cos(nπ/2)

4.51 (System Response) Let y[n]− 0.5y[n− 1] = x[n], with y[−1] = −1. Find the response y[n] of this
system for the following inputs, using the z-transform.

(a) x[n] = 2u[n] (b) x[n] = (0.25)nu[n] (c) x[n] = n(0.25)nu[n]
(d) x[n] = (0.5)nu[n] (e) x[n] = n(0.5)n (f) x[n] = (0.5)n cos(0.5nπ)

4.52 (System Response) Find the response y[n] of the following systems, using the z-transform.

(a) y[n] + 0.1y[n− 1]− 0.3y[n− 2] = 2u[n] y[−1] = 0 y[−2] = 0
(b) y[n]− 0.9y[n− 1] + 0.2y[n− 2] = (0.5)n y[−1] = 1 y[−2] = −4
(c) y[n] + 0.7y[n− 1] + 0.1y[n− 2] = (0.5)n y[−1] = 0 y[−2] = 3
(d) y[n]− 0.25y[n− 2] = (0.4)n y[−1] = 0 y[−2] = 3
(e) y[n]− 0.25y[n− 2] = (0.5)n y[−1] = 0 y[−2] = 0

4.53 (System Response) For each system, evaluate the response y[n], using the z-transform.

(a) y[n]− 0.4y[n− 1] = x[n] x[n] = (0.5)nu[n] y[−1] = 0
(b) y[n]− 0.4y[n− 1] = 2x[n] + x[n− 1] x[n] = (0.5)nu[n] y[−1] = 0
(c) y[n]− 0.4y[n− 1] = 2x[n] + x[n− 1] x[n] = (0.5)nu[n] y[−1] = 5
(d) y[n] + 0.5y[n− 1] = x[n]− x[n− 1] x[n] = (0.5)nu[n] y[−1] = 2
(e) y[n] + 0.5y[n− 1] = x[n]− x[n− 1] x[n] = (−0.5)nu[n] y[−1] = 0

4.54 (System Response) Find the response y[n] of the following systems, using the z-transform.

(a) y[n]− 0.4y[n− 1] = 2(0.5)n−1u[n− 1] y[−1] = 2
(b) y[n]− 0.4y[n− 1] = (0.4)nu[n] + 2(0.5)n−1u[n− 1] y[−1] = 2.5
(c) y[n]− 0.4y[n− 1] = n(0.5)nu[n] + 2(0.5)n−1u[n− 1] y[−1] = 2.5

4.55 (System Response) The transfer function of a system is H(z) =
2z(z − 1)

4 + 4z + z2
. Find its response

y[n] for the following inputs.

(a) x[n] = δ[n] (b) x[n] = 2δ[n] + δ[n + 1] (c) x[n] = u[n]
(d) x[n] = (2)nu[n] (e) x[n] = nu[n] (f) x[n] = cos(nπ

2 )u[n]

4.56 (System Analysis) Find the impulse response h[n] and the step response s[n] of the causal digital
filters described by

(a) H(z) =
4z

z − 0.5
(b) y[n] + 0.5y[n− 1] = 6x[n]

[Hints and Suggestions: Note that y[−1] = 0. Choose x[n] = u[n] to compute the step response.]
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4.57 (System Analysis) Find the zero-state response, zero-input response, and total response for each of
the following systems, using the z-transform.

(a) y[n]− 1
4y[n− 1] = ( 1

3 )nu[n] y[−1] = 8
(b) y[n] + 1.5y[n− 1] + 0.5y[n− 2] = (−0.5)nu[n] y[−1] = 2 y[−2] = −4
(c) y[n] + y[n− 1] + 0.25y[n− 2] = 4(0.5)nu[n] y[−1] = 6 y[−2] = −12
(d) y[n]− y[n− 1] + 0.5y[n− 2] = (0.5)nu[n] y[−1] = −1 y[−2] = −2

4.58 (Steady-State Response) The transfer function of a system is H(z) =
2z(z − 1)
z2 + 0.25

. Find its steady-

state response for the following inputs.

(a) x[n] = 4u[n] (b) x[n] = 4 cos(nπ
2 + π

4 )u[n]
(c) x[n] = cos(nπ

2 ) + sin(nπ
2 ) (d) x[n] = 4 cos(nπ

4 ) + 4 sin(nπ
2 )

[Hints and Suggestions: For parts (c)–(d), add the forced response due to each component.]

4.59 (Steady-State Response) The filter H(z) = A
z − α

z − 0.5α
is designed to have a steady-state response

of unity if the input is u[n] and a steady-state response of zero if the input is cos(nπ). What are the
values of A and α?

4.60 (Steady-State Response) The filter H(z) = A
z − α

z − 0.5α
is designed to have a steady-state response

of zero if the input is u[n] and a steady-state response of unity if the input is cos(nπ). What are the
values of A and α?

4.61 (System Response) Find the response of the following filters to the unit step x[n] = u[n], and to
the alternating unit step x[n] = (−1)nu[n].

(a) h[n] = δ[n]− δ[n− 1] (differencing operation)

(b) h[n] = {
⇓

0.5, 0.5} (2-point average)

(c) h[n] = 1
N

N−1∑

k=0

δ[n− k], N = 3 (moving average)

(d) h[n] = 2
N(N+1)

N−1∑

k=0

(N − k)δ[n− k], N = 3 (weighted moving average)

(e) y[n]− αy[n− 1] = (1− α)x[n], α = N−1
N+1 , N = 3 (exponential average)

4.62 (Steady-State Response) Consider the following DSP system:

x(t) −→ sampler −→ digital filter H(z) −→ ideal LPF −→ y(t)

The input is x(t) = 2 + cos(10πt) + cos(20πt). The sampler is ideal and operates at a sampling rate

of S Hz. The digital filter is described by H(z) = 0.1S
z − 1

z − 0.5
. The ideal lowpass filter has a cutoff

frequency of 0.5S Hz.

(a) What is the smallest value of S that will prevent aliasing?
(b) Let S = 40 Hz and H(z) = 1 + z−2 + z−4. What is the steady-state output y(t)?

(c) Let S = 40 Hz and H(z) =
z2 + 1

z4 + 0.5
. What is the steady-state output y(t)?

4.63 (Response of Digital Filters) Consider the averaging filter y[n] = 0.5x[n] + x[n− 1] + 0.5x[n− 2].
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(a) Find its impulse response h[n] and its transfer function H(z).

(b) Find its response y[n] to the input x[n] = {⇓2, 4, 6, 8}.
(c) Find its response y[n] to the input x[n] = cos(nπ

3 ).
(d) Find its response y[n] to the input x[n] = cos(nπ

3 ) + sin( 2nπ
3 ) + cos(nπ

2 ).

[Hints and Suggestions: For part (b), use convolution. For part (c), find the steady-state response.
For part (d), add the steady state response due to each component.]

4.64 (Transfer Function) The input to a digital filter is x[n] = {⇓1, 0.5}, and the response is described
by y[n] = δ[n + 1]− 2δ[n]− δ[n− 1].

(a) What is the filter transfer function H(z)?
(b) Does H(z) describe an IIR filter or FIR filter?
(c) Is the filter stable? Is it causal?

4.65 (System Analysis) Consider a system whose impulse response is h[n] = (0.5)nu[n]. Find its response
to the following inputs.

(a) x[n] = δ[n] (b) x[n] = u[n]
(c) x[n] = (0.25)nu[n] (d) x[n] = (0.5)nu[n]
(e) x[n] = cos(nπ) (f) x[n] = cos(nπ)u[n]
(g) x[n] = cos(0.5nπ) (h) x[n] = cos(0.5nπ)u[n]

[Hints and Suggestions: For parts (e) and (g), the output is the steady-state response yss[n]. For
parts (f) and (h) use y[n] = K(0.5)n + yss[n] with y[−1] = 0 and find K.]

4.66 (System Analysis) Consider a system whose impulse response is h[n] = n(0.5)nu[n]. What input
x[n] will result in each of the following steady-state outputs?

(a) y[n] = cos(0.5nπ)
(b) y[n] = 2 + cos(0.5nπ)
(c) y[n] = cos2(0.25nπ)

[Hints and Suggestions: For (a), assume x[n] = A cos(0.5nπ) + B sin(0.5nπ) and compare the
resulting steady state response with y[n]. For (b), assume x[n] = C +A cos(0.5nπ)+B sin(0.5nπ). For
(c), note that cos2 α = 0.5 + 0.5 cos 2α.]

4.67 (System Response) Consider the system y[n] − 0.25y[n − 2] = x[n]. Find its response y[n], using
z-transforms, for the following inputs.

(a) x[n] = 2δ[n− 1] + u[n] (b) x[n] = 2 + cos(0.5nπ)

[Hints and Suggestions: For part (a), find Y (z) and its inverse transform by partial fractions. For
part (b), add the steady state response for each component of the input.]

4.68 (System Response) The signal x[n] = (0.5)nu[n] is applied to a digital filter, and the response is
y[n]. Find the filter transfer function and state whether it is an IIR or FIR filter and whether it is a
linear-phase filter if the system output y[n] is the following:

(a) y[n] = δ[n] + 0.5δ[n− 1]
(b) y[n] = δ[n]− 2δ[n− 1]
(c) y[n] = (−0.5)nu[n]
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4.69 (Interconnected Systems) Consider two systems whose impulse response is h1[n] = δ[n]+αδ[n−1]
and h2[n] = (0.5)nu[n]. Find the overall system transfer function and the response y[n] of the overall
system to the input x[n] = (0.5)nu[n], and to the input x[n] = cos(nπ) if

(a) The two systems are connected in parallel with α = 0.5.
(b) The two systems are connected in parallel with α = −0.5.
(c) The two systems are connected in cascade with α = 0.5.
(d) The two systems are connected in cascade with α = −0.5.

4.70 (Interconnected Systems) The transfer function H(z) of the cascade of two systems H1(z) and

H2(z) is known to be H(z) =
z2 + 0.25
z2 − 0.25

. It is also known that the unit step response of the first system

is [2− (0.5)n]u[n]. Determine H1(z) and H2(z).

4.71 (Feedback Systems) Consider the filter realization of Figure P4.71. Find the transfer function H(z)
of the overall system if the impulse response of the filter is given by

(a) h[n] = δ[n]− δ[n− 1]. (b) h[n] = 0.5δ[n] + 0.5δ[n− 1].

Find the difference equation relating y[n] and x[n] from H(z) and investigate the stability of the overall
system.

[n]x [n]y

−1z

+ Σ
−

Filter

Figure P4.71 Filter realization for Problem 4.71

4.72 (Systems in Cascade) Consider the following system:

x[n] −→ H1(z) −→ H2(z) −→ H3(z) −→ y[n]

It is known that h1[n] = 0.5(0.4)nu[n], H2(z) =
A(z + α)

z + β
, and h3[n] = δ[n] + 0.5δ[n − 1]. Choose A,

α, and β such that the overall system represents an identity system.

[Hints and Suggestions: Set up H1(z)H2(z)H3(z) = 1 to find the constants.]

4.73 (Recursive and Non-Recursive Filters) Consider two filters described by

(1) h[n] = {⇓1, 1, 1} (2) y[n]− y[n− 1] = x[n]− x[n− 3]

(a) Find the transfer function of each filter.
(b) Find the response of each filter to the input x[n] = cos(nπ).
(c) Are the two filters related in any way?

4.74 (Feedback Compensation) Feedback compensation is often used to stabilize unstable filters. It is

required to stabilize the unstable filter G(z) =
6

z − 1.2
by putting it in the forward path of a negative

feedback system. The feedback block has the form H(z) =
α

z − β
.

(a) What values of α and β are required for the overall system to have two poles at z = 0.4 and
z = 0.6? What is the overall transfer function and impulse response?
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(b) What values of α and β are required for the overall system to have both poles at z = 0.6? What is
the overall transfer function and impulse response? How does the double pole affect the impulse
response?

[Hints and Suggestions: For the negative feedback system, the overall transfer function is given by
T (z) = G(z)

1+G(z)H(z) .]

4.75 (Recursive Forms of FIR Filters) An FIR filter may always be recast in recursive form by the
simple expedient of including poles and zeros at identical locations. This is equivalent to multiplying
the transfer function numerator and denominator by identical factors. For example, the filter H(z) =
1 − z−1 is FIR but if we multiply the numerator and denominator by the identical term 1 + z−1, the
new filter and its difference equation become

HN (z) =
(1− z−1)(1 + z−1)

1 + z−1
=

1− z−2

1 + z−1
y[n] + y[n− 1] = x[n]− x[n− 2]

The difference equation can be implemented recursively. Find two different recursive difference equa-
tions (with different orders) for each of the following filters.

(a) h[n] = {1,
⇓
2, 1}

(b) H(z) =
z2 − 2z + 1

z2

(c) y[n] = x[n]− x[n− 2]

[Hints and Suggestions: Set up H(z) and multiply both numerator and denominator by identical
polynomials in z (linear, quadratic etc). Use this to find the recursive difference equation.]

COMPUTATION AND DESIGN

4.76 (System Response in Symbolic Form) The Matlab based routine sysresp2 (on the author’s
website) returns the system response in symbolic form. Obtain the response of the following filters and
plot the response for 0 ≤ n ≤ 30.

(a) The step response of y[n]− 0.5y[n− 1] = x[n]
(b) The impulse response of y[n]− 0.5y[n− 1] = x[n]
(c) The zero-state response of y[n]− 0.5y[n− 1] = (0.5)nu[n]
(d) The complete response of y[n]− 0.5y[n− 1] = (0.5)nu[n], y[−1] = −4
(e) The complete response of y[n] + y[n− 1] + 0.5y[n− 2] = (0.5)nu[n], y[−1] = −4, y[−2] = 3

4.77 (Steady-State Response in Symbolic Form) The Matlab based routine ssresp (on the author’s
website) yields a symbolic expression for the steady-state response to sinusoidal inputs. Find the
steady-state response to the input x[n] = 2 cos(0.2nπ − π

3 ) for each of the following systems and plot
the results over 0 ≤ n ≤ 50.

(a) y[n]− 0.5y[n− 1] = x[n]
(b) y[n] + y[n− 1] + 0.5y[n− 2] = 3x[n]
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Chapter 5

FREQUENCY DOMAIN
ANALYSIS

5.0 Scope and Objectives
This chapter develops the discrete-time Fourier transform (DTFT) as an analysis tool in the frequency
domain description of discrete-time signals and systems. It introduces the DTFT as a special case of the
z-transform, develops the properties of the DTFT, and concludes with applications of the DTFT to system
analysis and signal processing.

5.1 The DTFT from the z-Transform
The z-transform describes a discrete-time signal as a sum of weighted harmonics z−k

X(z) =
∞∑

k=−∞
x[k]z−k =

∞∑

k=−∞
x[k]

(
rej2πF

)−k
(5.1)

where the complex exponential z = rej2πF = rejΩ includes a real weighting factor r. If we let r = 1, we
obtain z = ej2πF = ejΩ and z−k = e−j2πkF = e−jkΩ. The expression for the z-transform then reduces to

X(F ) =
∞∑

k=−∞
x[k]e−j2πkF X(Ω) =

∞∑

k=−∞
x[k]e−jkΩ (5.2)

The quantity X(F ) (or X(Ω) is now a function of the frequency F (or Ω) alone and describes the discrete-
time Fourier transform (DTFT) of x[n] as a sum of weighted harmonics e−j2πkF = e−jkΩ. The DTFT is a
frequency-domain description of a discrete-time signal. The DTFT of x[n] may be viewed as its z-transform
X(z) evaluated for r = 1 (along the unit circle in the z-plane). The DTFT is also called the spectrum
and the DTFT H(F ) of the system impulse response is also referred to as the frequency response or the
frequency domain transfer function.

Note that X(F ) is periodic in F with unit period because X(F ) = X(F + 1)

X(F + 1) =
∞∑

k=−∞
x[k]e−j2πk(F+1) =

∞∑

k=−∞
x[k]e−j2kπe−j2πkF =

∞∑

k=−∞
x[k]e−j2πkF = X(F )

The unit interval −0.5 ≤ F ≤ 0.5 (or 0 ≤ F ≤ 1) defines the principal period or central period.
Similarly, X(Ω) is periodic in Ω with period 2π and represents a scaled (stretched by 2π) version of X(F ).
The principal period of X(Ω) corresponds to the interval −π ≤ Ω ≤ π or 0 ≤ Ω ≤ 2π.
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5.1 The DTFT from the z-Transform 177

The inverse DTFT allows us to recover x[n] from one period of its DTFT and is defined by

x[n] =
∫ 1/2

−1/2

X(F )ej2πnF dF (the F -form) x[n] =
1
2π

∫ π

−π

X(Ω)ejnΩ dΩ (the Ω-form) (5.3)

We will find it convenient to work with the F -form, especially while using the inverse transform relation,
because it rids us of factors of 2π in many situations. The discrete signal x[n] and its discrete-time Fourier
transform X(F ) or X(Ω) form a unique transform pair, and their relationship is shown symbolically using
a double arrow:

x[n] ⇐ dtft ⇒ X(F ) or x[n] ⇐ dtft ⇒ X(Ω) (5.4)

REVIEW PANEL 5.1
The DTFT Is a Frequency-Domain Representation of Discrete-Time Signals
Form DTFT Inverse DTFT

F -form X(F ) =
∞∑

k=−∞
x[k]e−j2πkF x[n] =

∫ 1/2

−1/2

X(F )ej2πnF dF

Ω-form X(Ω) =
∞∑

k=−∞
x[k]e−jkΩ x[n] =

1
2π

∫ π

−π

X(Ω)ejnΩ dΩ

5.1.1 Symmetry of the Spectrum for a Real Signal

The DTFT of a real signal is, in general, complex. A plot of the magnitude of the DTFT against frequency
is called the magnitude spectrum. The magnitude of the frequency response H(F ) is also called the
gain. A plot of the phase of the DTFT against frequency is called the phase spectrum. The phase spectrum
may be restricted to a 360◦ range (−180◦, 180◦). Sometimes, it is more convenient to unwrap the phase (by
adding/subtracting multiples of 360◦) to plot it as a monotonic function. The DTFT X(F ) of a signal x[n]
may be expressed in any of the following ways

X(F ) = R(F ) + jI(F ) = |X(F )|ejφ(F ) = |X(F )| 6 φ(F ) (the F -form) (5.5)

X(Ω) = R(Ω) + jI(Ω) = |X(Ω)|ejφ(Ω) = |X(Ω)| 6 φ(Ω) (the Ω-form) (5.6)

For a real signal, the DTFT shows conjugate symmetry about F = 0 (or Ω = 0) with

X(F ) = X∗(−F ) |X(F )| = |X(−F )| φ(F ) = −φ(−F ) (the F -form) (5.7)

X(Ω) = X∗(−Ω) |X(Ω)| = |X(−Ω)| φ(Ω) = −φ(−Ω) (the Ω-form) (5.8)

Conjugate symmetry of X(F ) about the origin means that its magnitude spectrum displays even symmetry
about the origin and its phase spectrum displays odd symmetry about the origin. It is easy to show that
X(F ) also displays conjugate symmetry about F = 0.5. Since it is periodic, we find it convenient to plot just
one period of X(F ) over the principal period (−0.5 ≤ F ≤ 0.5) with conjugate symmetry about F = 0. We
may even plot X(F ) over (0 ≤ F ≤ 1) with conjugate symmetry about F = 0.5. These ideas are illustrated
in Figure 5.1.

Similarly, X(Ω) shows conjugate symmetry about the origin Ω = 0, and about Ω = π, and may also
be plotted only over its principal period (−π ≤ Ω ≤ π) (with conjugate symmetry about Ω = 0) or over
(0 ≤ Ω ≤ 2π) (with conjugate symmetry about Ω = π). The principal period for each form is illustrated in
Figure 5.2.
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The DTFT is periodic, with period F = 1

−0.5 0.5

Magnitude

−1 1 1.5
F

Phase

F−1
1

1.5
−0.5

0.5

F = 0.5Odd symmetry about

F = 0.5Even symmetry about 

F
0.5 1

Magnitude

F
0.5 1

Phase

F = 0Even symmetry about 

Odd symmetry about F = 0

F
−0.5 0.5

Magnitude

F0.5
−0.5

Phase

Figure 5.1 Illustrating the symmetry in the DTFT spectrum of real signals

Xp(Ω)Ω -form for 

Ω = 2π F

Ω = 2π F

−π 0 π

0 2ππ
Principal period

Xp(F)F-form for 

−0.5 0.50 F

0 0.5 F
1

Principal period

Figure 5.2 Various ways of plotting the DTFT spectrum

REVIEW PANEL 5.2
The DTFT Is Always Periodic and Shows Conjugate Symmetry for Real Signals
F -form: X(F ) is periodic with unit period and conjugate symmetric about F = 0 and F = 0.5.
Ω-form: X(Ω) is periodic with period 2π and conjugate symmetric about Ω = 0 and Ω = π.
Plotting: It is sufficient to plot the DTFT over one period (−0.5 ≤ F ≤ 0.5 or −π ≤ Ω ≤ π).

DRILL PROBLEM 5.1

(a) If X(F )|F=−0.2 = 2ejπ/3, find X(F )|F=0.2, X(F )|F=0.8.
(b) If X(F )|F=−0.2 = 2ejπ/3, find X(F )|F=3.2, X(F )|F=5.8.
Answers: (a) 2e−jπ/3, 2ejπ/3 (b) 2e−jπ/3, 2ejπ/3

If we know the spectrum of a real signal over the half-period 0 < F ≤ 0.5 (or 0 < Ω ≤ π), we can use
conjugate symmetry about the origin to obtain the spectrum for one full period and replicate this to generate
the periodic spectrum. For this reason, the highest useful frequency present in the spectrum is F = 0.5 or
Ω = π. For sampled signals, this also corresponds to an analog frequency of 0.5S Hz (half the sampling
frequency).

If a real signal x[n] is even symmetric about n = 0, its DTFT X(F ) is always real and even symmetric
in F , and has the form X(F ) = A(F ). If a real signal x[n] is odd symmetric, X(F ) is always imaginary
and odd symmetric in F , and has the form X(F ) = ±jA(F ). A real symmetric signal is called a linear-
phase signal. The real quantity A(F ) (which may not always be positive for all frequencies) is called the
amplitude spectrum. For a linear-phase signal, it is much more convenient to plot the amplitude (not
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magnitude) spectrum because its phase is then just zero or just ±90◦ (and uncomplicated by phase jumps
of 180◦ whenever A(F ) changes sign).

REVIEW PANEL 5.3
The DTFT of Real Symmetric Signals Is Purely Real or Purely Imaginary
Even symmetric x[n] ⇐ dtft ⇒ A(F ) or X(Ω) (real)
Odd symmetric x[n] ⇐ dtft ⇒ jA(F ) or jA(Ω) (imaginary)
Plotting: It is convenient to plot just the amplitude spectrum A(F ) or A(Ω).

DRILL PROBLEM 5.2

(a) Let x[n] = {⇓3, 1, 3, 4}. Is X(F ) periodic? Is X(F ) real? Is X(F ) conjugate symmetric?

(b) Let x[n] = {2, 1,
⇓
3, 1, 2}. Is X(F ) periodic? Is X(F ) real? Is X(F ) conjugate symmetric?

(c) Let x[n] = {2, −1,
⇓
0, 1, −2}. Is X(F ) periodic? Is X(F ) real? Is X(F ) conjugate symmetric?

(d) Let x[n] = {2, −j,
⇓
0, j, −2}. Is X(F ) periodic? Is X(F ) real? Is X(F ) conjugate symmetric?

Answers: (a) Yes, no, yes (b) Yes, yes, yes (c) Yes, no, yes (d) Yes, no, no

5.1.2 Some DTFT Pairs

The DTFT is a summation. It always exists if the summand x[n]ej2πnF = x[n]ejnΩ is absolutely integrable.
Since |ej2πnF | = |ejnΩ| = 1, the DTFT of absolutely summable signals always exists. The DTFT of
sinusoids, steps, or constants, which are not absolutely summable, includes impulses (of the continuous
kind). The DTFT of signals that grow exponentially or faster does not exist. A list of DTFT pairs appears
in Table 5.1. Both the F -form and Ω-form are shown. The transforms are identical (with Ω = 2πF ), except
for the extra factors of 2π in the impulsive terms of the Ω-form (in the transform of the constant, the step
function, and the sinusoid). The reason for these extra factors is the scaling property of impulses that says
δ(F ) = δ(Ω/2π) = 2πδ(Ω).

REVIEW PANEL 5.4
Differences Between the F -Form and Ω-Form of the DTFT
If the DTFT contains no impulses: H(F ) and H(Ω) are related by Ω = 2πF .
If the DTFT contains impulses: Replace δ(F ) by 2πδ(Ω) (and 2πF by Ω elsewhere) to get H(Ω).

EXAMPLE 5.1 (DTFT from the Defining Relation)
(a) The DTFT of x[n] = δ[n] follows immediately from the definition as

X(F ) =
∞∑

k=−∞
x[k]e−j2πkF =

∞∑

k=−∞
δ[k]e−j2πkF = 1

(b) The DTFT of the sequence x[n] = {1, 0, 3,−2} also follows from the definition as

X(F ) =
∞∑

k=−∞
x[k]e−j2πkF = 1 + 3e−j4πF − 2e−j6πF
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Table 5.1 Some Useful DTFT Pairs

Note: In all cases, we assume |α| < 1.

Entry Signal x[n] The F -Form: X(F ) The Ω-Form: X(Ω)

1 δ[n] 1 1

2 αnu[n], |α < 1| 1
1− αe−j2πF

1
1− αe−jΩ

3 nαnu[n], |α < 1| αe−j2πF

(1− αe−j2πF )2
αe−jΩ

(1− αe−jΩ)2

4 (n + 1)αnu[n], |α < 1| 1
(1− αe−j2πF )2

1
(1− αe−jΩ)2

5 α|n|, |α < 1 1− α2

1− 2α cos(2πF ) + α2

1− α2

1− 2α cosΩ + α2

6 1 δ(F ) 2πδ(Ω)

7 cos(2nπF0) = cos(nΩ0) 0.5[δ(F + F0) + δ(F − F0)] π[δ(Ω + Ω0) + δ(Ω− Ω0)]

8 sin(2nπF0) = sin(nΩ0) j0.5[δ(F + F0)− δ(F − F0)] jπ[δ(Ω + Ω0)− δ(Ω− Ω0)]

9 2FC sinc(2nFC) =
sin(nΩC)

nπ
rect

( F

2FC

)
rect

( Ω
2ΩC

)

10 u[n] 0.5δ(F ) +
1

1− e−j2πF
πδ(Ω) +

1
1− e−jΩ

In the Ω-form, we have

X(Ω) =
∞∑

k=−∞
x[k]e−jkΩ = 1 + 3e−j2Ω − 2e−j3Ω

For finite sequences, the DTFT can be written just by inspection. Each term is the product of a sample
value at index n and the exponential e−j2πnF (or e−jnΩ).

(c) The DTFT of the exponential signal x[n] = αnu[n] follows from the definition and the closed form for
the resulting geometric series:

X(F ) =
∞∑

k=0

αke−j2πkF =
∞∑

k=0

(
αe−j2πF

)k =
1

1− αe−j2πF
, |α| < 1

The sum converges only if |αe−j2πF | < 1, or |α| < 1 (since |e−j2πF | = 1). In the Ω-form,

c©Ashok Ambardar, September 1, 2003



5.1 The DTFT from the z-Transform 181

X(Ω) =
∞∑

k=0

αke−jkΩ =
∞∑

k=0

(
αe−jΩ

)k =
1

1− αe−jΩ
, |α| < 1

(d) The signal x[n] = u[n] is a limiting form of αnu[n] as α → 1 but must be handled with care, since u[n]
is not absolutely summable. In fact, X(F ) also includes an impulse (now an impulse train due to the
periodic spectrum). Over the principal period,

X(F ) =
1

1− e−j2πF
+ 0.5δ(F ) (F -form) X(Ω) =

1
1− e−jΩ

+ πδ(Ω) (Ω-form)

DRILL PROBLEM 5.3

(a) Let x[n] = {⇓3, 1, 3, 4}. Find X(F ) and compute X(F ) at F = 0.2.

(b) Let x[n] = {2,
⇓
3, 0, 1}. Find X(F ) and compute X(F ) at F = 0 and F = 0.5.

(c) Let x[n] = 8(0.6)nu[n]. Find X(F ) and compute X(F ) at F = 0, 0.25, 0.5.
Answers: (a) 2.38e−j171◦ (b) 6, 2 (c) 20, 6.86e−j31◦ , 5

5.1.3 Relating the z-Transform and DTFT

The DTFT describes a signal as a sum of weighted harmonics, or complex exponentials. However, it cannot
handle exponentially growing signals. The z-transform overcomes these shortcomings by using exponentially
weighted harmonics in its definition. The z-transform may be viewed as a generalization of the DTFT to
complex frequencies.

For absolutely summable signals, the DTFT is simply the one-sided z-transform with z = ej2πF . The
DTFT of signals that are not absolutely summable almost invariably contains impulses. However, for such
signals, the z-transform equals just the non-impulsive portion of the DTFT, with z = ej2πF . In other words,
for absolutely summable signals we can always find their z-transform from the DTFT, but we cannot always
find their DTFT from the z-transform.

REVIEW PANEL 5.5
Relating the z-Transform and the DTFT
From X(z) to DTFT: If x[n] is absolutely summable, simply replace z by ej2πF (or ejΩ).
From DTFT to X(z): Delete impulsive terms in DTFT and replace ej2πF (or ejΩ) by z.

EXAMPLE 5.2 (The z-Transform and DTFT)
(a) The signal x[n] = αnu[n], |α| < 1, is absolutely summable. Its DTFT equals Xp(F ) =

1
1− αe−j2πF

.

We can find the z-transform of x[n] from its DTFT as X(z) =
1

1− αz−1
=

z

z − α
. We can also find

the DTFT from the z-transform by reversing the steps.

(b) The signal x[n] = u[n] is not absolutely summable. Its DTFT is Xp(F ) =
1

1− e−j2πF
+ 0.5δ(F ).

We can find the z-transform of u[n] as the impulsive part in the DTFT, with ej2πF = z, to give

X(z) =
1

1− z−1
=

z

z − 1
. However, we cannot recover the DTFT from its z-transform in this case.

c©Ashok Ambardar, September 1, 2003



182 Chapter 5 Frequency Domain Analysis

5.2 Properties of the DTFT
The properties of the DTFT are summarized in Table 5.2. The proofs of most of the properties follow from
the defining relations if we start with the basic transform pair x[n] ⇐ dtft ⇒ X(F ).

Table 5.2 Properties of the DTFT

Property DT Signal Result (F -Form) Result (Ω-Form)

Folding x[−n] X(−F ) = X∗(F ) X(−Ω) = X∗(Ω)

Time shift x[n−m] e−j2πmF X(F ) e−jΩmX(Ω)

Frequency shift ej2πnF0x[n] X(F − F0) X(Ω− Ω0)

Half-period shift (−1)nx[n] X(F − 0.5) X(Ω− π)

Modulation cos(2πnF0)x[n] 0.5[X(F + F0) + X(F − F0)] 0.5[(Ω + Ω0) + X(Ω− Ω0)]

Convolution x[n] ? y[n] X(F )Y (F ) X(Ω)Y (Ω)

Product x[n]y[n] X(F ) ?©Y (F ) 1
2π [X(Ω) ?©Y (Ω)]

Times-n nx[n] j

2π

dX(F )
dF

j
dX(Ω)

dΩ

Parseval’s relation
∞∑

k=−∞
x2[k] =

∫

1

|X(F )|2 dF =
1
2π

∫

2π

|X(Ω)|2 dΩ

Central ordinates x[0] =
∫

1

X(F ) dF =
1
2π

∫

2π

X(Ω) dΩ X(0) =
∞∑

n=−∞
x[n]

X(F )
∣∣∣∣
F=0.5

= X(Ω)
∣∣∣∣
Ω=π

=
∞∑

n=−∞
(−1)nx[n]

5.2.1 Folding

With x[n] ⇐ dtft ⇒ X(F ), the DTFT of the signal y[n] = x[−n] may be written (using a change of
variable) as

Y (F ) =
∞∑

k=−∞
x[−k]e−j2kπF =︸ ︷︷ ︸

m=−k

∞∑
m=−∞

x[m]ej2mπF = X(−F ) (5.9)

A folding of x[n] to x[−n] results in a folding of X(F ) to X(−F ). For real signals, X(−F ) = X∗(F ) implying
an identical magnitude spectrum and reversed phase.

REVIEW PANEL 5.6
Folding x[n] to x[−n] Results in Folding X(F ) to X(−F )
The magnitude spectrum stays the same, and only the phase is reversed (changes sign).
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DRILL PROBLEM 5.4
(a) Let X(F ) = 4− 2e−j4πF . Find the DTFT of y[n] = x[−n] and compute at F = 0.2.
(b) For a signal x[n], we find X(F )|F=0.2 = 2e−jπ/3. Compute the DTFT of y[n] = x[−n] at F = 0.2, 1.8.
Answers: (a) 4− 2ej4πF , 5.74e−j12◦ (b) 2ejπ/3, 2e−jπ/3.

5.2.2 Time Shift of x[n]

With x[n] ⇐ dtft ⇒ X(F ), the DTFT of the signal y[n] = x[n −m] may be written (using a change of
variable) as

Y (F ) =
∞∑

k=−∞
x[k −m]e−j2kπF =︸ ︷︷ ︸

l=k−m

∞∑

l=−∞
x[l]e−j2(l+m)πF = X(F )e−j2πmF (5.10)

A time shift of x[n] to x[n −m] does not affect the magnitude spectrum. It augments the phase spectrum
by θ(F ) = −2πmF (or θ(Ω) = −mΩ), which varies linearly with frequency.

REVIEW PANEL 5.7
Time Shift Property of the DTFT
x[n−m] ⇐ dtft ⇒ X(F )e−j2πmF or X(Ω)e−jmΩ

A time delay by m adds a linear-phase component (−2πmF or −mΩ) to the phase.

DRILL PROBLEM 5.5
(a) Let X(F ) = 4− 2e−j4πF . If y[n] = x[n− 2], compute Y (F ) at F = 0.2, 0.3.
(b) If g[n] = h[n− 2], find the phase difference 6 G(F )− 6 H(F ) at F = 0.2, 0.4.
Answers: (a) 4e−j4πF − 2e−j8πF , 5.74ej84◦ , 3.88ej43◦ (b) −144◦, −216◦.

5.2.3 Frequency Shift of X(F )

By duality, a frequency shift of X(F ) to X(F − F0) yields the signal x[n]ej2πnF0 .

Half-period Frequency Shift

If X(F ) is shifted by 0.5 to X(F ± 0.5), then x[n] changes to e∓jnπ = (−1)nx[n]. Thus, samples of x[n] at
odd index values (n = ±1,±3,±5, . . .) change sign.

REVIEW PANEL 5.8
Frequency Shift Property of the DTFT
x[n]ej2πnF0 ⇐ dtft ⇒ X(F − F0) or X(Ω− Ω0) (Ω0 = 2πF0)
(−1)nx[n] ⇐ dtft ⇒ X(F ± 0.5) or X(Ω± π)

DRILL PROBLEM 5.6
(a) Let X(F ) = 4− 2e−j4πF . If y[n] = (−1)nx[n], compute Y (F ) at F = 0.2, 0.4.
(b) Let X(F ) = 4− 2e−j4πF . If y[n] = (j)nx[n], compute Y (F ) at F = 0.2, 0.4. [Hint: j = ejπ/2]
Answers: (a) 5.74ej12◦ , 3.88e−j29◦ (b) 2.66e−j26◦ , 4.99ej22◦
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5.2.4 Modulation

Using the frequency-shift property and superposition gives the modulation property

(
ej2πnF0 + e−j2πnF0

2

)
x[n] = cos(2πnF0)x[n] ⇐ dtft ⇒ X(F + F0) + X(F − F0)

2
(5.11)

Modulation results in a spreading of the original spectrum.

REVIEW PANEL 5.9
Modulation by cos(2πnF0): The DTFT Gets Halved, Centered at ±F0, and Added

cos(2πnF0)x[n] ⇐ dtft ⇒ X(F + F0) + X(F − F0)
2

or
X(Ω + Ω0) + X(Ω− Ω0)

2
(Ω0 = 2πF0)

DRILL PROBLEM 5.7
(a) The central period of X(F ) is defined by X(F ) = 1, |F | < 0.1 and zero elsewhere. Consider the signal
y[n] = x[n] cos(0.2nπ). Sketch Y (F ) and evaluate at F = 0, 0.1, 0.3, 0.4.
(b) The central period of X(F ) is defined by X(F ) = 1, |F | < 0.1 and zero elsewhere. Consider the signal
y[n] = x[n] cos(0.5nπ). Sketch Y (F ) and evaluate at F = 0, 0.1, 0.3, 0.4.
(c) The central period of X(F ) is defined by X(F ) = 1, |F | < 0.25 and zero elsewhere. Consider the
signal y[n] = x[n] cos(0.2nπ). Sketch Y (F ) and evaluate at F = 0, 0.1, 0.3, 0.4.
Answers: (a) 0.5, 0.5, 0, 0 (b) 0, 0.5, 0.5, 0 (c) 1, 1, 0.5, 0

5.2.5 Convolution

The regular convolution of discrete-time signals results in the product of their DTFTs. This result follows
from the fact that the DTFT may be regarded as a polynomial in powers of e−j2πF and discrete convolution
corresponds to polynomial multiplication. If two discrete signals are multiplied together, the DTFT of the
product corresponds to the periodic convolution of the individual DTFTs. In other words, multiplication in
one domain corresponds to convolution in the other.

REVIEW PANEL 5.10
Multiplication in One Domain Corresponds to Convolution in the Other
x[n] ? h[n] ⇐ dtft ⇒ X(F )H(F ) x[n]h[n] ⇐ dtft ⇒ X(F ) ?©H(F ) (the F -form)
x[n] ? h[n] ⇐ dtft ⇒ X(Ω)H(Ω) x[n]h[n] ⇐ dtft ⇒ 1

2π X(Ω) ?©H(Ω) (the Ω-form)

DRILL PROBLEM 5.8
(a) Let X(F ) = 4− 2e−j4πF . If y[n] = x[n] ? x[n], compute Y (F ) at F = 0.2, 0.4.
(b) Let X(F ) = 4− 2e−j4πF . If y[n] = x[n− 2] ? x[−n], compute Y (F ) at F = 0.2, 0.4.
(c) The central period of X(F ) is defined by X(F ) = 1, |F | < 0.2 and zero elsewhere. Consider the signal
y[n] = x2[n]. Sketch Y (F ) and evaluate at F = 0, 0.1, 0.2, 0.3.
Answers: (a) 32.94ej24◦ , 15.06e−j59◦ (b) 32.94ej72◦ , 15.06ej72◦ (c) 0.4, 0.3, 0.2, 0.1
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5.2.6 The times-n property:

With x[n] ⇐ dtft ⇒ X(F ), differentiation of the defining DTFT relation gives

dX(F )
dF

=
∞∑

k=−∞
(−j2kπ)x[k]e−j2kπF (5.12)

The corresponding signal is (−j2nπ)x[n], and thus the DTFT of y[n] = nx[n] is Y (F ) = j
2π

d X(F )
dF .

REVIEW PANEL 5.11
The Times-n Property: Multiply x[n] by n ⇐ dtft ⇒ Differentiate the DTFT

nx[n] ⇐ dtft ⇒ j

2π

dX(F )
dF

or j
dX(Ω)

dΩ

DRILL PROBLEM 5.9
(a) Let X(F ) = 4− 2e−j4πF . If y[n] = nx[n], find Y (F ).
(b) Let X(F ) = 4− 2e−j4πF . If y[n] = nx[n− 2], find Y (F ).
(c) Let X(F ) = 4− 2e−j4πF . If y[n] = (n− 2)x[n], find Y (F ).

(d) Let X(F ) =
1

4− 2e−j4πF
. If y[n] = nx[n], find Y (F ).

Answers: (a) −4e−j4πF (b) 8e−j4πF − 8e−j8πF (c) −8 (d)
4e−j4πF

(4− 2e−j4πF )2

5.2.7 Parseval’s relation

The DTFT is an energy-conserving transform, and the signal energy may be found from either the signal
x[n] or from one period of its periodic magnitude spectrum |X(F )| using Parseval’s theorem

∞∑

k=−∞
x2[k] =

∫ 1/2

−1/2

|X(F )|2 dF =
1
2π

∫ π

−π

|X(Ω)|2 dΩ (Parseval’s relation) (5.13)

REVIEW PANEL 5.12
Parseval’s Theorem: We can Find the Signal Energy from x[n] or Its Magnitude Spectrum

∞∑

k=−∞
x2[k] =

∫ 1/2

−1/2

|X(F )|2 dF =
1
2π

∫ π

−π

|X(Ω)|2 dΩ

DRILL PROBLEM 5.10
(a) Let X(F ) = 5, |F | < 0.2 and zero elsewhere in the central period. Find its total signal energy and its
signal energy in the frequency range |F | ≤ 0.15.

(b) Let X(F ) =
6

4− 2e−j2πF
. Find its signal energy.

Answers: (a) 10, 7.5 (b) 3
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186 Chapter 5 Frequency Domain Analysis

5.2.8 Central ordinate theorems

The DTFT obeys the central ordinate relations (found by substituting F = 0 (or Ω = 0) in the DTFT or
n = 0 in the IDTFT.

x[0] =
∫ 1/2

−1/2

X(F ) dF =
1
2π

∫ π

−π

X(Ω) dΩ X(0) =
∞∑

n=−∞
x[n] (central ordinates) (5.14)

With F = 0.5 (or Ω = π), we also have the useful result

X(F )
∣∣∣∣
F=0.5

= X(Ω)
∣∣∣∣
Ω=π

=
∞∑

n=−∞
(−1)nx[n] (5.15)

The central ordinate theorems allow us to find the dc gain (at F = 0) and high frequency gain (at F = 0.5)
without having to formally evaluate the DTFT.

REVIEW PANEL 5.13
Central Ordinate Theorems

x[0] =
∫ 1/2

−1/2

X(F )dF =
1
2π

∫ π

−π

X(Ω)dΩ X(0) =
∞∑

n=−∞
x[n] X(F )

∣∣∣∣
F=0.5

= X(Ω)
∣∣∣∣
Ω=π

=
∞∑

n=−∞
(−1)nx[n]

DRILL PROBLEM 5.11
(a) Let X(F ) = 5, |F | < 0.2 and zero elsewhere in the central period. Find the value of x[n] at n = 0.
(b) Let x[n] = 9(0.8)nu[n]. What is the value of X(F ) at F = 0 and F = 0.5.

(c) What is the dc gain and high-frequency gain of the filter described by h[n] = {⇓1, 2, 3, 4}.
Answers: (a) 2 (b) 45, 5 (c) 10, 2

EXAMPLE 5.3 (Some DTFT Pairs Using the Properties)
(a) The DTFT of x[n] = nαnu[n], |α < 1| may be found using the times-n property as

X(F ) =
j

2π

d

dF

[
1

1− αe−j2πF

]
=

αe−j2πF

(1− αe−j2πF )2

In the Ω-form,

X(Ω) = j
d

dΩ

[
1

1− αe−jΩ

]
=

αe−jΩ

(1− αe−jΩ)2

(b) The DTFT of the signal x[n] = (n + 1)αnu[n] may be found if we write x[n] = nαnu[n] + αnu[n], and
use superposition, to give

X(F ) =
αe−j2πF

(1− αe−j2πF )2
+

1
1− αe−j2πF

=
1

(1− αe−j2πF )2

In the Ω-form,

X(Ω) =
αe−jΩ

(1− αe−jΩ)2
+

1
1− αe−jΩ

=
1

(1− αe−jΩ)2
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By the way, if we recognize that x[n] = αnu[n] ? αnu[n], we can also use the convolution property to
obtain the same result.

(c) To find DTFT of the N -sample exponential pulse x[n] = αn, 0 ≤ n < N , express it as x[n] =
αn(u[n]− u[n−N ]) = αnu[n]− αNαn−Nu[n−N ] and use the shifting property to get

X(F ) =
1

1− αe−j2πF
− αN e−j2πFN

1− αe−j2πF
=

1− (αe−j2πF )N

1− αe−j2πF

In the Ω-form,

X(Ω) =
1

1− αe−jΩ
− αN e−jΩN

1− αe−jΩ
=

1− (αe−jΩ)N

1− αe−jΩ

(d) The DTFT of the two-sided decaying exponential x[n] = α|n|, |α| < 1, may be found by rewriting this
signal as x[n] = αnu[n] + α−nu[−n]− δ[n] and using the folding property to give

X(F ) =
1

1− αe−j2πF
+

1
1− αej2πF

− 1

Simplification leads to the result

X(F ) =
1− α2

1− 2α cos(2πF ) + α2
or X(Ω) =

1− α2

1− 2α cosΩ + α2

(e) (Properties of the DTFT)

Find the DTFT of x[n] = 4(0.5)n+3u[n] and y[n] = n(0.4)2nu[n].

1. For x[n], we rewrite it as x[n] = 4(0.5)3(0.5)nu[n] to get

X(F ) =
0.5

1− 0.5e−j2πF
or X(Ω) =

0.5
1− 0.5e−jΩ

2. For y[n], we rewrite it as y[n] = n(0.16)nu[n] to get

Y (F ) =
0.16e−j2πF

(1− 0.16e−j2πF )2
or Y (Ω) =

0.16e−jΩ

(1− 0.16e−jΩ)2

(f) (Properties of the DTFT)

Let x[n] ⇐ dtft ⇒ 4
2− e−j2πF

= X(F ).

Find the DTFT of y[n] = nx[n], c[n] = x[−n], g[n] = x[n] ? x[n], and h[n] = (−1)nx[n].
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1. By the times-n property,

Y (F ) =
j

2π

d

dF
X(F ) =

4(−j/2π)(−j2πe−j2πF )
(2− e−j2πF )2

=
−4e−j2πF

(2− e−j2πF )2

In the Ω-form,

Y (Ω) = j
d

dΩ
X(Ω) =

4(−j/2π)(−j2πe−jΩ)
(2− e−jΩ)2

=
−4e−jΩ

(2− e−jΩ)2

2. By the folding property,

C(F ) = X(−F ) =
4

2− e−j2πF
or C(Ω) = X(−Ω) =

4
2− e−jΩ

3. By the convolution property,

G(F ) = X2(F ) =
16

(2− e−j2πF )2
or G(Ω) = X2(Ω) =

16
(2− e−jΩ)2

4. By the modulation property,

H(F ) = X(F − 0.5) =
4

2− e−j2π(F−0.5)
=

4
2 + e−j2πF

In the Ω-form,

H(Ω) = X(Ω− π) =
4

2− e−j(Ω−π)
=

4
2 + e−jΩ

(g) (Properties of the DTFT)

Let X(F ) ⇐ dtft ⇒ (0.5)nu[n] = x[n]. Find the time signals corresponding to

Y (F ) = X(F ) ?©X(F ) H(F ) = X(F + 0.4) + X(F − 0.4) G(F ) = X2(F )

1. By the convolution property, y[n] = x2[n] = (0.25)nu[n].

2. By the modulation property, h[n] = 2 cos(2nπF0)x[n] = 2(0.5)n cos(0.8nπ)u[n] (where F0 = 0.4).

3. By the convolution property, g[n] = x[n] ? x[n] = (0.5)nu[n] ? (0.5)u[n] = (n + 1)(0.5)nu[n].

5.3 The DTFT of Discrete-Time Periodic Signals
There is a unique relationship between the description of signals in the time domain and their spectra in
the frequency domain. One useful result is that sampling in one domain results in a periodic extension
in the other and vice versa. If a time-domain signal is made periodic by replication, the transform of the
periodic signal is an impulse sampled version of the original transform divided by the replication period.
The frequency spacing of the impulses equals the reciprocal of the period. For example, consider a periodic
analog signal x(t) with period T whose one period is x1(t) with Fourier transform X1(f). When x1(t) is
replicated every T units to generate the periodic signal x(t), the Fourier transform X(f) of the periodic
signal x(t) becomes an impulse train of the form

∑
X1(kf0)δ(f − kf0). The frequency spacing f0 of the
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impulses is given by f0 = 1
T , the reciprocal of the period. The impulse strengths X1(kf0) are found by

sampling X1(f) at intervals of f0 = 1
T and dividing by the period T to give 1

T X1(kf0). These impulse
strengths 1

T X1(kf0) also define the Fourier series coefficients of the periodic signal x(t). Similarly, consider
a discrete periodic signal x[n] with period N whose one period is x1[n], 0 ≤ n ≤ N − 1 with DTFT X1(F ).
When x1[n] is replicated every N samples to generate the discrete periodic signal x[n], the DTFT X(F ) of
the periodic signal x[n] becomes an impulse train of the form X1(kF0)δ(F −kF0). The frequency spacing F0

of the impulses is given by F0 = 1
N , the reciprocal of the period. The impulse strengths X1(kF0) are found

by sampling X1(F ) at intervals of F0 = 1
N and dividing by the period N to give 1

N X1(kF0). Since X1(F ) is
periodic, so too is X(F ) and one period of X(F ) contains N impulses described by

X(F ) =
1
N

N−1∑

k=0

X1(kF0)δ(F − kF0) (over one period 0 ≤ F < 1) (5.16)

By convention, one period is chosen to cover the range 0 ≤ F < 1 (and not the central period) in order
to correspond to the summation index n = 0 ≤ n ≤ N − 1. Note that X(F ) exhibits conjugate symmetry
about k = 0 (corresponding to F = 0 or Ω = 0) and k = N

2 (corresponding to F = 0.5 or Ω = π).

REVIEW PANEL 5.14
The DTFT of x[n] (Period N) Is a Periodic Impulse Train (N Impulses per Period)
If x[n] is periodic with period N and its one-period DTFT is x1[n] ⇐ dtft ⇒ X1(F ), then

x[n] ⇐ dtft ⇒ X(F ) =
1
N

N−1∑

k=0

X1(kF0)δ(F − kF0) (N impulses per period 0 ≤ F < 1)

EXAMPLE 5.4 (DTFT of Periodic Signals)
Let one period of xp[n] be given by x1[n] = {3, 2, 1, 2}, with N = 4.

Then, X1(F ) = 3 + 2e−j2πF + e−j4πF + 2e−j6πF .
The four samples of X1(kF0) over 0 ≤ k ≤ 3 are

X1(kF0) = 3 + 2e−j2πk/4 + e−j4πk/4 + 2e−j6πk/4 = {8, 2, 0, 2}

The DTFT of the periodic signal xp[n] for one period 0 ≤ F < 1 is thus

X(F ) =
1
4

3∑

k=0

X1(kF0)δ(F − k
4 ) = 2δ(F ) + 0.5δ(F − 1

4 ) + 0.5δ(F − 3
4 ) (over one period 0 ≤ F < 1)

The signal xp[n] and its DTFT X(F ) are shown in Figure E5.4. Note that the DTFT is conjugate symmetric
about F = 0 (or k = 0) and F = 0.5 (or k = 0.5N = 2).

[n]xp

1 2 3 4 5−2−3 −1

3 3 3
2 2 2 2 2

1 1 1
n

Xp(F)

−0.5 10.5−1
F

(0.5) (0.5)
(2)(2) (2)

Figure E5.4 Periodic signal for Example 5.4 and its DTFT
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DRILL PROBLEM 5.12
Find the DTFT of a periodic signal x[n] over 0 ≤ F < 1 if its one period is given by

(a) x1[n] = {⇓4, 0, 0, 0} (b) x1[n] = {⇓4, 4, 4, 4} (c) x1[n] = {⇓4, 0, 4, 0}

Answers: (a)
3∑

k=0

δ(F − 0.25k) (b) 4δ(F ) (c) 2δ(F ) + 2δ(F − 0.5)

5.3.1 The DFS and DFT

The discrete Fourier transform (DFT) of the signal x1[n] is defined as the sampled version of its DTFT

XDFT[k] = X1(F )
∣∣
F=kF0=k/N

=
N−1∑
n=0

x1[n]e−j2πnk/N , k = 0, 1, 2, . . . , N − 1 (5.17)

The N -sample sequence that results when we divide the DFT by N defines the discrete Fourier series
(DFS) coefficients of the periodic signal x[n] whose one period is x1[n]

XDFS[k] =
1
N

X1(F )
∣∣
F=kF0=k/N

=
1
N

N−1∑
n=0

x1[n]e−j2πnk/N , k = 0, 1, 2, . . . , N − 1 (5.18)

Note that the DFT and DFS differ only by a factor of N with XDFT[k] = NXDFS[k]. The DFS result may
be linked to the Fourier series coefficients of a periodic signal with period T

X[k] =
1
T

∫ T

0

x1(t)e−j2πkt/T dt

Here, x1(t) describes one period of the periodic signal. The discrete version of this result using a sampling
interval of ts allows us to set t = nts, dt = ts and x1(t) = x1(nTs) = x1[n]. Assuming N samples per period
(T = Nts), we replace the integral over one period (from t = 0 to t = T ) by a summation over N samples
(from n = 0 to n = N − 1) to get the required expression for the DFS.

REVIEW PANEL 5.15
The DFT Is a Sampled Version of the DTFT
If x1[n] is an N -sample sequence, its N -sample DFT is XDFT[k] = X1(F )|F=k/N , k = 0, 1, 2, . . . , N − 1

The DFS coefficients of a periodic signal x[n] whose one period is x1[n] are XDFS[k] = 1
N XDFT[k]

EXAMPLE 5.5 (The DFT, DFS and DTFT)
Let x1[n] = {1, 0, 2, 0, 3} describe one period of a periodic signal x[n].

The DTFT of x1[n] is X1(F ) = 1 + 2e−j4πF + 3e−j8πF .
The period of x[n] is N = 5. The discrete Fourier transform (DFT) of x1[n] is

XDFT[k] = X1(F )
∣∣
F=k/N

= 1 + 2e−j4πF + 3e−j8πF

∣∣∣∣
F=k/5

, k = 0, 1, . . . , 4

We find that

XDFT[k] = {6, 0.3090 + j1.6776, −0.8090 + j3.6655, −0.8090− j3.6655, 0.3090− j1.6776}
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The discrete Fourier series (DFS) coefficients of x[n] are given by XDFS[k] = 1
N XDFT[k]. We get

XDFS[k] = {1.2, 0.0618 + j0.3355, −0.1618 + j0.7331, −0.1618− j0.7331, 0.0618− j0.3355}

The DTFT X(F ) of the periodic signal x[n], for one period 0 ≤ F < 1, is then

X(F ) =
1
5

4∑

k=0

X1(k
5 )δ(F − k

5 ) (over one period 0 ≤ F < 1)

Note that each of the transforms XDFS[k], XDFT[k], and X(F ) is conjugate symmetric about both k = 0
and k = 0.5N = 2.5.

DRILL PROBLEM 5.13
Find the DFT of the following signals

(a) x[n] = {⇓4, 0, 0, 0} (b) x[n] = {⇓4, 4, 4, 4} (c) x[n] = {⇓4, 4, 0, 0}
Answers: (a) {⇓4, 4, 4, 4} (b) {

⇓
16, 0, 0, 0} (c) {⇓8, 4− j4, 0, 4 + j4}

5.4 The Inverse DTFT
For a finite sequence X(F ) whose DTFT is a polynomial in ej2πF (or ejΩ), the inverse DTFT x[n] corresponds
to the sequence of the polynomial coefficients. In many other situations, X(F ) can be expressed as a ratio
of polynomials in ej2πF (or ejΩ). This allows us to split X(F ) into a sum of simpler terms (using partial
fraction expansion) and find the inverse transform of these simpler terms through a table look-up. In special
cases or only as a last resort, if all else fails, do we need to resort to the brute force method of finding the
inverse DTFT by using the defining relation. Some examples follow.

EXAMPLE 5.6 (The Inverse DTFT)

(a) Let X(F ) = 1 + 3e−j4πF − 2e−j6πF .

Its IDFT is simply x[n] = δ[n] + 3δ[n− 2]− 2δ[n− 3] or x[n] = {⇓1, 0, 3, −2}.

(b) Let X(Ω) =
2e−jΩ

1− 0.25e−j2Ω
. We factor the denominator and use partial fractions to get

X(Ω) =
2e−jΩ

(1− 0.5e−jΩ)(1 + 0.5e−jΩ)
=

2
1− 0.5e−jΩ

− 2
1 + 0.5e−jΩ

We then find x[n] = 2(0.5)nu[n]− 2(−0.5)nu[n].

(c) An ideal differentiator is described by H(F ) = j2πF, |F | < 0.5. Its magnitude and phase spectrum
are shown in Figure E5.6C.
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2πF

0.5−0.5

Magnitude

F

π F
−0.5 0.5

−π/2

π/2
Phase (radians)

Figure E5.6C DTFT of the ideal differentiator for Example 5.6(c)

To find its inverse h[n], we note that h[0] = 0 since H(F ) is odd. For n 6= 0, we also use the odd
symmetry of H(F ) in the IDTFT to obtain

h[n] =
∫ 1/2

−1/2

j2πF [cos(2πnF ) + j sin(2πnF )] dF = −4π

∫ 1/2

0

F sin(2πnF ) dF

Using tables and simplifying the result, we get

h[n] =
−4π[sin(2πnF )− 2πnF cos(2πnF )]

(2πn)2

∣∣∣∣
1/2

0

=
cos(nπ)

n

Since H(F ) is odd and imaginary, h[n] is odd symmetric, as expected.

(d) A Hilbert transformer shifts the phase of a signal by −90◦. Its magnitude and phase spectrum are
shown in Figure E5.6D.

0.5−0.5

Magnitude

F

F
−0.5

−π/2

π/2

0.5

Phase (radians)

Figure E5.6D DTFT of the Hilbert transformer for Example 5.6(d)

Its DTFT given by H(F ) = −j sgn(F ), |F | < 0.5. This is imaginary and odd. To find its inverse h[n],
we note that h[0] = 0 and

h[n] =
∫ 1/2

−1/2

−j sgn(F )[cos(2πnF ) + j sin(2πnF )] dF = 2
∫ 1/2

0

sin(2πnF ) dF =
1− cos(nπ)

nπ

DRILL PROBLEM 5.14
(a) Let X(F ) = 4− 2e−j4πF . Find x[n].
(b) Let X(F ) = (4− 2e−j4πF )2. Find x[n].
(c) Let X(F ) = 2, |F | < 0.2. Find x[n].

Answers: (a) {⇓4, 0, −2} (b) {
⇓
16, 0, −16, 0, 4} (c) 0.8 sinc(0.4n)
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5.5 The Frequency Response
The time-domain response y[n] of a relaxed discrete-time LTI system with impulse response h[n] to the input
x[n] is given by the convolution

y[n] = x[n] ? h[n] (5.19)

Since convolution transforms to multiplication, transformation results in

Y (F ) = X(F )H(F ) or Y (Ω) = X(Ω)H(Ω) (5.20)

The frequency response or steady-state transfer function then equals

H(F ) =
Y (F )
X(F )

or H(Ω) =
Y (Ω)
X(Ω)

(5.21)

We emphasize that the frequency response is defined only for a relaxed LTI system—either as the ratio
Y (F )/X(F ) (or Y (Ω)/X(Ω)) of the DTFT of the output y[n] and input x[n], or as the DTFT of the impulse
response h[n]. The equivalence between the time-domain and frequency-domain operations is illustrated in
Figure 5.3.

h[n] x[n]*=h[n]x[n]*=
x[n] and h[n]

Input Outputx[n] y[n]
h[n]

System

Input System Output
and

X(F)
H(F) H(F) X(F)

Y(F) = X(F)H(F)

Output = convolution of impulse response = 

transfer function = Output = product of

Figure 5.3 The equivalence between the time domain and frequency domain

A relaxed LTI system may also be described by the difference equation

y[n] + A1y[n− 1] + · · ·+ ANy[n−N ] = B0x[n] + B1x[n− 1] + · · ·+ BMx[n−M ] (5.22)

The DTFT results in the transfer function, or frequency response, given by

H(F ) =
Y (F )
X(F )

=
B0 + B1e

−j2πF + · · ·+ BMe−j2πMF

1 + A1e−j2πF + · · ·+ ANe−j2πNF
(5.23)

In the Ω-form,

H(Ω) =
Y (Ω)
X(Ω)

=
B0 + B1e

−jΩ + · · ·+ BMe−jMΩ

1 + A1e−jΩ + · · ·+ ANe−jNΩ
(5.24)

The transfer function is thus a ratio of polynomials in ej2πF (or ejΩ).

REVIEW PANEL 5.16
The Frequency Response Is a Frequency-Domain Description of a Relaxed LTI System
The transfer function H(F ) equals the transform of the system impulse response h[n].
It is also defined as H(F ) = Y (F )/X(F ), the ratio of the transformed output and transformed input.
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EXAMPLE 5.7 (Frequency Response of a Recursive Filter)
Let y[n] = αy[n− 1] + x[n], 0 < α < 1. To find its frequency response, we transform the difference equation
and find H(z) as

H(z) =
Y (z)
X(z)

=
1

1− αz−1

Next, we let z = ej2πF and evaluate H(F ) as

H(F ) =
1

1− αe−j2πF
=

1
1− α cos(2πF ) + jα sin(2πF )

The magnitude and phase of H(F ) then equal

|H(F )| =
[

1
1− 2α cos(2πF ) + α2

]1/2

φ(F ) = tan−1

[
1− α cos(2πF )

α sin(2πF )

]

Typical plots of the magnitude and phase are shown in Figure E5.7 over the principal period (−0.5, 0.5).
Note the conjugate symmetry (even symmetry of |H(F )| and odd symmetry of φ(F )).

F
−0.5 0.5

Magnitude

F0.5
−0.5

Phase

Figure E5.7 Magnitude and phase of Hp(F ) for Example 5.7

DRILL PROBLEM 5.15

(a) Find the frequency response H(F ) of the filter described by h[n] = {⇓4, 0, −2}.
(b) Find the frequency response H(F ) of the filter described by h[n] = 2(0.5)nu[n]− δ[n].
(c) Find the frequency response H(F ) of the filter described by y[n]− y[n− 2] = 2x[n]− 4x[n− 1].

Answers: (a) 4− 2e−j4πF (b)
1 + 0.5e−j2πF

1− 0.5e−j2πF
(c)

2− 4e−j2πF

1− e−j4πF

5.6 System Analysis Using the DTFT
In concept, the DTFT may be used to find the zero-state response (ZSR) of relaxed LTI systems to arbitrary
inputs. All it requires is the system transfer function H(F ) and the DTFT X(F ) of the input x[n]. We first
find the response as Y (F ) = H(F )X(F ) in the frequency domain, and obtain the time-domain response y[n]
by using the inverse DTFT. We emphasize, once again, that the DTFT cannot handle the effect of initial
conditions.

EXAMPLE 5.8 (The DTFT in System Analysis)
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(a) Consider a system described by y[n] = αy[n − 1] + x[n]. To find the response of this system to the

input αnu[n], we first set up the transfer function as H(Ω) =
1

1− αe−jΩ
. Next, we find the DTFT of

x[n] as X(Ω) =
1

1− αe−jΩ
and multiply the two to obtain

Y (Ω) = H(Ω)X(Ω) =
1

(1− αe−jΩ)2

Its inverse transform gives the response as y[n] = (n + 1)αnu[n]. We could, of course, also use
convolution to obtain y[n] = h[n] ? x[n] directly in the time domain.

(b) Consider the system described by y[n] = 0.5y[n − 1] + x[n]. Its response to the step x[n] = 4u[n] is
found using Y (F ) = H(F )X(F ):

Y (F ) = H(F )X(F ) =
1

1− 0.5e−j2πF

[
4

1− e−j2πF
+ 2δ(F )

]

We separate terms and use the product property of impulses to get

Y (F ) =
4

(1− 0.5e−j2πF )(1− e−j2πF )
+ 4δ(F )

Splitting the first term into partial fractions, we obtain

Y (F ) =
−4

1− 0.5e−j2πF
+

[
8

1− e−j2πF
+ 4δ(F )

]

The response y[n] then equals y[n] = −4(0.5)nu[n] + 8u[n]. The first term represents the transient
response, and the second term describes the steady-state response, which can be found much more
easily, as we now show.

DRILL PROBLEM 5.16
(a) Let H(F ) = 4− 2e−j4πF . If the input is x[n] = 4δ[n] + 2δ[n− 2], find the response y[n].
(b) A filter is described by h[n] = 2(0.5)nu[n]− δ[n]. The input is X(F ) = 1− 0.5e−j2πF . Find y[n].
(c) A filter is described by y[n]− 0.5y[n− 1] = 2x[n]. The input is x[n] = 2(0.4)nu[n]. Find y[n].
Answers: (a) 16δ[n]− 4δ[n− 4] (b) δ[n] + 0.5δ[n− 1] (c) [20(0.5)n − 16(0.4)n]u[n]

5.6.1 The Steady-State Response to Discrete-Time Harmonics

The DTFT is much better suited to finding the steady-state response to discrete-time harmonics. Since
everlasting harmonics are eigensignals of discrete-time linear systems, the response is simply a harmonic at
the input frequency whose magnitude and phase is changed by the system function H(F ). We evaluate H(F )
at the input frequency, multiply its magnitude by the input magnitude to obtain the output magnitude, and
add its phase to the input phase to obtain the output phase. The steady-state response is useful primarily
for stable systems for which the natural response does indeed decay with time.

The response of an LTI system to a sinusoid (or harmonic) is called the steady-state response and is
a sinusoid (or harmonic) at the input frequency. If the input is x[n] = A cos(2πF0n + θ), the steady-state
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response is yss[n] = AH0 cos[2πFn + θ + φ0)], where H0 and φ0 are the gain and phase of the frequency
response H(F ) evaluated at the input frequency F = F0. If the input consists of harmonics at different
frequencies, we use superposition of the individual time-domain responses.

We can also find the steady-state component from the total response (using z-transforms), but this defeats
the whole purpose if all we are after is the steady-state component.

REVIEW PANEL 5.17
Finding the Steady-State Response of an LTI System to a Sinusoidal Input
Input: x[n] = A cos(2πnF0 + θ) Transfer function: Evaluate H(F ) at F = F0 as H0 6 φ0.
Steady-state output: yss[n] = AH0 cos(2πnF0 + θ + φ0)

EXAMPLE 5.9 (The DTFT and Steady-State Response)

(a) Consider a system described by y[n] = 0.5y[n − 1] + x[n]. We find its steady-state response to the
sinusoidal input x[n] = 10 cos(0.5nπ + 60◦). The transfer function H(F ) is given by

H(F ) =
1

1− 0.5e−j2πF

We evaluate H(F ) at the input frequency, F = 0.25:

H(F )
∣∣∣∣
F=0.25

=
1

1− 0.5e−jπ/2
=

1
1 + 0.5j

= 0.4
√

56 − 26.6◦ = 0.89446 − 26.6◦

The steady-state response then equals

yss[n] = 10(0.4
√

5)cos(0.5nπ + 60◦ − 26.6◦) = 8.9443 cos(0.5nπ + 33.4◦)

Note that if the input was x[n] = 10 cos(0.5nπ + 60◦)u[n] (switched on at n = 0), the steady-state
component would still be identical to what we calculated but the total response would differ and require
a different method (such as z-transforms) to obtain.

(b) Consider a system described by h[n] = (0.8)nu[n]. We find its steady-state response to the step input
x[n] = 4u[n]. The transfer function H(F ) is given by

H(F ) =
1

1− 0.8e−j2πF

We evaluate H(F ) at the input frequency F = 0 (corresponding to dc):

H(F )
∣∣∣∣
F=0

=
1

1− 0.8
= 5

The steady-state response is then yss[n] = (5)(4) = 20.
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(c) Let H(z) =
2z − 1

z2 + 0.5z + 0.5
. We find its steady-state response to x[n] = 6u[n].

With z = ej2πF , we obtain the frequency response H(F ) as

H(F ) =
2ej2πF − 1

ej4πF + 0.5ej2πF + 0.5

Since the input is a constant for n ≥ 0, the input frequency is F = 0.

At this frequency, H(F )|F=0 = 0.5. Then, yss[n] = (6)(0.5) = 3.

(d) Design a 3-point FIR filter with impulse response h[n] = {α,
⇓
β, α} that completely blocks the frequency

F = 1
3 and passes the frequency F = 0.125 with unit gain. What is the dc gain of this filter?

The filter transfer function is H(F ) = αej2πF + β + αe−j2πF = β + 2α cos(2πF ).

From the information given, we have

H(1
3 ) = 0 = β + 2α cos( 2π

3 ) = β − α H(0.125) = 1 = β + 2α cos( 2π
8 ) = β − α

√
2

This gives α = β = 0.4142 and h[n] = {0.4142,
⇓

0.4142, 0.4142}.
The dc gain of this filter is H(0) =

∑
h[n] = 3(0.4142) = 1.2426.

DRILL PROBLEM 5.17
(a) Let H(F ) = 4− 2e−j4πF . If the input is x[n] = 4 cos(0.4nπ), what is the response y[n].
(b) A filter is described by h[n] = 2(0.5)nu[n]− δ[n]. The input is x[n] = 1 + cos(0.5nπ). Find y[n].
(c) A filter is described by y[n] = x[n] + αx[n − 1] + βx[n − 2]. Choose the values of α and β such that
the input x[n] = 1 + 4 cos(nπ) results in the output y[n] = 4.
Answers: (a) 22.96 cos(0.4nπ + 12◦) (b) 3 + cos(0.5nπ + 53◦) (c) α = 2, β = 1

5.7 Connections
A relaxed LTI system may be described by its difference equation, its impulse response, its transfer function,
its frequency response, its pole-zero plot or even its realization. Depending on what is required, one form may
be better suited that others and, given one form, we should be able to obtain the others using time-domain
methods and/or frequency-domain transformations. The connections are summarized below:

1. Given the transfer function H(z), we can use it directly to generate a pole-zero plot. We can also use
it to find the frequency response H(F ) by the substitution z = ej2πF . The frequency response will
allow us to sketch the gain and phase. The inverse z-transform of H(z) leads directly to the impulse
response h[n]. Finally, if we express the transfer function H(z) = Y (z)/X(z) where X(z) and Y (z)
are polynomials in z, cross-multiplication and inverse transformation can give us the system difference
equation. The frequency response H(F ) may be used to find the system difference equation in a similar
manner.

2. Given the system difference equation, we can use the z-transform to find the transfer function H(z)
and use H(z) to find the remaining forms.
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3. Given the impulse response h[n], we can use the z-transform to find the transfer function H(z) and
use it to develop the remaining forms.

4. Given the pole zero-plot, obtain the transfer function H(z) and use it to find the remaining forms.
Note that we can find H(z) directly from a pole-zero plot of the root locations but only to within the
multiplicative gain factor K. If the value of K is also shown on the plot, H(z) is known in its entirety.

For quick computations of the dc gain and high frequency gain (at F = 0.5) we need not even convert
between forms. To find the dc gain,

1. If H(F ) is given, evaluate its absolute value at F = 0.
2. If H(z) is given, evaluate its absolute value at z = 1 (because if F = 0, we have z = ej2πF = 1).
3. If h[n] is given, evaluate |∑ h[n]| (by summing the samples).
4. If the difference equation is given in the form

∑
Aky[n − k] =

∑
Bmx[n −m], evaluate the absolute

value of the ratio
∑

Ak/
∑

Bm (after summing the coefficients on each side).

Similarly, to find the high frequency gain (at F = 0.5)

1. If H(F ) is given, evaluate its absolute value at F = 0.5.
2. If H(z) is given, evaluate its absolute value at z = −1 (because if F = 0.5, we have z = ej2πF = −1).
3. If h[n] is given, evaluate |∑(−1)nh[n]| (by reversing the sign of alternate samples before summing

them).
4. If the difference equation is given in the form

∑
Aky[n − k] =

∑
Bmx[n −m], evaluate the absolute

value of the ratio
∑

(−1)kAk/
∑

(−1)kBm.

EXAMPLE 5.10 (System Representation in Various Forms)
(a) Let y[n] = 0.8y[n− 1] + 2x[n]. We obtain its transfer function and impulse response as follows:

Y (z) = 0.8z−1Y (z) + 2X(z) H(z) =
Y (z)
X(z)

=
2

1− 0.8z−1
=

2z

z − 0.8
h[n] = 2(0.8)nu[n]

(b) Let h[n] = δ[n]− 0.4(0.5)nu[n]. We obtain its transfer function as

H(z) = 1− 0.4z

z − 0.5
=

0.6z − 0.5
z − 0.5

We also obtain the difference equation by expressing the transfer function as

H(z) =
Y (z)
X(z)

=
0.6z − 0.5
z − 0.5

or
0.6− 5z−1

1− 0.5z−1

and using cross-multiplication to give

(z − 0.5)Y (z) = (0.6z − 0.5)X(z) or (1− 0.5z−1)Y (z) = (0.6− 0.5z−1)X(z)

The difference equation may then be found using forward differences or backward differences as

y[n + 1]− 0.5y[n] = 0.6x[n + 1]− 0.5x[n] or y[n]− 0.5y[n− 1] = 0.6x[n]− 0.5x[n− 1]

The impulse response, the transfer function, and the difference equation describe the same system.
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(c) Let y[n]− 0.6y[n− 1] = x[n].

Its dc gain is
∣∣∣∣

1
1− 0.6

∣∣∣∣ = 2.5

Its high frequency gain is
∣∣∣∣

1
1 + 0.6

∣∣∣∣ = 0.625

Its DTFT gives

Y (F )− 0.6e−j2πF Y (F ) = X(F ) or Y (Ω)− 0.6e−jΩY (Ω) = X(Ω)

We thus get the transfer function as

H(F ) =
Y (F )
X(F )

=
1

1− 0.6e−j2πF
or H(Ω) =

Y (Ω)
X(Ω)

=
1

1− 0.6e−jΩ

The system impulse response is thus h[n] = (0.6)nu[n].

(d) Let h[n] = δ[n]− (0.5)nu[n].

Since
∞∑

n=0

(0.5)n =
1

1− 0.5
= −2, the dc gain is |1− 2| = 1

Similarly,
∞∑

n=0

(−1)n(0.5)n =
∞∑

n=0

(−0.5)n 1
1 + 0.5

= 2/3, the high frequency gain is |1− 2/3| = 1/3

Of course, it is probably easier to find its dc gain and high frequency gain from H(F ). Its DTFT gives

H(F ) = 1− 1
1− 0.5e−j2πF

=
−0.5e−j2πF

1− 0.5e−j2πF

In the Ω-form,

H(Ω) = 1− 1
1− 0.5e−jΩ

=
−0.5e−jΩ

1− 0.5e−jΩ

From this we find

H(F ) =
Y (F )
X(F )

or Y (F )(1− 0.5e−j2πF ) = X(F )(−0.5e−j2πF )

In the Ω-form,

H(Ω) =
Y (Ω)
X(Ω)

or Y (Ω)(1− 0.5e−jΩ) = X(Ω)(−0.5e−jΩ)

Inverse transformation gives y[n]− 0.5y[n− 1] = −0.5x[n− 1].

(e) Let H(F ) = 1 + 2e−j2πF + 3e−j4πF .
Its dc gain is |1 + 2 + 3| = 6.
Its high frequency gain is |1− 2 + 3| = 2.

Its impulse response is h[n] = δ[n] + 2δ[n− 1] + 3δ[n− 2] = {1, 2, 3}.
Since H(F ) = Y (F )

X(F ) = 1 + 2e−j2πF + 3e−j4πF , we find

Y (F ) = (1 + 2e−j2πF + 3e−j4πF )X(F ) y[n] = x[n] + 2x[n− 1] + 3x[n− 2]
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5.8 Ideal Filters
An ideal lowpass filter is described by HLP(F ) = 1, |F | < FC over its principal period |F | ≤ 0.5, as shown
in Figure 5.4.

−FC FC

Magnitude

F

−0.5 0.5

1

Figure 5.4 Spectrum of an ideal lowpass filter

Its impulse response hLP[n] is found using the IDTFT to give

hLP[n] =
∫ −0.5

0.5

HLP(F )ej2πnF dF =
∫ FC

−FC

ej2πnF dF =
∫ FC

−FC

cos(2πnF ) dF =
sin(2πnF )

2πn

∣∣∣∣
FC

−FC

(5.25)

Simplifying this result, we obtain

hLP[n] =
sin(2πnFC)− sin(−2πnFC)

2πn
=

2 sin(2πnFC)
2πn

=
2FC sin(2πnFC)

2πnFC
= 2FC sinc(2nFC) (5.26)

REVIEW PANEL 5.18
The Impulse Response of an Ideal Lowpass Filter Is a Sinc Function

CF F− C

Crect( F2F/=H(F)

=0n

[n )FC] nFC2sinc( )h = 2

n

1

F
−0.5 0.5

5.8.1 Frequency Transformations

The impulse response and transfer function of highpass, bandpass, and bandstop filters may be related to
those of a lowpass filter using frequency transformations based on the properties of the DTFT. The impulse
response of an ideal lowpass filter with a cutoff frequency of FC and unit passband gain is given by

h[n] = 2FC sinc(2nFC) (5.27)

Figure 5.5 shows two ways to obtain a highpass transfer function from this lowpass filter.
The first way is to shift H(F ) by 0.5 to obtain HH1(F ) = H(F−0.5), a highpass filter whose cutoff frequency
is given by FH1 = 0.5− FC . This leads to

hH1[n] = (−1)nh[n] = 2(−1)nFC sinc(2nFC) (with cutoff frequency 0.5− FC) (5.28)

Alternatively, we see that HH2(F ) = 1 −H(F ) also describes a highpass filter, but with a cutoff frequency
given by FH2 = FC , and this leads to

hH2[n] = δ[n]− 2FC sinc(2nFC) (with cutoff frequency FC) (5.29)
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FC−FC −FC0.5

H(F −0.5)
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F
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Lowpass filter Highpass filter Highpass filter

0.5

Figure 5.5 Two lowpass-to-highpass transformations

FC−FC
F0 −FC F0 F0 −FC F0

1

0.5−0.5
F

−0.5 0.5
F

1 1

−0.5 0.5
F

Lowpass filter Bandstop filterBandpass filter

Figure 5.6 Transforming a lowpass filter to a bandpass or bandstop filter

Figure 5.6 shows how to transform a lowpass filter to a bandpass filter or to a bandstop filter.
To obtain a bandpass filter with a center frequency of F0 and band edges [F0−FC , F0 +FC ], we simply shift
H(F ) by F0 to get HBP(F ) = H(F + F0) + H(F − F0), and obtain

hBP[n] = 2h[n]cos(2πnF0) = 4FC cos(2πnF0)sinc(2nFC) (5.30)

A bandstop filter with center frequency F0 and band edges [F0 − FC , F0 + FC ] can be obtained from the
bandpass filter using HBS(F ) = 1−HBP(F ), to give

hBS[n] = δ[n]− hBP[n] = δ[n]− 4FC cos(2πnF0)sinc(2nFC) (5.31)

REVIEW PANEL 5.19
Transformation of a Lowpass Filter h[n] and H(F ) to Other Forms
h[n] = 2FC sinc(2nFC); H(F ) = rect(F/2FC) hHP[n] = δ[n]− h[n]; HHP(F ) = 1−H(F )
hBP[n] = 2h[n]cos(2πnF0); HBP(F ) by modulation hBS[n] = δ[n]− hBP[n]; HBS(F ) = 1−HBP(F )

Note: FC = cutoff frequency of lowpass prototype; F0 = center frequency (for BPF and BSF)

EXAMPLE 5.11 (Frequency Transformations)
Use frequency transformations to find the transfer function and impulse response of

1. An ideal lowpass filter with a digital cutoff frequency of 0.25.
2. An ideal highpass filter with a digital cutoff frequency of 0.3.
3. An ideal bandpass filter with a passband between F = 0.1 and F = 0.3.
4. An ideal bandstop filter with a stopband between F = 0.2 and F = 0.4.

(a) For the lowpass filter, pick the LPF cutoff FC = 0.25. Then, h[n] = 0.5 sinc(0.5n).

c©Ashok Ambardar, September 1, 2003
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(b) For a highpass filter whose cutoff is FHP = 0.3:

Pick an LPF with FC = 0.5− 0.3 = 0.2. Then, hHP[n] = (−1)n(0.4)sinc(0.4n).

Alternatively, pick FC = 0.3. Then, hHP[n] = δ[n]− (0.6)sinc(0.6n).

(c) For a bandpass filter with band edges [F1, F2] = [0.1, 0.3]:

Pick the LPF cutoff as FC = F2 − F0 = 0.1, F0 = 0.2. Then, hBP[n] = 0.4 cos(0.4nπ)sinc(0.2n).

(d) For a bandstop filter with band edges [F1, F2] = [0.2, 0.4]:

Pick the LPF cutoff as FC = F2 − F0 = 0.1, F0 = 0.3. Then, hBS[n] = δ[n]− 0.4 cos(0.6nπ)sinc(0.2n).

5.8.2 Truncation and Windowing

An ideal filter possesses linear phase because its impulse response h[n] is a symmetric sequence. It can
never be realized in practice because h[n] is a sinc function that goes on forever, making the filter noncausal.
Moreover, the ideal filter is unstable because h[n] (a sinc function) is not absolutely summable. One way
to approximate an ideal lowpass filter is by symmetric truncation (about n = 0) of its impulse response
h[n] (which ensures linear phase). Truncation of h[n] to |n| ≤ N is equivalent to multiplying h[n] by a
rectangular window wD[n] = 1, |n| ≤ N . To obtain a causal filter, we must also delay the impulse response
by N samples so that its first sample appears at the origin.

5.8.3 The Rectangular Window and its Spectrum

Consider the rectangular window wd[n] = rect(n/2N) with M = 2N + 1 samples. We have

wd[n] = rect
(

n

2N

)
= { 1, 1, . . . , 1, 1︸ ︷︷ ︸

N ones

,
⇓
1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

N ones

} (5.32)

Its DTFT has been computed earlier as

WD(F ) =
sin(πMF )
sin(πF )

=
Msinc(MF )

sinc(F )
, M = 2N + 1 (5.33)

The quantity WD(F ) describes the Dirichlet kernel or the aliased sinc function. It also equals the periodic
extension of sinc(MF ) with period F = 1. Figure 5.7 shows the Dirichlet kernel for N = 3, 6, and 9.

The Dirichlet kernel has some very interesting properties. Over one period, we observe the following:

1. It has N maxima. The width of the main lobe is 2/M . The width of the decaying positive and negative
sidelobes is 1/M . There are 2N zeros located at the frequencies F = 1

M , 2
M , . . . , 2N

M

2. Its area equals unity, and it attains a maximum peak value of M at the origin. Its value at |F | = 0.5
is +1 (for even N) or −1 (for odd N). Increasing M increases the mainlobe height and compresses
the sidelobes. The ratio R of the main lobe magnitude and peak sidelobe magnitude, however, stays
more or less constant, varying between 4 for small M and 1.5π = 4.71 (or 13.5 dB) for very large M .
As M →∞, the spectrum approaches a unit impulse.
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Figure 5.7 The Dirichlet kernel is the spectrum of a rectangular window

5.8.4 The Triangular Window and its Spectrum

A triangular window may be regarded as the convolution of two rectangular windows. For a rectangular
window wd[n] = rect(n/2N), we find

wd[n] ? wd[n] = rect
(

n

2N

)
? rect

(
n

2N

)
= (2N + 1)tri

(
n

2N + 1

)
= Mtri

(
n

M

)
, M = 2N + 1

We may thus express a triangular window wf [n] = tri(n/M) in terms of the convolution

tri
(

n

M

)
=

1
M

wd[n] ? ωd[n], M = 2N + 1 (5.34)

Since convolution in the time domain corresponds to multiplication in the frequency domain, the spectrum
of the triangular window may be written as

WF (F ) =
1
M

W 2
D(F ) =

sin2(πMF )
M sin2(πF )

=
Msinc2(MF )

sinc2(F )

The quantity WF (F ) is called the Fejer kernel. Figure 5.8 shows the Fejer kernel for M = 4, 5, and 8.
Note that the spectrum is always positive. Its area equals unity and it attains a peak value of M at the
origin. Its value at |F | = 0.5 is 0 (for even M) or 1/M (for odd M). Increasing M increases the mainlobe
height and compresses the sidelobes. There are M maxima over one period. As M → ∞, the spectrum
approaches a unit impulse. For a given finite length M , the mainlobe of the Fejer kernel is twice as wide as
that of the Dirichlet kernel while the sidelobe magnitudes of the Fejer kernel show a faster decay and are
much smaller.

5.8.5 The Consequences of Windowing

Windowing (or multiplication) of the filter impulse response h[n] by a window w[n] in the time domain
is equivalent to the periodic convolution of the filter spectrum H(F ) and the window spectrum W (F ) in
the frequency domain. If the impulse response an ideal filter given by h[n] = 2FCsinc(2FCn) is truncated
(multiplied) by a rectangular window wd[n], the spectrum of the windowed filter exhibits overshoot and
oscillations as illustrated in Figure 5.9. This is reminiscent of the Gibbs effect that occurs in the Fourier
series reconstruction of a periodic signal containing sudden jumps (discontinuities).

What causes the overshoot and oscillation is the slowly decaying sidelobes of WD(F ) (the spectrum of
the rectangular window). The overshoot and oscillation persists even if we increase the window length.
The only way to reduce and/or eliminate the overshoot and oscillation is to use a tapered window, such as
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Figure 5.8 The Fejer kernel is the spectrum of a triangular window
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Figure 5.9 The spectrum of an ideal filter windowed by a rectangular window

the triangular window, whose spectral sidelobes decay much faster. If the impulse response h[n] an ideal
filter is truncated (multiplied) by a triangular window wf [n], the spectrum of the windowed filter exhibits a
monotonic response and a complete absence of overshoot, as illustrated in Figure 5.10. All useful windows are
tapered in some fashion to minimize (or even eliminate) the overshoot in the spectrum of the windowed filter
while maintaining as sharp a cutoff as possible. The spectrum of any window should have a narrow mainlobe
(to ensure a sharp cutoff in the windowed spectrum) and small sidelobe levels (to minimize the overshoot
and oscillation in the windowed spectrum). For a given window length, it is not possible to minimize both
the mainlobe width and the sidelobe levels simultaneously. Consequently, the design of any window entails
a compromise between these inherently conflicting requirements.

REVIEW PANEL 5.20
Windowing of h[n] in Time Domain Means Periodic Convolution in Frequency Domain
Windowing makes the transition in the spectrum more gradual (less abrupt).
A rectangular window (truncation) leads to overshoot and oscillations in spectrum (Gibbs effect).
Any other window leads to reduced (or no) overshoot in spectrum.
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Figure 5.10 The spectrum of an ideal filter windowed by a triangular window

CHAPTER 5 PROBLEMS

5.1 (DTFT of Sequences) Find and simplify the DTFT of the following signals and evaluate at F = 0,
F = 0.5, and F = 1.

(a) x[n] = {1, 2,
⇓
3, 2, 1} (b) y[n] = {−1, 2,

⇓
0,−2, 1}

(c) g[n] = {⇓1, 2, 2, 1} (d) h[n] = {
⇓
−1,−2, 2, 1}

[Hints and Suggestions: Use ejθ + e−jθ = 2 cos θ and ejθ − e−jθ = j2 sin θ to simplify the results.
In (c)–(d), extract the factor e−j3πF before simplifying.]

5.2 (DTFT from Definition) Use the defining relation to find the DTFT X(F ) of the following signals.

(a) x[n] = (0.5)n+2u[n] (b) x[n] = n(0.5)2nu[n] (c) x[n] = (0.5)n+2u[n− 1]
(d) x[n] = n(0.5)n+2u[n− 1] (e) x[n] = (n + 1)(0.5)nu[n] (f) x[n] = (0.5)−nu[−n]

[Hints and Suggestions: Pick appropriate limits in the defining summation and simplify using tables.
For (a), (c) and (d), (0.5)n+2 = (0.25)(0.5)n. For (b), (0.5)2n = (0.25)n. For (e), use superposition.
For (f), use the change of variable n → −n.]

5.3 (Properties) The DTFT of x[n] is X(F ) =
4

2− e−j2πF
. Find the DTFT of the following signals

without first computing x[n].

(a) y[n] = x[n− 2] (b) d[n] = nx[n]
(c) p[n] = x[−n] (d) g[n] = x[n]− x[n− 1]
(e) h[n] = x[n] ? x[n] (f) r[n] = x[n]ejnπ

(g) s[n] = x[n]cos(nπ) (h) v[n] = x[n− 1] + x[n + 1]

[Hints and Suggestions: Use properties such as shifting for (a), times-n for (b), folding for (c),
superposition for (d) and (h), convolution for (e), frequency shift for (f), and modulation for (g).]

5.4 (Properties) The DTFT of the signal x[n] = (0.5)nu[n] is X(F ). Find the time signal corresponding
to the following transforms without first computing X(F ).
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(a) Y (F ) = X(−F ) (b) G(F ) = X(F − 0.25)
(c) H(F ) = X(F + 0.5) + X(F − 0.5) (d) P (F ) = X ′(F )
(e) R(F ) = X2(F ) (f) S(F ) = X(F ) ?©X(F )
(g) D(F ) = X(F )cos(4πF ) (h) T (F ) = X(F + 0.25)−X(F − 0.25)

[Hints and Suggestions: Use properties such as folding for (a), frequency shift for (b), superposition
for (c) and (h), times-n for (d), convolution for (e), multiplication for (f), and modulation for (g).]

5.5 (DTFT) Compute the DTFT of the following signals.

(a) x[n] = 2−nu[n] (b) y[n] = 2nu[−n]
(c) g[n] = 0.5|n| (d) h[n] = 0.5|n|(u[n + 1]− u[n− 2])
(e) p[n] = (0.5)n cos(0.5nπ)u[n] (f) q[n] = cos(0.5nπ)(u[n + 5]− u[n− 6])

[Hints and Suggestions: In (a), 2−n = (0.5)n. In (b), use the folding property on x[n]. In (c),
x[n] = (0.5)nu[n]+(0.5)−nu[−n]−δ[n]. In (d), find the 3-sample sequence first. In (e), use modulation.
In (f), use modulation on u[n + 5]− u[n− 6] = rect(0.1n).]

5.6 (DTFT) Compute the DTFT of the following signals.

(a) x[n] = sinc(0.2n) (b) h[n] = sin(0.2nπ) (c) g[n] = sinc2(0.2n)

[Hints and Suggestions: In (a), X(F ) is a rect function. In (b), X(F ) is an impulse pair. In (c),
G(F ) = X(F ) ?©X(F ) is a triangular pulse (the periodic convolution requires no wraparound).]

5.7 (DTFT) Compute the DTFT of the following signals in the form A(F )eφ(F ) and plot the amplitude
spectrum A(F ).

(a) x[n] = δ[n + 1] + δ[n− 1] (b) x[n] = δ[n + 1]− δ[n− 1]
(c) x[n] = δ[n + 1] + δ[n] + δ[n− 1] (d) x[n] = u[n + 1]− u[n− 1]
(e) x[n] = u[n + 1]− u[n− 2] (f) x[n] = u[n]− u[n− 4]

[Hints and Suggestions: Use ejθ + e−jθ = 2 cos θ and ejθ − e−jθ = j2 sin θ to simplify the results.

In (d), use x[n] = {1,
⇓
1} and extract ejπF before simplifying. In (f), use x[n] = {⇓1, 1, 1} and extract

e−j2πF before simplifying.]

5.8 (Properties) The DTFT of a real signal x[n] is X(F ). How is the DTFT of the following signals
related to X(F )?

(a) y[n] = x[−n] (b) g[n] = x[n] ? x[−n]
(c) r[n] = x[n/4] (zero interpolation) (d) s[n] = (−1)nx[n]
(e) h[n] = (j)nx[n] (f) v[n] = cos(2nπF0)x[n]
(g) w[n] = cos(nπ)x[n] (h) z[n] = [1 + cos(nπ)]x[n]
(i) b[n] = (−1)n/2x[n] (j) p[n] = ejnπx[n− 1]

[Hints and Suggestions: In (c), R(F ) is a compressed version. In (d), use frequency shifting. In (e)
and (i), use frequency shifting with jn = (−1)n/2 = ejnπ/2. In (h), use superposition and modulation.
In (j), use a time shift followed by a frequency shift.]

5.9 (Properties) Let x[n] = tri(0.2n) and let X(F ) be its DTFT. Compute the following without
evaluating X(F ).

(a) The DTFT of the odd part of x[n]
(b) The value of X(F ) at F = 0 and F = 0.5
(c) The phase of X(F )
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(d) The phase of the DTFT of x[−n]

(e) The integral
∫ 0.5

−0.5

X(F ) dF

(f) The integral
∫ 0.5

−0.5

X(F − 0.5) dF

(g) The integral
∫ 0.5

−0.5

|X(F )|2 dF

(h) The derivative
dX(F )

dF

(i) The integral
∫ 0.5

−0.5

∣∣∣∣
dX(F )

dF

∣∣∣∣
2

dF

[Hints and Suggestions: For (a), (c) and (d), note that x[n] has even symmetry. In (e), find x[0].
In (f), find (−1)nx[n] at n = 0. In (g), use Parseval’s theorem. In (h), use −j2πnx[n] ⇔ X ′(F ).]

5.10 (DTFT of Periodic Signals) Find the DTFT of the following periodic signals with N samples per
period.

(a) x[n] = {⇓1, 1, 1, 1, 1}, N = 5 (b) x[n] = {⇓1, 1, 1, 1}, N = 4
(c) x[n] = (−1)n (d) x[n] = 1 (n even) and x[n] = 0 (n odd)

[Hints and Suggestions: Find the N -sample sequence 1
N X(F ))|F=k/N , k = 0, 1, . . . N − 1 to set up

Xp(F ) =
∑

X[k]δ(F − k/N). In part (c), x[n] = {⇓1,−1}, N = 2. In part (d), x[n] = {⇓1, 0}, N = 2.]

5.11 (IDTFT) Compute the IDTFT x[n] of the following X(F ) described over |F | ≤ 0.5.

(a) X(F ) = rect(2F ) (b) X(F ) = cos(πF ) (c) X(F ) = tri(2F )

[Hints and Suggestions: In (a), use rect(F/FC) ⇔ 2FCsinc(2nFC). In (b), simplify the defining
IDTFT relation. In (c), use rect(2F ) ?©rect(2F ) = 0.5tri(2F ) and the results of (a).]

5.12 (Properties) Confirm that the DTFT of x[n] = nαnu[n], using the following methods, gives identical
results.

(a) From the defining relation for the DTFT
(b) From the DTFT of y[n] = αnu[n] and the times-n property
(c) From the convolution result αnu[n] ? αnu[n] = (n + 1)αnu[n + 1] and the shifting property
(d) From the convolution result αnu[n] ? αnu[n] = (n + 1)αnu[n + 1] and superposition

5.13 (Properties) Find the DTFT of the following signals using the approach suggested.

(a) Starting with the DTFT of u[n], show that the DTFT of x[n] = sgn[n] is X(F ) = −j cot(πF ).
(b) Starting with rect(n/2N) ⇔ (2N + 1) sinc[(2N+1)F ]

sincF , use the convolution property to find the
DTFT of x[n] = tri(n/N).

(c) Starting with rect(n/2N) ⇔ (2N + 1) sinc[(2N+1)F ]
sincF , use the modulation property to find the

DTFT of x[n] = cos(nπ/2N)rect(n/2N).

[Hints and Suggestions: In part (a), note that sgn[n] = u[n]−u[−n] and simplify the DTFT result.
In part (b), start with rect( n

2N ) ? rect( n
2N ) = Mtri( n

M ) where M = 2N + 1.]
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5.14 (Spectrum of Discrete Periodic Signals) Sketch the DTFT magnitude spectrum and phase
spectrum of the following signals over |F | ≤ 0.5.

(a) x[n] = cos(0.5nπ)
(b) y[n] = cos(0.5nπ) + sin(0.25nπ)
(c) h[n] = cos(0.5nπ)cos(0.25nπ)

[Hints and Suggestions: Over the principal period, the magnitude spectrum of each sinusoid is an
impulse pair (with strengths that equal half the peak value) and the phase shows odd symmetry. For
part (c), use cos α cosβ = 0.5 cos(α + β) + 0.5 cos(α− β) to simplify h[n]. ]

5.15 (DTFT) Compute the DTFT of the following signals and sketch the magnitude and phase spectrum
over −0.5 ≤ F ≤ 0.5.

(a) x[n] = cos(0.4nπ) (b) x[n] = cos(0.2nπ + π
4 )

(c) x[n] = cos(n) (d) x[n] = cos(1.2nπ + π
4 )

(e) x[n] = cos(2.4nπ) (f) x[n] = cos2(2.4nπ)

[Hints and Suggestions: Over the principal period, the magnitude spectrum of each sinusoid is an
impulse pair (with strengths that equal half the peak value) and the phase shows odd symmetry. For
part (f), use cos2 α = 0.5 + 0.5 cos 2α and use its frequency in the principal period. ]

5.16 (DTFT) Compute the DTFT of the following signals and sketch the magnitude and phase spectrum
over −0.5 ≤ F ≤ 0.5.

(a) x[n] = sinc(0.2n) (b) y[n] = sinc(0.2n)cos(0.4nπ)
(c) g[n] = sinc2(0.2n) (d) h[n] = sinc(0.2n)cos(0.1nπ)
(e) p[n] = sinc2(0.2n)cos(0.4nπ) (f) q[n] = sinc2(0.2n)cos(0.2nπ)

[Hints and Suggestions: In (a), X(F ) is a rect function. In (c), G(F ) = X(F ) ?©X(F ) is a triangular
pulse (the periodic convolution requires no wraparound). In (b), (d), (e), and (f) use modulation (and
add the images if there is overlap).]

5.17 (System Representation) Find the transfer function H(F ) and the system difference equation for
the following systems described by their impulse response h[n].

(a) h[n] = ( 1
3 )nu[n] (b) h[n] = [1− ( 1

3 )n]u[n]
(c) h[n] = n( 1

3 )nu[n] (d) h[n] = 0.5δ[n]
(e) h[n] = δ[n]− ( 1

3 )nu[n] (f) h[n] = [( 1
3 )n + ( 1

2 )n]u[n]

[Hints and Suggestions: For the difference equation, set up H(F ) as the ratio of polynomials in
e−j2πF , equate with Y (F )

X(F ) , cross-multiply and use the shifting property to convert to the time domain.]

5.18 (System Representation) Find the transfer function and impulse response of the following systems
described by their difference equation.

(a) y[n] + 0.4y[n− 1] = 3x[n] (b) y[n]− 1
6y[n− 1]− 1

6y[n− 2] = 2x[n] + x[n− 1]
(c) y[n] = 0.2x[n] (d) y[n] = x[n] + x[n− 1] + x[n− 2]

[Hints and Suggestions: Find H(F ) = Y (F )
X(F ) after taking the DTFT and collecting terms in X(F )

and Y (F ). In (b), evaluate h[n] after expanding H(F ) by partial fractions.]

5.19 (System Representation) Set up the system difference equation for the following systems described
by their transfer function.
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(a) H(F ) =
6ej2πF

3ej2πF + 1
(b) H(F ) =

3
e−j2πF + 2

− e−j2πF

e−j2πF + 3

(c) H(F ) =
6

1− 0.3e−j2πF
(d) H(F ) =

6ej2πF + 4ej4πF

(1 + 2ej2πF )(1 + 4ej2πF )

[Hints and Suggestions: Set up H(F ) as the ratio of polynomials in e−j2πF , equate with Y (F )
X(F ) ,

cross-multiply and use the shifting property to convert to the time domain.]

5.20 (Steady-State Response) Consider the filter y[n] + 0.25y[n− 2] = 2x[n] + 2x[n− 1]. Find the filter
transfer function H(F ) of this filter and use this to compute the steady-state response to the following
inputs.

(a) x[n] = 5 (b) x[n] = 3 cos(0.5nπ + π
4 )− 6 sin(0.5nπ − π

4 )
(c) x[n] = 3 cos(0.5nπ)u[n] (d) x[n] = 2 cos(0.25nπ) + 3 sin(0.5nπ)

[Hints and Suggestions: Set up H(F ). For each sinusoidal component, find the frequency F0,
evaluate the gain and phase of H(F0) and obtain the output. In (b) and (d), use superposition.]

5.21 (Response of Digital Filters) Consider the 3-point averaging filter described by the difference
equation y[n] = 1

3 (x[n] + x[n− 1] + x[n− 2]).

(a) Find its impulse response h[n].
(b) Find and sketch its frequency response H(F ).
(c) Find its response to x[n] = cos(nπ

3 + π
4 ).

(d) Find its response to x[n] = cos(nπ
3 + π

4 ) + sin(nπ
3 + π

4 ).
(e) Find its response to x[n] = cos(nπ

3 + π
4 ) + sin( 2nπ

3 + π
4 ).

[Hints and Suggestions: For (c)–(e), for each sinusoidal component, find the frequency F0, evaluate
the gain and phase of H(F0) and obtain the output. In (d) and (e), use superposition.]

5.22 (Frequency Response) Consider a system whose frequency response H(F ) in magnitude/phase
form is H(F ) = A(F )ejφ(F ). Find the response y[n] of this system for the following inputs.

(a) x[n] = δ[n] (b) x[n] = 1 (c) x[n] = cos(2nπF0) (d) x[n] = (−1)n

[Hints and Suggestions: For (d), note that (−1)n = cos(nπ).]

5.23 (Frequency Response) Consider a system whose frequency response is H(F ) = 2 cos(πF )e−jπF .
Find the response y[n] of this system for the following inputs.

(a) x[n] = δ[n] (b) x[n] = cos(0.5nπ)
(c) x[n] = cos(nπ) (d) x[n] = 1
(e) x[n] = ej0.4nπ (f) x[n] = (j)n

[Hints and Suggestions: For (a), use 2 cos θ = ejθ + e−jθ and find h[n]. For the rest, evaluate H(F )
at the frequency of each input to find the output. For (f), note that j = ejπ/2.]

5.24 (Frequency Response) The signal x[n] = {⇓1, 0.5} is applied to a digital filter and the resulting
output is y[n] = δ[n]− 2δ[n− 1]− δ[n− 2].

(a) What is the frequency response H(F ) of this filter?
(b) Find the impulse response h[n] of this filter.
(c) Find the filter difference equation.
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[Hints and Suggestions: Set up H(F ) = Y (F )
X(F ) and cross-multiply to establish the system difference

equation. Find h[n] by first writing H(F ) as the sum of three terms.]

5.25 (Frequency Response) Consider the 2-point averager y[n] = 0.5x[n] + 0.5x[n− 1].

(a) Sketch its amplitude spectrum.
(b) Find its response to the input x[n] = cos(nπ/2).
(c) Find its response to the input x[n] = δ[n].
(d) Find its response to the input x[n] = 1 and x[n] = 3 + 2δ[n]− 4 cos(nπ/2).

(e) Show that its half-power frequency is given by FC =
cos−1(

√
0.5)

π
.

(f) What is the half-power frequency of a cascade of N such 2-point averagers?

[Hints and Suggestions: For (a), extract the factor e−jπF in H(F ) to get H(F ) = A(F )ejφ(F ) and
sketch A(F ). For (b), find h[n]. For (c), evaluate H(F ) at the frequency of x[n] to find the output.
For (d), use superposition. For (e), use |A(F )| = √

0.5. For (f), start with |HN (F )| = |H(F )|N .]

5.26 (Frequency Response) Consider the filter of Figure P5.26. Find the frequency response of the
overall system and the difference equation relating y[n] and x[n] and examine the system stability if
the impulse response h1[n] of the filter in the forward path is

(a) h1[n] = δ[n]− δ[n− 1]. (b) h1[n] = 0.5δ[n] + 0.5δ[n− 1].

[n]x [n]y

−1z

+ Σ
−

Filter

Figure P5.26 Filter realization for Problem 5.26

[Hints and Suggestions: Note that y[n] = (x[n]− y[n− 1]) ? h1[n]. Use this to set up the difference
equation, check stablity and find H(F ).]

5.27 (Interconnected Systems) Consider two systems with impulse response h1[n] = δ[n] + αδ[n − 1]
and h2[n] = (0.5)nu[n]. Find the frequency response and impulse response of the combination if

(a) The two systems are connected in parallel with α = 0.5.
(b) The two systems are connected in parallel with α = −0.5.
(c) The two systems are connected in cascade with α = 0.5.
(d) The two systems are connected in cascade with α = −0.5.

[Hints and Suggestions: In each case, find h[n] for the combination to find H(F ). You may also
work directly in the frequency domain.]

5.28 (Interconnected Systems) Consider two systems with impulse response h1[n] = δ[n] + αδ[n − 1]
and h2[n] = (0.5)nu[n]. Find the response of the overall system to the input x[n] = cos(0.5nπ) if

(a) The two systems are connected in parallel with α = 0.5.
(b) The two systems are connected in parallel with α = −0.5.
(c) The two systems are connected in cascade with α = 0.5.
(d) The two systems are connected in cascade with α = −0.5.
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[Hints and Suggestions: In each case, find H(F ) for the combination and evaluate at the frequency
of the input to set up the output.]

5.29 (DTFT of Periodic Signals) Find the DTFT of the following periodic signals described over one
period, with N samples per period.

(a) x[n] = {⇓1, 0, 0, 0, 0}, N = 5

(b) x[n] = {⇓1, 0, −1, 0}, N = 4

(c) x[n] = {⇓3, 2, 1, 2}, N = 4

(d) x[n] = {⇓1, 2, 3}, N = 3

[Hints and Suggestions: Find the N -sample sequence 1
N X(F ))|F=k/N , k = 0, 1, . . . N − 1 to set up

Xp(F ) =
∑

X[k]δ(F − k/N).]

5.30 (System Response to Periodic Signals) Consider the 3-point moving average filter described by
y[n] = x[n] + x[n − 1] + x[n − 2]. Find one period of its periodic response to the following periodic
inputs.

(a) x[n] = {⇓1, 0, 0, 0, 0}, N = 5

(b) x[n] = {⇓1, 0, −1, 0}, N = 4

(c) x[n] = {⇓3, 2, 1}, N = 3

(d) x[n] = {⇓1, 2}, N = 2

[Hints and Suggestions: Find h[n], create its N -sample periodic extension, and find its periodic
convolution with the input (you may use regular convolution and wraparound).]

5.31 (DTFT of Periodic Signals) One period of a periodic signal is given by x[n] = {⇓1, −2, 0, 1}.
(a) Find the DTFT of this periodic signal.
(b) The signal is passed through a filter whose impulse response is h[n] = sinc(0.8n). What is the

filter output?

[Hints and Suggestions: In (a), find the N -sample sequence 1
N X(F ))|F=k/N , k = 0, 1, . . . N − 1 to

set up Xp(F ) =
∑

X[k]δ(F − k/N). In (b), h[n] is an ideal filter that passes frequencies in the range
−0.4 ≤ F < 0.4 with a gain of 1.25. So, extend Xp(F ) to the principal range −0.5 ≤ F < 0.5. Each
impulse pair in Xp(F ) (in the principal range) passed by the filter is a sinusoid.]

5.32 (System Response to Periodic Signals) Consider the filter y[n] − 0.5y[n − 1] = 3x[n]. Find its
response to the following periodic inputs.

(a) x[n] = {⇓4, 0, 2, 1}, N = 4
(b) x[n] = (−1)n

(c) x[n] = 1 (n even) and x[n] = 0 (n odd)
(d) x[n] = 14(0.5)n(u[n]− u[n− (N + 1)]), N = 3

[Hints and Suggestions: h[n] = 3(0.5)nu[n]. Its periodic extension is hp[n] = 3(0.5)n/(1 − 0.5N )
with period N . Find the periodic convolution of hp[n] and one period of x[n] (by regular convolution

and wraparound). For (b), x[n] = {⇓1,−1} (N = 2). For (c), x[n] = {⇓1, 0} (N = 2).]
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5.33 (System Response to Periodic Signals) Find the response if a periodic signal whose one period

is x[n] = {⇓4, 3, 2, 3} (with period N = 4) is applied to the following filters.

(a) h[n] = sinc(0.4n)
(b) H(F ) = tri(2F )

[Hints and Suggestions: Find the N -sample sequence 1
N X(F ))|F=k/N , k = 0, 1, . . . N − 1 to set up

Xp(F ) =
∑

X[k]δ(F − k/N) and extend to the principal range −0.5 ≤ F < 0.5. Each impulse pair in
Xp(F ) (in the principal range) passed by the filter defines a sinusoid. In (a), H(F ) = 2.5rect(F/0.4).]

5.34 (Sampling, Filtering, and Aliasing) The sinusoid x(t) = cos(2πf0t) is sampled at 1 kHz to yield
the sampled signal x[n]. The signal x[n] is passed through a 2-point averaging filter whose difference
equation is y[n] = 0.5(x[n] + x[n− 1]). The filtered output y[n] is reconstructed using an ideal lowpass
filter with a cutoff frequency of 0.5 kHz to generate the analog signal y(t).

(a) Find an expression for y(t) if f0 = 0.2 kHz.
(b) Find an expression for y(t) if f0 = 0.5 kHz.
(c) Find an expression for y(t) if f0 = 0.75 kHz.

[Hints and Suggestions: In part (c), y(t) has a lower frequency lower than 750 Hz due to aliasing.]

5.35 (The Fourier Transform and DTFT) The analog signal x(t) = e−αtu(t) is ideally sampled at the

sampling rate S to yield the analog impulse train xi(t) =
∞∑

k=−∞
x(t)δ(t− kts) where ts = 1/S.

(a) Find the Fourier transform X(f).
(b) Find the Fourier transform Xi(f).
(c) If the sampled version of x(t) is x[n], find the DTFT X(F ).
(d) How is X(F ) related to Xi(f)?
(e) Under what conditions is X(F ) related to X(f)?

[Hints and Suggestions: In (b), xi(t) = δ(t)+ δ(t− ts)+ δ(t−2ts)+ · · ·. So, find Xi(f) and simplify
the geometric series. In (c), use x[n] = e−αntsu[n] = (e−αts)nu[n]. In (d), use F = fts.]

5.36 (Ideal Filter Concepts) Let H1(F ) be an ideal lowpass filter with a cutoff frequency of F1 = 0.2
and let H2(F ) be an ideal lowpass filter with a cutoff frequency of F2 = 0.4. Make a block diagram of
how you could use these filters to implement the following and express their transfer function in terms
of H1(F ) and/or H2(F ).

(a) An ideal highpass filter with a cutoff frequency of FC = 0.2
(b) An ideal highpass filter with a cutoff frequency of FC = 0.4
(c) An ideal bandpass filter with a passband covering 0.2 ≤ F ≤ 0.4
(d) An ideal bandstop filter with a stopband covering 0.2 ≤ F ≤ 0.4

[Hints and Suggestions: In (a), use H(F ) = 1−H1(F ) to set up the block diagram.]

5.37 (Echo Cancellation) A microphone, whose frequency response is limited to 5 kHz, picks up not only
a desired signal x(t) but also its echoes. However, only the first echo, arriving after td = 1.25 ms, has
a significant amplitude (of α = 0.5) relative to the desired signal x(t).

(a) Set up an equation relating the analog output and analog input of the microphone.
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(b) The microphone signal is to be processed digitally in an effort to remove the echo. Set up a
difference equation relating the sampled output and sampled input of the microphone using an
arbitrary sampling rate S.

(c) Argue that if S equals the Nyquist rate, the difference equation for the microphone will contain
fractional delays and be difficult to implement.

(d) If the sampling rate S can be varied only in steps of 1 kHz, choose the smallest S that will ensure
integer delays and use it to find the difference equation of the microphone and describe the nature
of this filter.

(e) Set up the difference equation of an echo-canceling system that can recover the original signal
using the sampling rate of the previous part. Find its frequency response.

(f) If the microphone is cascaded with the echo-cancelling filter, what is the impulse response of the
cascaded system?

[Hints and Suggestions: In (a), y(t) = x(t) + αx(t − td). In (b), y[n] = x[n] + αx[n − N ] with
N = Std. In (d), choose the inverse system y[n] + αy[n−N ] = x[n]. In (f), note that HC(F ) = 1.]

5.38 (Modulation) A signal x[n] is modulated by cos(0.5nπ) to obtain the signal x1[n]. The modulated
signal x1[n] is filtered by a filter whose transfer function is H(F ) to obtain the signal y1[n].

(a) Sketch the spectra X(F ), X1(F ), and Y1(F ) if X(F ) = tri(4F ) and H(F ) = rect(2F ).
(b) The signal y1[n] is modulated again by cos(0.5nπ) to obtain the signal y2[n], and filtered by H(F )

to obtain y[n]. Sketch Y2(F ) and Y (F ).
(c) Are the signals x[n] and y[n] related in any way?

[Hints and Suggestions: In (a), the output is a version of X(f) truncated in frequency. In (b), the
output will show sinc distortion (due to the zero-order-hold).]

5.39 (Group Delay) Show that the group delay tg of a filter described by its transfer function H(F ) may
be expressed as

tg =
H ′

R(F )HI(F )−H ′
I(F )HR(F )

2π|H(F )|2

Here, H(F ) = HR(F )+jHI(F ) and the primed quantities describe derivatives with respect to F . This
result may be used to find the group delay of both FIR and FIR filters.

(a) Find the group delay of the FIR filter described by h[n] = {⇓α, 1}.
(b) Find the group delay of the FIR filter described by H(F ) = 1 + αe−j2πF .

(c) For an IIR filter described by H(F ) = N(F )
D(F ) , the overall group delay may be found as the

difference of the group delays of N(F ) and D(F ). Use this concept to find the group delay of

the filter given by H(F ) =
α + e−j2πF

1 + αe−j2πF
.

[Hints and Suggestions: Start with tg = − 1
2π

dφ(F )
dF

= − 1
2π

d

dF

[
tan−1 HI(F )

HR(F )

]
. For (a) and (b),

use the given expression to find tg. For (c), use the results from (a) and (b).]
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COMPUTATION AND DESIGN

5.40 (Interconnected Systems) The signal x[n] = cos(2πF0n) forms the input to a cascade of two

systems whose impulse response is described by h1[n] = {
⇓

0.25, 0.5, 0.25} and h2[n] = δ[n]− δ[n− 1].

(a) Generate and plot x[n] over 0 ≤ n ≤ 100 if F0 = 0.1. Can you identify its period from the plot?
(b) Let the output of the first system be fed to the second system. Plot the output of the each

system. Are the two outputs periodic? If so, do they have the same period? Explain.
(c) Reverse the order of cascading and plot the output of the each system. Are the two outputs

periodic? If so, do they have the same period? Does the order of cascading alter the overall
response? Should it?

(d) Let the first system be described by y[n] = x2[n]. Find and plot the output of each system in
the cascade. Repeat after reversing the order of cascading. Does the order of cascading alter the
intermediate response? Does the order of cascading alter the overall response? Should it?

5.41 (Frequency Response) This problem deals with the cascade and parallel connection of two FIR
filters whose impulse response is given by

h1[n] = {⇓1, 2, 1} h2[n] = {⇓2, 0, −2}
(a) Plot the frequency response of each filter and identify the filter type.
(b) The frequency response of the parallel connection of h1[n] and h2[n] is HP1(F ). If the second filter

is delayed by one sample and then connected in parallel with the first, the frequency response
changes to HP2(F ). It is claimed that HP1(F ) and HP2(F ) have the same magnitude and differ
only in phase. Use Matlab to argue for or against this claim.

(c) Obtain the impulse response hP1[n] and hP2[n] and plot their frequency response. Use Matlab
to compare their magnitude and phase. Do the results justify your argument? What type of
filters do hP1[n] and hP2[n] describe?

(d) The frequency response of the cascade of h1[n] and h2[n] is HC1(F ). If the second filter is delayed
by one sample and then cascaded with the first, the frequency response changes to HC2(F ). It
is claimed that HC1(F ) and HC2(F ) have the same magnitude and differ only in phase. Use
Matlab to argue for or against this claim.

(e) Obtain the impulse response hC1[n] and hC2[n] and plot their frequency response. Use Matlab
to compare their magnitude and phase. Do the results justify your argument? What type of
filters do hC1[n] and hC2[n] represent?

5.42 (Nonrecursive Forms of IIR Filters) We can only approximately represent an IIR filter by an FIR
filter by truncating its impulse response to N terms. The larger the truncation index N , the better is
the approximation. Consider the IIR filter described by y[n]− 0.8y[n− 1] = x[n].

(a) Find its impulse response h[n].
(b) Truncate h[n] to three terms to obtain hN [n]. Plot the frequency response H(F ) and HN (F ).

What differences do you observe?
(c) Truncate h[n] to ten terms to obtain hN [n]. Plot the frequency response H(F ) and HN (F ).

What differences do you observe?
(d) If the input to the original filter and truncated filter is x[n], will the greatest mismatch in the

response y[n] of the two filters occur at earlier or later time instants n?
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5.43 (Allpass Filters) Consider a lowpass filter with impulse response h[n] = (0.5)nu[n]. The input to
this filter is x[n] = cos(0.2nπ). We expect the output to be of the form y[n] = A cos(0.2nπ + θ).

(a) Find the values of A and θ.
(b) What should be the transfer function H1(F ) of a first-order allpass filter that can be cascaded with

the lowpass filter to correct for the phase distortion and produce the signal z[n] = B cos(0.2nπ)
at its output?

(c) What should be the gain of the allpass filter in order that z[n] = x[n]?

5.44 (Frequency Response of Averaging Filters) The averaging of data uses both FIR and IIR filters.
Consider the following averaging filters:

Filter 1: y[n] =
1
N

N−1∑

k=0

x[n− k] (N -point moving average)

Filter 2: y[n] =
2

N(N + 1)

N−1∑

k=0

(N − k)x[n− k] (N -point weighted moving average)

Filter 3: y[n]− αy[n− 1] = (1− α)x[n], α = N−1
N+1 (first-order exponential average)

(a) Confirm that the dc gain of each filter is unity. Which of these are FIR filters?
(b) Sketch the frequency response magnitude of each filter with N = 4 and N = 9. How will the

choice of N affect the averaging?
(c) To test your filters, generate the signal x[n] = 1−(0.6)n, 0 ≤ n ≤ 300, add some noise, and apply

the noisy signal to each filter and compare the results. Which filter would you recommend?
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Chapter 6

FILTER CONCEPTS

6.0 Scope and Objectives
This chapter introduces the terminology of filters and the time-domain and frequency-domain measures that
characterize them. It deals with the connections between various techniques of of digital filter analysis. It
discusses the graphical interpretation of the frequency response and introduces the concept of filter design
by pole-zero placement. It concludes by describing a variety of filters (such as minimum-phase, allpass, comb
and notch) that find use in digital signal processing.

6.1 Frequency Response and Filter Characteristics
Plots of the magnitude and phase of the transfer function against frequency are referred to collectively as the
frequency response. The frequency response is a very useful way of describing digital filters. We may often
get a fair idea of the filter behaviour in the frequency domain even without detailed plots of the frequency
response. The dc gain (at F = 0 or Ω = 0) and the high-frequency gain (at F = 0.5 or Ω = π) serve as a
useful starting point. For a lowpass filter, for example, whose gain typically decreases with frequency, we
should expect the dc gain to exceed the high-frequency gain. Other clues are provided by the coefficients
(and form) of the difference equation, the transfer function and the impulse response. The more complex
the filter (expression), the less likely it is for us to discern its nature by using only a few simple measures.

REVIEW PANEL 6.1
Finding the DC Gain and High-Frequency Gain
From H(z): Evaluate H(z) at z = 1 (for dc gain) and z = −1 (for high-frequency gain).
From H(F ) or H(Ω): Evaluate H(F ) at F = 0 and F = 0.5, or evaluate H(Ω) at Ω = 0 and Ω = π.
From impulse response: Evaluate

∑
h[n] = H(0) and

∑
(−1)nh[n] = H(F )|F=0.5 = H(Ω)|Ω=π.

From difference equation: For dc gain, take the ratio of the sum of the RHS and LHS coefficients.
For high-frequency gain, reverse the sign of alternate coefficients and then take the ratio of the sum.

6.1.1 Phase Delay and Group Delay

In the frequency domain, performance measures of digital filters are based on the magnitude (gain), phase
and delay. The phase delay and group delay of a digital filter with transfer function H(f) are defined by

tp(F0) = − 1
2π

H(F0)
F0

(phase delay) tg(F ) = − 1
2π

dH(F )
dF

(group delay) (6.1)
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6.1.2 Minimum-Phase

Consider a system described in factored form by

H(z) = K
(z − z1)(z − z2)(z − z3) · · · (z − zm)
(z − p1)(z − p2)(z − p3) · · · (z − pn)

(6.2)

If we replace K by −K, or a factor (z − α) by ( 1
z − α) or by 1−αz

z or by (1 − αz), the magnitude of
|Hp(F )| remains unchanged, and only the phase is affected. If K > 0 and all the poles and zeros of H(z)
lie inside the unit circle, H(z) is stable and defines a minimum-phase system. It shows the smallest
group delay (and the smallest deviation from zero phase) at every frequency among all systems with the
same magnitude response. A stable system is called mixed phase if some of its zeros lie outside the unit
circle and maximum phase if all its zeros lie outside the unit circle. Of all stable systems with the same
magnitude response, there is only one minimum-phase system.

REVIEW PANEL 6.2
All Poles and Zeros of a Minimum-Phase System Lie Inside the Unit Circle

EXAMPLE 6.1 (The Minimum-Phase Concept)
Consider the transfer function of the following systems:

H1(z) =
(z − 1

2 )(z − 1
4 )

(z − 1
3 )(z − 1

5 )
H2(z) =

(1− 1
2z)(z − 1

4 )
(z − 1

3 )(z − 1
5 )

H3(z) =
(1− 1

2z)(1− 1
4z)

(z − 1
3 )(z − 1

5 )

Each system has poles inside the unit circle and is thus stable. All systems have the same magnitude. Their
phase and delay are different, as shown Figure E6.1.
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Figure E6.1 Response of the systems for Example 6.1

The phase response confirms that H1(z) is a minimum-phase system with no zeros outside the unit circle,
H2(z) is a mixed-phase system with one zero outside the unit circle, and H3(z) is a maximum-phase system
with all its zeros outside the unit circle.

6.1.3 Minimum-Phase Filters from the Magnitude Spectrum

The design of many digital filters is often based on a specified magnitude response |Hp(F )|. The phase
response is then selected to ensure a causal, stable system. The transfer function of such a system is unique
and may be found by writing its magnitude squared function |Hp(F )|2 as

|Hp(F )|2 = Hp(F )Hp(−F ) = H(z)H(1/z)|z→exp(j2πF ) (6.3)

c©Ashok Ambardar, September 1, 2003



218 Chapter 6 Filter Concepts

From |Hp(F )|2, we can reconstruct HT (z) = H(z)H(1/z), which displays conjugate reciprocal symmetry.
For every root rk, there is a root at 1/r∗k. We thus select only the roots lying inside the unit circle to extract
the minimum-phase transfer function H(z). The following example illustrates the process.

EXAMPLE 6.2 (Finding the Minimum-Phase Filter)

Find the minimum-phase transfer function H(z) corresponding to |HpΩ)|2 =
5 + 4 cos Ω
17 + 8 cos Ω

.

We use Euler’s relation to give |Hp(Ω)|2 =
5 + 2ejΩ + 2e−jΩ

17 + 4ejΩ + 4e−jΩ
. Upon substituting ejΩ → z, we obtain

HT (z) as

HT (z) = H(z)H(1/z) =
5 + 2z + 2/z

17 + 4z + 4/z
=

2z2 + 5z + 2
4z2 + 17z + 4

=
(2z + 1)(z + 2)
(4z + 1)(z + 4)

To extract H(z), we pick the roots of HT (z) that correspond to |z| < 1. This yields

H(z) =
(2z + 1)
(4z + 1)

= 0.5
(z + 0.5)
(z + 0.25)

We find that |H(z)|z=1 = |Hp(Ω)|Ω=0 = 0.6, implying identical dc gains.

6.1.4 The Frequency Response: A Graphical View

The frequency response of an LTI system may also be found by evaluating its transfer function H(z) for
values of z = ej2πF = ejΩ (on the unit circle). The quantity Ω = 2πF describes the angular orientation.
Figure 6.1 shows how the values of z, Ω, and F are related on the unit circle.

z| | = 1

Ω=2π F

=−0.25F

j Ωez =

Im[ z ]

=0.5F

=0.25F

Ω=0=1z
=0F Re[ z ]z= −1

z= j−

z= j

Ω = −π/2

Ω = π

Ω = π/2

1

Unit circle

Figure 6.1 Relating the variables z, F , and Ω through the unit circle

REVIEW PANEL 6.3
The Frequency Response Is the z-Transform Evaluated on the Unit Circle
It corresponds to the DTFT: H(F ) = H(z)

∣∣
z=ej2πF or H(Ω) = H(z)

∣∣
z=ejΩ
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The factored form or pole-zero plot of H(z) is quite useful if we want a qualitative picture of its frequency
response H(F ) or H(Ω). Consider the stable transfer function H(z) given in factored form by

H(z) =
8(z − 1)

(z − 0.6− j0.6)(z − 0.6 + j0.6)
(6.4)

Its frequency response H(Ω) and magnitude |H(Ω)| at Ω = Ω0 are given by

H(Ω0) =
8(ejΩ0 − 1)

(ejΩ0 − 0.6− j0.6)(ejΩ0 − 0.6 + j0.6]
=

8N1

D1D2
(6.5)

|H(Ω0)| = 8
|N1|

|D1||D2| = (gain factor)
product of distances from zeros
product of distances from poles

(6.6)

Analytically, the magnitude |H(Ω0)| is the ratio of the magnitudes of each term. Graphically, the complex
terms may be viewed in the z-plane as vectors N1, D1, and D2, directed from each pole or zero location
to the location Ω = Ω0 on the unit circle corresponding to z = ejΩ0 . The gain factor times the ratio of the
vector magnitudes (the product of distances from the zeros divided by the product of distances from the
poles) yields |H(Ω0)|, the magnitude at Ω = Ω0. The difference in the angles yields the phase at Ω = Ω0.
The vectors and the corresponding magnitude spectrum are sketched for several values of Ω in Figure 6.2.

[z]Re

[z]Im

N1

D1

D2
N1

D2

D1

D2

N1

D1A
B

C
A

B
C

0.5
π

F
Ω

1/8
π/4

H(F)

Figure 6.2 Graphical interpretation of the frequency response

A graphical evaluation can yield exact results but is much more suited to obtaining a qualitative estimate
of the magnitude response. We observe how the vector ratio N1/D1D2 influences the magnitude as Ω is
increased from Ω = 0 to Ω = π. For our example, at Ω = 0, the vector N1 is zero, and the magnitude is zero.
For 0 < Ω < π/4 (point A), both |N1| and |D2| increase, but |D1| decreases. Overall, the response is small
but increasing. At Ω = π/4 , the vector D1 attains its smallest length, and we obtain a peak in the response.
For π

4 < Ω < π (points B and C), |N1| and |D1| are of nearly equal length, while |D2| is increasing. The
magnitude is thus decreasing. The form of this response is typical of a bandpass filter.

6.1.5 The Rubber Sheet Analogy

If we imagine the z-plane as a rubber sheet, tacked down at the zeros of H(z) and poked up to an infinite
height at the pole locations, the curved surface of the rubber sheet approximates the magnitude of H(z) for
any value of z, as illustrated in Figure 6.3. The poles tend to poke up the surface and the zeros try to pull
it down. The slice around the unit circle (|z| = 1) approximates the frequency response H(Ω).

EXAMPLE 6.3 (Filters and Pole-Zero Plots)

Identify the filter types corresponding to the pole-zero plots of Figure E6.3.
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Figure 6.3 A plot of the magnitude of H(z) = 8(z − 1)/(z2 − 1.2z + 0.72) in the z-plane
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Figure E6.3D Pole-zero plots for Example 6.3(d)

(a) For filter 1, the vector length of the numerator is always unity, but the vector length of the denominator
keeps increasing as we increase frequency (the points A and B, for example). The magnitude (ratio of
the numerator and denominator lengths) thus decreases with frequency and corresponds to a lowpass
filter.

(b) For filter 2, the vector length of the numerator is always unity, but the vector length of the denominator
keeps decreasing as we increase the frequency (the points A and B, for example). The magnitude
increases with frequency and corresponds to a highpass filter.

(c) For filter 3, the magnitude is zero at Ω = 0. As we increase the frequency (the points A and B, for
example), the ratio of the vector lengths of the numerator and denominator increases, and this also
corresponds to a highpass filter.

(d) For filter 4, the magnitude is zero at the zero location Ω = Ω0. At any other frequency (the point B,
for example), the ratio of the vector lengths of the numerator and denominator are almost equal and
result in almost constant gain. This describes a bandstop filter.

6.2 FIR Filters and Linear-Phase
The DTFT of a filter whose impulse response is symmetric about the origin is purely real or purely imaginary.
The phase of such a filter is thus piecewise constant. If the symmetric sequence is shifted (to make it causal,
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for example), its phase is augmented by a linear-phase term and becomes piecewise linear. A filter whose
impulse response is symmetric about its midpoint is termed a (generalized) linear-phase filter. Linear phase
is important in filter design because it results in a pure time delay with no amplitude distortion. The
transfer function of a causal linear-phase filter may be written as H(F ) = A(F )ej2παF (for even symmetry)
or H(F ) = jA(F )ej2παF = A(F )ej(2παF+ π

2 ) (for odd symmetry), where the real quantity A(F ) is the
amplitude spectrum and α is the (integer or half-integer) index corresponding to the midpoint of its impulse
response h[n]. The easiest way to obtain this form is to first set up an expression for H(F ), then extract the
factor ej2παF from H(F ), and finally simplify using Euler’s relation.

REVIEW PANEL 6.4
A Linear-Phase Sequence Is Symmetric About Its Midpoint
If h[n] is a linear-phase sequence with its midpoint at the (integer or half-integer) index α, then
H(F ) = A(F )ej2παF (for even symmetric h[n]) and H(F ) = jA(F )ej2παF (for odd symmetric h[n]).
To find A(F ): Set up H(F ), extract ej2παF from H(F ), and simplify using Euler’s relation.

6.2.1 Pole-Zero Patterns of Linear-Phase Filters

Linear phase plays an important role in the design of digital filters because it results in a constant delay with
no amplitude distortion. An FIR filter whose impulse response sequence is symmetric about the midpoint
is endowed with linear phase and constant delay. The pole and zero locations of such a sequence cannot be
arbitrary. The poles must lie at the origin if the sequence h[n] is to be of finite length. Sequences that are
symmetric about the origin also require h[n] = ±h[−n] and thus H(z) = ±H(1/z). The zeros of a linear-
phase sequence must occur in reciprocal pairs (and conjugate pairs if complex to ensure real coefficients)
and exhibit what is called conjugate reciprocal symmetry. This is illustrated in Figure 6.4.

r*/1

r*

/1 r

/1 r

for a complex zero for a real zero

ReRe

Im Im

display conjugate reciprocal symmetry.

Conjugate reciprocal symmetry

The zeros of a linear-phase sequence

r r

Figure 6.4 Conjugate reciprocal symmetry

Each complex zero forms part of a quadruple because it is paired with its conjugate and its reciprocal
with the following exceptions. Zeros at z = 1 or at z = −1 can occur singly because they form their own
reciprocal and their own conjugate. Zeros on the real axis must occur in pairs with their reciprocals (with no
conjugation required). Zeros on the unit circle (except at z = ±1) must occur in pairs with their conjugates
(which also form their reciprocals). If there are no zeros at z = 1, a linear-phase sequence is always even
symmetric about its midpoint. For odd symmetry about the midpoint, there must be an odd number of
zeros at z = 1.

The frequency response of a linear-phase filter may be written as H(F ) = A(F )ej2παF (for even symme-
try) or H(F ) = jA(F )ej2παF = A(F )ej(2παF+ π

2 ) (for odd symmetry), where A(F ) is real.
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REVIEW PANEL 6.5
Characteristics of a Linear-Phase Filter
1. The impulse response h[n] is symmetric about its midpoint.
2. H(F ) = A(F )ej2παF (for even symmetric h[n]) and H(F ) = jA(F )ej2παF (for odd symmetric h[n]).
3. All poles are at z = 0 (for finite length).
4. Zeros occur in conjugate reciprocal quadruples, in general. Zeros on unit circle occur in conjugate pairs.

Zeros on real axis occur in reciprocal pairs. Zeros at z = 1 or z = −1 can occur singly.
5. Odd symmetry about midpoint if an odd number of zeros at z = 1 (even symmetry otherwise).
6. If h[n] = ±h[−n], then H(z) = ±H( 1

z ) (symmetry about the origin n = 0).

EXAMPLE 6.4 (Linear-Phase Filters)

(a) Does H(z) = 1 + 2z−1 + 2z−2 + z−3 describe a linear-phase filter?

We express H(z) as a ratio of polynomials in z to get

H(z) =
z3 + 2z2 + 2z + 1

z3

All its poles are at z = 0. Its zeros are at z = −1 and z = −0.5 ± j0.866 are consistent with a
linear-phase filter because the real zero at z = −1 can occur singly and the complex conjugate pair of
zeros lie on the unit circle.

Since H(z) 6= ±H(1/z), the impulse response h[n] cannot be symmetric about the origin n = 0 (even
though it must be symmetric about its midpoint).

We could reach the same conclusions by recognizing that h[n] = {⇓1, 2, 2, 1} describes a linear-phase
sequence with even symmetry about its midpoint n = 1.5.

(b) Let h[n] = δ[n + 2] + 4.25δ[n] + δ[n− 2]. Sketch the pole-zero plot of H(z).

We find H(z) = z2 +4.25+ z−2. Since h[n] is even symmetric about n = 0 with h[n] = h[−n], we must
have H(z) = H(1/z). This is, in fact, the case.

We express H(z) as a ratio of polynomials in factored form to get

H(z) =
z4 + 4.25z2 + 1

z2
=

(z + j0.5)(z − j0.5)(z + j2)(z − j2)
z2

The pole-zero plot is shown in Figure E6.4 (left panel). All its poles are at z = 0. The four zeros at
z = j0.5, z = −j2, z = −j0.5, and z = j2 display conjugate reciprocal symmetry.
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Figure E6.4 Pole-zero plots of the filters for Example 6.4(b and c)

(c) Sketch the pole-zero plot for H(z) = z2 + 2.5z − 2.5z−1 − z−2. Is this a linear-phase filter?

We note that H(z) = −H(1/z). This means that h[n] = −h[−n]. In fact, h[n] = {1, 2.5,
⇓
0, −2.5, −1}.

This describes a linear-phase filter.

With H(z) described as a ratio of polynomials in factored form, we get

H(z) =
(z − 1)(z + 1)(z + 0.5)(z + 2)

z2

The pole-zero plot is shown in Figure E6.4 (right panel). All its poles are at z = 0. There is a pair of
reciprocal zeros at z = −0.5 and z = −2. The two zeros at z = −1 and z = 1 occur singly.

6.2.2 Types of Linear-Phase Sequences

Linear-phase sequences fall into four types. A type 1 sequence has even symmetry and odd length. A type 2
sequence has even symmetry and even length. A type 3 sequence has odd symmetry and odd length. A
type 4 sequence has odd symmetry and even length.

To identify the type of sequence from its pole-zero plot, all we need to do is check for the presence of
zeros at z = ±1 and count their number. A type 2 sequence must have an odd number of zeros at z = −1, a
type 3 sequence must have an odd number of zeros at z = −1 and z = 1, and a type 4 sequence must have
an odd number of zeros at z = 1. The number of other zeros, if present (at z = 1 for type 1 and type 2,
or z = −1 for type 1 or type 4), must be even. The reason is simple. If we exclude z = ±1, the remaining
zeros occur in pairs or quadruples and always yield a type 1 sequence with odd length and even symmetry.
Including a zero at z = −1 increases the length by one without changing the symmetry. Including a zero at
z = −1 increases the length by 1 and also changes the symmetry. Only an odd number of zeros at z = 1
results in an odd symmetric sequence. These ideas are illustrated in Figure 6.5.
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Figure 6.5 Identifying the sequence type from its zeros at z = ±1

REVIEW PANEL 6.6
How to Identify the Type of a Linear-Phase Sequence
From the sequence x[n]: Check the length and the symmetry to identify the type.
From the pole-zero plot: Count the number of zeros at z = ±1.
Type 1: Even number of zeros at z = −1 (if present) and at z = 1 (if present)
Type 2: Odd number of zeros at z = −1 (and even number of zeros at z = 1, if present)
Type 3: Odd number of zeros at z = 1 and odd number of zeros at z = −1
Type 4: Odd number of zeros at z = 1 (and even number of zeros at z = −1, if present)

EXAMPLE 6.5 (Identifying Linear-Phase Sequences)

(a) Find all the zero locations of a type 1 sequence, assuming the smallest length, if it is known that there
is a zero at z = 0.5ejπ/3 and a zero at z = 1.

Due to conjugate reciprocal symmetry, the zero at z = 0.5ejπ/3 implies the quadruple zeros

z = 0.5ejπ/3 z = 0.5e−jπ/3 z = 2ejπ/3 z = 2e−jπ/3

For a type 1 sequence, the number of zeros at z = 1 must be even. So, there must be another zero at
z = 1. Thus, we have a total of six zeros.

(b) Find all the zero locations of a type 2 sequence, assuming the smallest length, if it is known that there
is a zero at z = 0.5ejπ/3 and a zero at z = 1.

Due to conjugate reciprocal symmetry, the zero at z = 0.5ejπ/3 implies the quadruple zeros

z = 0.5ejπ/3 z = 0.5e−jπ/3 z = 2ejπ/3 z = 2e−jπ/3

A type 2 sequence is even symmetric and requires an even number of zeros at z = 1. So, there must
be a second zero at z = −1 to give six zeros. But this results in a sequence of odd length. For a type 2
sequence, the length is even. This requires a zero at z = −1. Thus, we have a total of seven zeros.

(c) Find the transfer function and impulse response of a causal type 3 linear-phase filter, assuming the
smallest length and smallest delay, if it is known that there is a zero at z = j and two zeros at z = 1.

The zero at z = j must be paired with its conjugate (and reciprocal) z = −j.
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A type 3 sequence requires an odd number of zeros at z = 1 and z = −1. So, the minimum number of
zeros required is one zero at z = −1 and three zeros at z = 1 (with two already present).
The transfer function has the form

H(z) = (z + j)(z − j)(z + 1)(z − 1)3 = z6 − 2z5 + z4 − z2 + 2z − 1

The transfer function of the causal filter with the minimum delay is

HC(z) = 1− 2z−1 + z−2 − z−4 + 2z−5 − z−6 hC [n] = {⇓1, −2, 1, 0, −1, 2, −1}

6.2.3 Averaging Filters

As an example of a linear phase filter, we consider a causal N -point averaging filter whose system equation
and impulse response are given by

y[n] =
1
N

(x[n] + x[n− 1] + . . . + x[n− (N − 1)]) h[n] =
1
N
{ ⇓1, 1, . . . , 1, 1︸ ︷︷ ︸

N ones

} (6.7)

Its transfer function then becomes

H(F ) =
1
N

N−1∑

k=0

h[k]e−j2πkF =
1
N

N−1∑

k=0

(e−j2πF )k =
1
N

(
1− e−j2πNF

1− e−j2πF

)

We extract the factors e−jπNF and e−jπF from the numerator and denominator respectively to give

H(F ) =
1
N

(
e−jπNF

e−jπF

)(
e−jπNF − e−jπNF

e−jπF − e−jπF

)
=

1
N

e−jπ(N−1)F

(
j2 sin(πNF )
j2 sin(πF )

)

This simplifies to

H(F ) = e−jπ(N−1)F sin(πNF )
N sin(πF )

= e−jπ(N−1)F sinc(NF )
sinc(F )

= e−jπ(N−1)F A(F ) (6.8)

The term A(F ) represents the amplitude and the term e−jπ(N−1)F describes a phase that varies linearly
with frequency. The value of H(F ) equals unity at F = 0 for any length N . Also, H(F ) = 0 when F is a
multiple of 1

N and there are a total of N zeros in the principal range 0.5 < F ≤ 0.5. At F = 0.5, the value of
H(F ) equals zero if N is even. For odd N , however, the value of H(F ) at F = 0.5 equals (−1)(N−1)/2 (i.e.,
+1 if N−1

2 is even or −1 if N−1
2 is odd). As |F | increases from 0 to 0.5, the value of | sin(πF )| increases from

0 to 1. Consequently, the magnitude spectrum shows a peak of unity at F = 0 and decreasing sidelobes of
width 1

N on either side of the origin. If we look at the amplitude term A(F ) (not its absolute value), we find
that it is even symmetric about F = 0.5 if N is odd but odd symmetric about F = 0.5 if N is even.

For an even symmetric sequence wd[n] of length M = 2N + 1, centered at the origin, whose coefficients
are all unity, we have

wd[n] = { 1, 1, . . . , 1, 1︸ ︷︷ ︸
N ones

,
⇓
1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

N ones

} (6.9)

Its frequency response may be written as

WD(F ) =
sin(πMF )
sin(πF )

=
Msinc(MF )

sinc(F )
, M = 2N + 1 (6.10)

The quantity WD(F ) is called the Dirichlet kernel and its properties will be described shortly.
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6.2.4 Zeros of Averaging Filters

Consider a causal N -point averaging filter whose system equation and impulse response are given by

y[n] =
1
N

(x[n] + x[n− 1] + . . . + x[n− (N − 1)]) h[n] =
1
N
{ ⇓1, 1, . . . , 1, 1︸ ︷︷ ︸

N ones

} (6.11)

Its transfer function H(z) then becomes

H(z) =
1
N

N−1∑

k=0

h[k]z−k =
1
N

N−1∑

k=0

(z−1)k =
1
N

(
1− z−N

1− z−1

)
=

1
N

[
zN − 1

zN−1(z − 1)

]

The N roots of zN − 1 = 0 lie on the unit circle with an angular spacing of 2π
N radians starting at Ω = 0

(corresponding to z = 1). However, the zero at z = 1 is cancelled by the pole at z = 1. So, we have N − 1
zeros on the unit circle and N − 1 poles at the origin (z = 0). The zeros occur in conjugate pairs and if the
length N is even, there is also a zero at Ω = π (corresponding to z = −1).

EXAMPLE 6.6 (Frequency Response and Filter Characteristics)
(a) Identify the pole and zero locations of a causal 10-point averaging filter. What is the dc gain and high

frequency gain of this filter? At what frequencies does the gain go to zero?
The impulse response and transfer function of a 10-point averaging filter is

h[n] = {
⇓

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1} H(z) =
0.1(z10 − 1)
z9(z − 1)

There are nine poles at the origin z = 0. There are nine zeros with an angular spacing of 2π
10 rad located

on the unit circle at z = ejkπ/5, k = 1, 2, . . . , 9. The dc gain of the filter is |H(0)| = |∑ h[n]| = 1. The
high-frequency gain is |H(F )|F=0.5 = |∑(−1)nh[n]| = 0. Over the principal range, the gain is zero at
the frequencies Fk = 0.1k, k = ±1,±2, . . . , 5 and the magnitude response shows a central lobe with
four successively decaying sidelobes on either side.

(b) Consider the 3-point averaging filter, y[n] = 1
3{x[n − 1] + x[n] + x[n + 1]}. The filter replaces each

input value x[n] by an average of itself and its two neighbors. Its impulse response h1[n] is simply

h1[n] = {1
3 ,
⇓
1
3 , 1

3}. The frequency response is given by

H1(F ) =
1∑

n=−1

h[n]e−j2πFn = 1
3

[
ej2πF + 1 + e−j2πF

]
= 1

3 [1 + 2 cos(2πF )]

The magnitude |H1(F )| decreases until F = 2
3 (when H1(F ) = 0) and then increases to 1

3 at F = 1
2 ,

as shown in Figure E6.6B. This filter thus does a poor job of smoothing past F = 2
3 .

0.5

1/3

1

F
2/3

H1(F)

0.5

1

F

H2(F)

Figure E6.6B Frequency response of the filters for Example 6.6(b and c)
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(c) Consider the tapered 3-point moving-average filter h2[n] = { 1
4 ,
⇓
1
2 , 1

4}. Its frequency response is given
by

H2(F ) =
1∑

n=−1

h[n]e−j2πFn = 1
4ej2πF + 1

2 + 1
4e−j2πF = 1

2 + 1
2 cos(2πF )

Figure E6.6D shows that |H2(F )| decreases monotonically to zero at F = 0.5 and shows a much
better smoothing performance. This lowpass filter actually describes a 3-point von Hann (or Hanning)
smoothing window.

(d) Consider the differencing filter described by y[n] = x[n]−x[n−1]. Its impulse response may be written
as h[n] = δ[n]− δ[n− 1] = {1, −1}. This is actually odd symmetric about its midpoint (n = 0.5). Its
frequency response (in the Ω-form) is given by

H(Ω) = 1− ejΩ = e−jΩ/2(ejΩ/2 − e−jΩ/2) = 2j sin(0.5Ω)e−jΩ/2

Its phase is φ(Ω) = π
2 − Ω

2 and shows a linear variation with Ω. Its amplitude A(Ω) = 2 sin(Ω/2)
increases from zero at Ω = 0 to two at Ω = π. In other words, the difference operator enhances high
frequencies and acts as a highpass filter.

6.2.5 FIR Comb Filters

A comb filter has a magnitude response that looks much like the rounded teeth of a comb. One such comb
filter is described by the transfer function

H(z) = 1− z−N h[n] = {⇓1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
N−1 zeros

, −1} (6.12)

This corresponds to the system difference equation y[n] = x[n] − x[n − N ], and represents a linear-phase
FIR filter whose impulse response h[n] (which is odd symmetric about its midpoint) has N +1 samples with
h[0] = 1, h[N ] = −1, and all other coefficients zero. There is a pole of multiplicity N at the origin, and the
zeros lie on a unit circle with locations specified by

z−N = e−jNΩ = 1 = ej2πk Ωk =
2kπ

N
, k = 0, 1, . . . , N − 1 (6.13)

The pole-zero pattern and magnitude spectrum of this filter are shown for two values of N in Figure 6.6.
The zeros of H(z) are uniformly spaced 2π/N radians apart around the unit circle, starting at Ω = 0.

For even N , there is also a zero at Ω = π. Being an FIR filter, it is always stable for any N . Its frequency
response is given by

H(F ) = 1− e−j2πFN (6.14)

Note that H(0) always equals 0, but H(0.5) = 0 for even N and H(0.5) = 2 for odd N . The frequency
response H(F ) looks like a comb with N rounded teeth over its principal period −0.5 ≤ F ≤ 0.5.

A more general form of this comb filter is described by

H(z) = 1− αz−N h[n] = {⇓1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
N−1 zeros

, −α} (6.15)
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= 5N

N−z= 1−H(z)

N−z= 1−H(z)

= 4N

F
−0.5 0.5

2

Magnitude spectrum of 

Magnitude spectrum of 

5 poles

4 poles
F

−0.5 0.5

2

Figure 6.6 Pole-zero plot and frequency response of the comb filter H(z) = 1− z−N

It has N poles at the origin, and its zeros are uniformly spaced 2π/N radians apart around a circle of radius
R = α1/N , starting at Ω = 0. Note that this filter is no longer a linear-phase filter because its impulse
response is not symmetric about its midpoint. Its frequency response H(F ) = 1 − αe−j2πFN suggests that
H(0) = 1−α for any N , and H(0.5) = 1−α for even N and H(0.5) = 1+α for odd N . Thus, its magnitude
varies between 1− α and 1 + α, as illustrated in Figure 6.7.

= 4N

N−z
= 5N

N−z

F
−0.5 0.5

1−α

1+α

H(z) = 1 − α

F
−0.5 0.5

1−α

1+α

H(z) = 1 − αMagnitude spectrum of Magnitude spectrum of 

Figure 6.7 Frequency response of the comb filter H(z) = 1− αz−N

Another FIR comb filter is described by the transfer function

H(z) = 1 + z−N h[n] = {⇓1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
N−1 zeros

, 1} (6.16)

This corresponds to the system difference equation y[n] = x[n]+x[n−N ], and represents a linear-phase FIR
filter whose impulse response h[n] (which is even symmetric about its midpoint) has N + 1 samples with
h[0] = h[N ] = 1, and all other coefficients zero. There is a pole of multiplicity N at the origin, and the zero
locations are specified by

z−N = e−jNΩ = −1 = ej(2k+1)π Ωk =
(2k + 1)π

N
, k = 0, 1, . . . , N − 1 (6.17)

The pole-zero pattern and magnitude spectrum of this filter are shown for two values of N in Figure 6.8.
The zeros of H(z) are uniformly spaced 2π/N radians apart around the unit circle, starting at Ω = π/N .

For odd N , there is also a zero at Ω = π. Its frequency response is given by

H(F ) = 1 + e−j2πFN (6.18)
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N−z= 1+H(z)

N−z= 1+H(z)
= 5N

= 4N
Magnitude spectrum of 

Magnitude spectrum of 

5 poles

4 poles

F
−0.5 0.5

2

2

F
0.5−0.5

Figure 6.8 Pole-zero plot and frequency response of the comb filter H(z) = 1 + z−N

Note that H(0) = 2 for any N , but H(0.5) = 2 for even N and H(0.5) = 0 for odd N .
A more general form of this comb filter is described by

H(z) = 1 + αz−N h[n] = {⇓1, 0, 0, . . . , 0, 0︸ ︷︷ ︸
N−1 zeros

, α} (6.19)

It has N poles at the origin and its zeros are uniformly spaced 2π/N radians apart around a circle of radius
R = α1/N , starting at Ω = π/N . Note that this filter is no longer a linear-phase filter because its impulse
response is not symmetric about its midpoint. Its frequency response H(F ) = 1 + αe−j2πFN suggests that
H(0) = 1+α for any N , and H(0.5) = 1+α for even N and H(0.5) = 1−α for odd N . Thus, its magnitude
varies between 1− α and 1 + α, as illustrated in Figure 6.9.

= 4N

N−z
= 5N

N−z

F
0.5−0.5

1−α

1+α

H(z) = 1 + α

F
−0.5 0.5
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1−α

H(z) = 1 + αMagnitude spectrum of Magnitude spectrum of 

Figure 6.9 Frequency response of the comb filter H(z) = 1 + αz−N

6.3 IIR Filters
Consider the first-order filter described by

HLP(F ) =
1

1− αe−j2πF
HLP(0) =

1
1− α

, HLP(F )
∣∣
F=0.5

=
1

1 + α
, 0 < α < 1 (6.20)

The filter HLP(F ) describes a lowpass filter because its dc gain (at F = 0) exceeds the high frequency gain
(at F = 0.5) and the gain shows a decrease with increasing frequency (from F = 0 to F = 0.5). The filter
gain and impulse response are shown in Figure 6.10.

c©Ashok Ambardar, September 1, 2003



230 Chapter 6 Filter Concepts

[n]
[n]

F
−0.5 0.5

H (F)

n

h

F
−0.5 0.5

H (F) hHP

LP

HPLP

n

Figure 6.10 Spectrum and impulse response of first-order lowpass and highpass filters

We can find the half-power frequency of the lowpass filter from its magnitude squared function:

|HLP(F )|2 =
∣∣∣∣

1
1− α cos(2πF ) + jα sin(2πF )

∣∣∣∣
2

=
1

1− 2α cos(2πF ) + α2
(6.21)

At the half-power frequency, we have |HLP(F )|2 = 0.5, and this gives

1
1− 2α cos(2πF ) + α2

= 0.5 or F =
1
2π

cos−1
(α2 − 1

2α

)
, |F | < 0.5 (6.22)

The phase and group delay of the lowpass filter are given by

φ(F ) = − tan−1

[
α sin(2πF )

1− α cos(2πF )

]
tg(F ) = − 1

2π

dφ(F )
dF

=
α cos(2πF )− α2

1− 2α cos(2πF ) + α2
(6.23)

For low frequencies, the phase is nearly linear and the group delay is nearly constant, and they can be
approximated by

φ(F ) ≈ −2παF

1− α
, |F | ¿ 1 tg(F ) = − 1

2π

dφ(F )
dF

≈ α

1− α
, |F | ¿ 1 (6.24)

For filters of higher order, we may obtain the group delay by expressing the filter transfer function as the
sum of first order sections.

Time Constant and Reverberation Time

In the time domain, performance measures for a filter are typically based on features of the impulse response
and step response. The impulse response of the first-order lowpass filter is given by

hLP[n] = αnu[n] (6.25)

The time constant of the lowpass filter describes how fast the impulse response decays to a specified fraction
of its initial value. For a specified fraction of ε%, we obtain the effective time constant η in samples as

αη = ε η =
ln ε

ln α
(6.26)

This value is rounded up to an integer, if necessary. We obtain the commonly measured 1% or 40-dB time
constant if ε = 0.01 (corresponding to an attenuation of 40 dB) and the 0.1% or 60-dB time constant if
ε = 0.001. If the sampling interval ts is known, the time constant τ in seconds can be computed from
τ = ηts. The 60-dB time constant is also called the reverberation time. For higher-order filters whose
impulse response contains several exponential terms, the effective time constant is dictated by the term with
the slowest decay (that dominates the response).
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REVIEW PANEL 6.7
The Time Constant of a Lowpass Filter
For y[n]− αy[n− 1] = x[n], the ε% time constant is η = ln ε

ln α (samples) or τ = ηts (seconds)
For the 1% or 40-dB time constant, ε = 0.01
For the 0.1% or 60-dB time constant (called reverberation time), ε = 0.001.

6.3.1 First-Order Highpass Filters

Consider the first-order filter described by

HHP(F ) =
1

1 + αe−j2πF
HHP(0) =

1
1 + α

, HHP(F )
∣∣
F=0.5

=
1

1− α
, 0 < α < 1 (6.27)

The filter HHP(F ) describes a highpass filter because its high frequency gain (at F = 0.5) exceeds the dc
gain (at F = 0) and the gain shows an increase with increasing frequency (from F = 0 to F = 0.5). The
filter gain and impulse response are shown in Figure 6.10. The impulse response of this filter is given by

hHP[n] = (−α)nu[n] = (−1)nαnu[n] (6.28)

It is the alternating sign changes in the samples of hHP[n] that cause rapid time variations and lead to its
highpass behavior. Its spectrum HHP(F ) is related to HLP(F ) by HHP(F ) = HLP(F − 0.5). This means
that a lowpass cutoff frequency F0 corresponds to the frequency 0.5− F0 of the highpass filter.

6.3.2 Pole-Zero Placement and Filter Design

The qualitative effect of poles and zeros on the magnitude response can be used to advantage in understanding
the pole-zero patterns of real filters. The basic strategy for pole and zero placement is based on mapping
the passband and stopband frequencies on the unit circle and then positioning the poles and zeros based on
the following reasoning:

1. Conjugate symmetry: All complex poles and zeros must be paired with their complex conjugates.
2. Causality: To ensure a causal system, the total number of zeros must be less than or equal to the

total number of poles.
3. Origin: Poles or zeros at the origin do not affect the magnitude response.
4. Stability: For a stable system, the poles must be placed inside (not just on) the unit circle. The pole

radius is proportional to the gain and inversely proportional to the bandwidth. Poles closer to the unit
circle produce a large gain over a narrower bandwidth. Clearly, the passband should contain poles near
the unit circle for large passband gains.
A rule of thumb: For narrow-band filters with bandwidth ∆Ω ≤ 0.2 centered about Ω0, we place
conjugate poles at z = R exp(±jΩ0), where R ≈ 1− 0.5∆Ω is the pole radius.

5. Minimum phase: Zeros can be placed anywhere in the z-plane. To ensure minimum phase, the zeros
must lie within the unit circle. Zeros on the unit circle result in a null in the response. Thus, the
stopband should contain zeros on or near the unit circle. A good starting choice is to place a zero (on
the unit circle) in the middle of the stopband or two zeros at the edges of the stopband.

6. Transition band: To achieve a steep transition from the stopband to the passband, a good choice is
to pair each stopband zero with a pole along (or near) the same radial line and close to the unit circle.

7. Pole-zero interaction: Poles and zeros interact to produce a composite response that may not match
qualitative predictions. Their placement may have to be changed, or other poles and zeros may have
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to be added, to tweak the response. Poles closer to the unit circle, or farther away from each other,
produce small interaction. Poles closer to each other, or farther from the unit circle, produce more
interaction. The closer we wish to approximate a given response, the more poles and zeros we require,
and the higher is the filter order.

Bandstop and bandpass filters with real coefficients must have an order of at least two. Filter design
using pole-zero placement involves trial and error. Formal design methods are presented in the next chapter.
It is also possible to identify traditional filter types from their pole-zero patterns. The idea is to use the
graphical approach to qualitatively observe how the magnitude changes from the lowest frequency F = 0 (or
Ω = 0) to the highest frequency F = 0.5 (or Ω = π) and use this to establish the filter type.

6.3.3 Second-Order IIR Filters

The general form for the transfer function of a second-order filter is

H(z) = K
z2 + α1z + α2
z2 + β1z + β2

= K
(z −Rze

jΩz )(z −Rze
−jΩz )

(z −RpejΩp)(z −Rpe−jΩp)

This filter can describe a wide variety of responses. One interesting situation occurs when the poles and
zeros lie along the same angular orientation with Ωp = Ωz = Ω0. The gain of such a filter shows a peak or
a dip around Ω = Ω0 depending on the values of Rp and Rz. If we assume a causal, minimum-phase filter
with Rp < 1 and Rz < 1, we observe the following

(a) If Rz > Rp, the filter shows a dip in the gain around Ω = Ω0.

(b) If Rz < Rp, the filter gain peaks around Ω = Ω0.

(c) If Rz = 0, the filter gain peaks around Ω = Ω0.

(d) if Rp = 0, we have an FIR filter with a dip or notch around Ω = Ω0.

If we permit zeros to lie outside the unit circle (Rz ≥ 1 but Rp < 1), we observe the following

(a) If Rz = 1, we have a notch filter with a dc gain of zero at Ω = Ω0.

(b) If 1 < Rz < 1
Rp

, there is a dip in the gain around Ω = Ω0.

(c) If Rz = 1
Rp

, we have an allpass filter with constant gain.

(d) If Rz > 1
Rp

, the filter gain peaks around Ω = Ω0.

EXAMPLE 6.7 (Filters and Pole-Zero Plots)
Design a bandpass filter with center frequency = 100 Hz, passband 10 Hz, stopband edges at 50 Hz
and 150 Hz, and sampling frequency 400 Hz.

We find Ω0 = π
2 , ∆Ω = π

20 , Ωs = [π
4 , 3π

4 ], and R = 1− 0.5∆Ω = 0.9215.

Passband: Place poles at p1,2 = Re±jΩ0 = 0.9215e±jπ/2 = ±j0.9215.

Stopband: Place conjugate zeros at z1,2 = e±jπ/4 and z3,4 = e±j3π/4.

We then obtain the transfer function as

H(z) =
(z − ejπ/4)(z − e−jπ/4)(z − ej3π/4)(z − e−j3π/4)

(z − j0.9215)(z + j0.9215)
=

z4 + 1
z2 + 0.8941
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Note that this filter is noncausal. To obtain a causal filter H1(z), we could, for example, use double-
poles at each pole location to get

H1(z) =
z4 + 1

(z2 + 0.8941)2
=

z4 + 1
z4 + 1.6982z2 + 0.7210

The pole-zero pattern and gain of the modified filter H1(z) are shown in Figure E6.7.
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Figure E6.7 Frequency response of the bandpass filter for Example 6.7()

(a) Design a notch filter with notch frequency 60 Hz, stopband 5 Hz, and sampling frequency 300 Hz.

We compute Ω0 = 2π
5 , ∆Ω = π

30 , and R = 1− 0.5∆Ω = 0.9476.

Stopband: We place zeros at the notch frequency to get z1,2 = e±jΩ0 = e±j2π/5.

Passband: We place poles along the orientation of the zeros at p1,2 = Re±jΩ0 = 0.9476e±j2π/5.

We then obtain H(z) as

H(z) =
(z − ej2π/5)(z − e−j2π/5)

(z − 0.9476ej2π/5)(z − 0.9476e−j2π/5)
=

z2 − 0.618z + 1
z2 − 0.5857 + 0.898

The pole-zero pattern and magnitude spectrum of this filter are shown in Figure E6.7A.
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Figure E6.7A Frequency response of the bandstop filter for Example 6.7(a)
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6.3.4 Digital Resonators

A digital resonator is essentially a narrow-band bandpass filter. One way to realize a second-order resonator
with a peak at Ω0 is to place a pair of poles, with angular orientation ±Ω0 (at z = RejΩ0 and z = Re−jΩ0),
and a pair of zeros at z = 0, as shown in Figure 6.11. To ensure stability, we choose the pole radius R to be
less than (but close to) unity.
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Figure 6.11 A second-order digital resonator

The transfer function of such a digital resonator is

H(z) =
z2

(z −RejΩ0)(z −Re−jΩ0)
=

z2

z2 − 2zR cosΩ0 + R2
(6.29)

Its magnitude spectrum |H(Ω)| and realization are also shown in Figure 6.11. The magnitude squared
function |H(Ω)|2 is given by

|H(Ω)|2 =
∣∣∣∣

ej2Ω

(ejΩ −RejΩ0)(ejΩ −Re−jΩ0)

∣∣∣∣
2

(6.30)

This simplifies to

|H(Ω)|2 =
1

[1− 2R cos(Ω− Ω0) + R2][1− 2R cos(Ω + Ω0) + R2]
(6.31)

Its peak value A occurs at (or very close to) the resonant frequency, and is given by

A2 = |H(Ω0)|2 =
1

(1−R)2(1− 2R cos 2Ω0 + R2)
(6.32)

The half-power bandwidth ∆Ω is found by locating the frequencies at which |H(Ω)|2 = 0.5|H(Ω0)|2 = 0.5A2,
to give

1
[1− 2R cos(Ω− Ω0) + R2][1− 2R cos(Ω + Ω0) + R2]

=
0.5

(1−R)2(1− 2R cos 2Ω0 + R2)
(6.33)

Since the half-power frequencies are very close to Ω0, we have Ω + Ω0 ≈ 2Ω0 and Ω− Ω0 ≈ 0.5∆Ω, and the
above relation simplifies to

1− 2R cos(0.5∆Ω) + R2 = 2(1−R)2 (6.34)

This relation between the pole radius R and bandwidth ∆Ω can be simplified when the poles are very close
to the unit circle (with R > 0.9 or so). The values of R and the peak magnitude A are then reasonably well
approximated by

R ≈ 1− 0.5∆Ω A ≈ 1
(1−R2) sin Ω0

(6.35)
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The peak gain can be normalized to unity by dividing the transfer function by A. The impulse response of
this filter can be found by partial fraction expansion of H(z)/z, which gives

H(z)
z

=
z

(z −RejΩ0)(z −Re−jΩ0)
=

K

z −RejΩ0
+

K∗

z −Re−jΩ0
(6.36)

where

K =
z

z −Re−jΩ0

∣∣∣∣
z=RejΩ0

=
RejΩ0

RejΩ0 −Re−jΩ0
=

RejΩ0

2jR sinΩ0
=

ej(Ω0−π/2)

2 sin Ω0
(6.37)

Then, from lookup tables, we obtain

h[n] =
1

sinΩ0
Rn cos(nΩ0 + Ω0 − π

2 )u[n] =
1

sinΩ0
Rn sin[(n + 1)Ω0]u[n] (6.38)

To null the response at low and high frequencies (Ω = 0 and Ω = π), the two zeros in H(z) may be relocated
from the origin to z = 1 and z = −1, and this leads to the modified transfer function H1(z):

H1(z) =
z2 − 1

z2 − 2zR cosΩ0 + R2
(6.39)

EXAMPLE 6.8 (Digital Resonator Design)
We design a digital resonator with a peak gain of unity at 50 Hz, and a 3-dB bandwidth of 6 Hz, assuming
a sampling frequency of 300 Hz.

The digital resonant frequency is Ω0 = 2π(50)
300 = π

3 . The 3-dB bandwidth is ∆Ω = 2π(6)
300 = 0.04π. We

compute the pole radius as R = 1 − 0.5∆Ω = 1 − 0.02π = 0.9372. The transfer function of the digital
resonator is thus

H(z) =
Gz2

(z −RejΩ0)(z −Re−jΩ0)
=

Gz2

z2 − 2R cosΩ0 + R2
=

Gz2

z2 − 0.9372z + 0.8783

For a peak gain of unity, we choose G = 1
A = (1−R2) sinΩ0 = 0.1054. Thus,

H(z) =
0.1054z2

z2 − 0.9372z + 0.8783

The magnitude spectrum and passband detail of this filter are shown in Figure E6.8.

0 50 100 150
0

0.5

0.707

1

Analog frequency   f   [Hz]

M
ag

ni
tu

de

(a)  Digital resonator with peak at 50 Hz
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Figure E6.8 Frequency response of the digital resonator for Example 6.8

The passband detail reveals that the half-power frequencies are located at 46.74 Hz and 52.96 Hz, a close
match to the bandwidth requirement (of 6 Hz).
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6.3.5 Periodic Notch Filters

A notch filter with notches at periodic intervals may be constructed by placing zeros on the unit circle at
the notch frequencies, and poles in close proximity along the same angular orientations. One such form is

H(z) =
N(z)

N(z/R)
=

1− z−N

1− (z/R)−N
(6.40)

Its zeros are uniformly spaced 2π/N radians apart around a unit circle, starting at Ω = 0, and its poles
are along the same angular orientations but on a circle of radius R. For stability, we require R < 1. Of
course, the closer R is to unity, the sharper are the notches and the more constant is the response at the
other frequencies. Periodic notch filters are often used to remove unwanted components at the power line
frequency and its harmonics.

EXAMPLE 6.9 (Periodic Notch Filter Design)
We design a notch filter to filter out 60 Hz and its harmonics from a signal sampled at S = 300 Hz.

The digital frequency corresponding to 60 Hz is F = 60/300 = 0.2 or Ω = 0.4π. There are thus
N = 2π/0.4π = 5 notches in the principal range π ≤ Ω ≤ π (around the unit circle), and the transfer
function of the notch filter is

H(z) =
N(z)

N(z/R)
=

1− z−5

1− (z/R)−5
=

z5 − 1
z5 −R5

Figure E6.9(a) shows the response of this filter for R = 0.9 and R = 0.99. The choice of R, the pole radius,
is arbitrary (as long as R < 1), but should be close to unity for sharp notches.
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Figure E6.9 Frequency response of the notch filters for Example 6.9

Comment: This notch filter also removes the dc component. If we want to preserve the dc component, we
must extract the zero at z = 1 (corresponding to F = 0) from N(z) (by long division), to give

N1(z) =
1− z−5

1− z−1
= 1 + z−1 + z−2 + z−3 + z−4

and use N1(z) to compute the new transfer function H1(z) = N1(z)/D(z) as

H1(z) =
N1(z)

N1(z/R)
=

1 + z−1 + z−2 + z−3 + z−4

1 + (z/R)−1 + (z/R)−2 + (z/R)−3 + (z/R)−4
=

z4 + z3 + z2 + z + 1
z4 + Rz3 + R2z2 + R3z + R4

Figure E6.9(b) compares the response of this filter for R = 0.9 and R = 0.99, and reveals that the dc
component is indeed preserved by this filter.
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6.4 Allpass Filters
Consider the first-order filter described by

HA(F ) =
A + Bej2πF

B + Aej2πF
|HA(0)| =

∣∣∣∣
A + B

B + A

∣∣∣∣ = 1 |HA(0.5)| =
∣∣∣∣
A−B

B −A

∣∣∣∣ = 1 (6.41)

Its magnitude at F = 0 and F = 0.5 is equal to unity. In fact, its magnitude is unity for all frequencies, and
this describes an allpass filter. The fact that its magnitude is constant for all frequencies can be explained
by a geometric argument, as illustrated in Figure 6.12.

The numerator and denominator may be regarded as the sum of two vectors of length A and B that
subtend the same angle Ω = 2πF . The length of their vector sum is thus equal for any Ω. An interesting
characteristic that allows us to readily identify an allpass filter is that its numerator and denominator
coefficients (associated with powers of e±j2πF or ejΩ) appear in reversed order. Allpass filters are often used
to shape the delay characteristics of digital filters.

REVIEW PANEL 6.8
Identifying an Allpass Filter by Checking Coefficients
From transfer function: The coefficients of numerator and denominator appear in reversed order.
From difference equation: The coefficients of RHS and LHS appear in reversed order.

The magnitude of H(F) is thus unity.
πFΩ =2

B 0A 0

A Ω

B Ω
X = +A 0 B Ω

Y = +B 0 A Ω

j 2πFAeB +

j 2πFBeA +H(F) = = =
X
Y+

+A 0 B Ω

B 0 A Ω

X and YThe vectors are of equal length
F (or Ω ).for any value of 

Figure 6.12 The magnitude spectrum of an allpass filter is constant

6.4.1 Transfer Function of Allpass Filters

An allpass filter is characterized by a magnitude response that is constant for all frequencies. For an allpass
filter with unit gain, |H(F )| = 1. Its transfer function H(z) also satisfies the relationship

H(z)H(1/z) = 1 (6.42)

This implies that each pole of an allpass filter is paired by a conjugate reciprocal zero. As a result, allpass
filters cannot be minimum-phase. Note that the cascade of allpass filters is also an allpass filter. An allpass
filter of order N has a numerator and denominator of equal order N , with coefficients in reversed order:

HAP(z) =
N(z)
D(z)

=
CN + CN−1z

−1 + · · ·+ C1z
N−1 + z−N

1 + C1z−1 + C2z−2 + · · ·+ CNz−N
(6.43)

Note that D(z) = z−NN(1/z), and as a result, if the roots of N(z) (the zeros) are at rk, the roots of D(z)
(the poles) are at 1/rk, the reciprocal locations.
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REVIEW PANEL 6.9
How to Identify an Allpass Filter
From H(z) = N(z)/D(z): The coefficients of N(z) and D(z) appear in reversed order.
From pole-zero plot: Each pole is paired with a conjugate reciprocal zero.

Consider a stable, first-order allpass filter whose transfer function H(z) and frequency response H(F )
are described by

H(z) =
1 + αz

z + α
HA(F ) =

1 + αej2πF

α + ej2πF
, |α| < 1 (6.44)

If we factor out ejπF from the numerator and denominator of H(F ), we obtain the form

H(F ) =
1 + αej2πF

α + ej2πF
=

e−jπF + αejπF

αe−jπF + ejπF
, |α| < 1 (6.45)

The numerator and denominator are complex conjugates. This implies that their magnitudes are equal (an
allpass characteristic) and that the phase of H(F ) equals twice the numerator phase. Now, the numerator
may be simplified to

e−jπF + αejπF = cos(πF )− j sin(πF ) + α cos(πF ) + jα sin(πF ) = (1 + α)cos(πF )− j(1− α)sin(πF )

The phase φ(F ) of the allpass filter H(F ) equals twice the numerator phase. The phase φ(F ) and phase
delay tp(F ) may then be written as

φ(F ) = −2 tan−1

[
1− α

1 + α
tan(πF )

]
tp(F ) = −φ(F )

2πF
=

1
πF

tan−1

[
1− α

1 + α
tan(πF )

]
(6.46)

A low-frequency approximation for the phase delay is given by

tp(F ) =
1− α

1 + α
(low-frequency approximation) (6.47)

The group delay tg(F ) of this allpass filter equals

tg(F ) = − 1
2π

dφ(F )
dF

=
1− α2

1 + 2α cos(2πF ) + α2
(6.48)

At F = 0 and F = 0.5, the group delay is given by

tg(0) =
1− α2

1 + 2α + α2
=

1− α

1 + α
tg(0.5) =

1− α2

1− 2α + α2
=

1 + α

1− α
(6.49)

At low frequencies, cos(2πF ) ≈ 1, and the group delay and phase delay are approximately equal. In
particular, for 0 < α < 1, the delay is less than unity and this allows us to use the allpass filter to generate
fractional delays by appropriate choice of α.

6.4.2 Stabilization of Unstable Filters

Allpass filters are often used to stabilize unstable digital filters, while preserving their magnitude response.
Consider the unstable filter

Hu(z) =
z

1 + αz
, |α| < 1 (6.50)
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It has a pole at z = −1/α and is thus unstable. If we cascade Hu(z) with a first-order allpass filter whose
transfer function is H1(z) = (1 + αz)/(z + α∗), we obtain

H(z) = Hu(z)H1(z) =
z

z + α∗
(6.51)

The filter H(z) has a pole at z = −α∗, and since |α| < 1, it is a stable filter.
This idea can easily be extended to unstable filters of arbitrary order described as a cascade of a stable

portion Hs(z) and P unstable first-order sections:

Hu(z) = Hs(z)
P∏

m=1

z

1 + αmz
, |αm| < 1 (6.52)

To stabilize Hu(z), we use an allpass filter HAP(z) that is a cascade of P allpass sections. Its form is

HAP(z) =
P∏

m=1

1 + αmz

z + α∗m
, |αm| < 1 (6.53)

The stabilized filter H(z) is then described by the cascade Hu(z)HAP(z) as

H(z) = Hu(z)HAP(z) = Hs(z)
P∏

m=1

z

z + α∗m
, |αm| < 1 (6.54)

There are two advantages to this method. First, the magnitude response of the original filter is unchanged.
And second, the order of the new filter is the same as the original. The reason for the inequality |αm| < 1
(rather than |αm| ≤ 1) is that if Hu(z) has a pole on the unit circle, its conjugate reciprocal will also lie on
the unit circle and no stabilization is possible.

6.4.3 Minimum-Phase Filters Using Allpass Filters

Even though allpass filters cannot be minimum-phase, they can be used to convert stable nonminimum-phase
filters to stable minimum-phase filters. We describe a nonminimum-phase transfer function by a cascade of a
minimum-phase part HM (z) (with all poles and zeros inside the unit circle) and a portion with zeros outside
the unit circle such that

HNM(z) = HM (z)
P∏

m=1

(z + αM ), |αm| > 1 (6.55)

We now seek an unstable allpass filter with

HAP(z) =
P∏

m=1

1 + zα∗m
z + αm

, |αm| > 1 (6.56)

The cascade of HNM(z) and HAP(z) yields a minimum-phase filter with

H(z) = HNM(z)HAP(z) = HM (z)
P∏

m=1

(1 + zα∗m) (6.57)

Once again, H(z) has the same order as the original filter.
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6.4.4 Concluding Remarks

We have studied a variety of digital filters in previous sections. As mentioned before, the dc gain (at F = 0
or Ω = 0) and the high-frequency gain (at F = 0.5 or Ω = π) serve as a useful measures to identify filters.
The coefficients (and form) of the difference equation, the transfer function and the impulse response reveal
other interesting and useful characteristics such as linear phase, allpass behaviour and the like. The more
complex the filter (expression), the less likely it is for us to discern its nature by using only a few simple
measures.

EXAMPLE 6.10 (Traditional and Non-Traditional Filters)

(a) Let h[n] = {
⇓
−1, −2, 2, 1}. Is this a linear-phase sequence? What type of filter is this?

The sequence h[n] is linear-phase. It shows odd symmetry about the half-integer index n = 1.5.

We have H(F ) = −1− 2e−j2πF + 2e−j4πF + e−j6πF .

Extract the factor (−e−j3πF ) to get H(F ) = −e−j3πF [ej3πF + 2ejπF − 2e−jπF − e−j3πF ].

Using Euler’s relation: H(F ) = −je−j3πF [2 sin(3πF ) + 4 sin(πF )] H(0) = 0 H(0.5) = 2

Amplitude A(F ) = 2 sin(3πF ) + 4 sin(πF ) Phase = −je−j3πF = −3πF − π
2 .

Since the magnitude at high frequencies increases, this appears to be a highpass filter.

Comment: We can also use the central ordinate relations to compute H(0) and H(0.5) directly from

h[n]. Thus, H(0) =
3∑

n=0

h[n] = 0 and H(0.5) =
3∑

n=0

(−1)nh[n] = −1 + 2 + 2− 1 = 2.

(b) Let h[n] = (−0.8)nu[n]. Identify the filter type and establish whether the impulse response is a linear-
phase sequence.

The sequence h[n] is not linear-phase because it shows no symmetry.

We have H(F ) =
1

1 + 0.8e−j2πF
.

We find that H(0) =
1

1 + 0.8
= 0.556 and H(0.5) = 1

1+0.8e−jπ = 1
1−0.8 = 5.

Since the magnitude at high frequencies increases, this appears to be a highpass filter.

(c) Consider a system described by y[n] = αy[n − 1] + x[n], 0 < α < 1. This is an example of a reverb
filter whose response equals the input plus a delayed version of the output. Its frequency response may
be found by taking the DTFT of both sides to give Y (F ) = αY (F )e−j2πF + X(F ). Rearranging this
equation, we obtain

H(F ) =
Y (F )
X(F )

=
1

1− αe−j2πF

Using Euler’s relation, we rewrite this as

H(F ) =
1

1− αe−j2πF
=

1
1− α cos(2πF )− jα sin(2πF )
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Its magnitude and phase are given by

|H(F )| = 1
[1− 2α cos(2πF ) + α2]1/2

φ(F ) = − tan−1

[
α sin(2πF )

1− α cos(2πF )

]

A typical magnitude and phase plot for this system (for 0 < α < 1) is shown in Figure E6.10C. The
impulse response of this system equals h[n] = αnu[n].

F
−0.5 0.5

Magnitude

F0.5
−0.5

Phase

Figure E6.10C Frequency response of the system for Example 6.10(c)

(d) Let h[n] = {⇓5, −4, 3, −2}. Identify the filter type and establish whether the impulse response is a
linear-phase sequence.

The sequence h[n] is not linear-phase because it shows no symmetry.

We have H(F ) = 5− 4e−j2πF + 3e−j4πF − 2e−j6πF .

We find H(0) =
∑

h[n] = 2 and H(0.5) =
∑

(−1)nh[n] = 5 + 4 + 3 + 2 = 14.

Since the magnitude at high frequencies increases, this appears to be a highpass filter.

(e) Let h[n] = (0.8)nu[n]. Identify the filter type, establish whether the impulse response is a linear-phase
sequence, and find its 60-dB time constant.

We have H(F ) =
1

1− 0.8e−j2πF
, H(0) =

1
1− 0.8

= 5, and H(0.5) =
1

1− 0.8e−jπ
=

1
1 + 0.8

= 0.556

The sequence h[n] is not a linear-phase phase because it shows no symmetry.

Since the magnitude at high frequencies decreases, this appears to be a lowpass filter. The 60-dB time
constant of this filter is found as

η =
ln ε

ln α
=

ln 0.001
ln 0.8

= 30.96 ⇒ η = 31 samples

For a sampling frequency of S = 100 Hz, this corresponds to τ = ηts = η/S = 0.31 s.

(f) Let h[n] = 0.8δ[n] + 0.36(−0.8)n−1u[n− 1]. Identify the filter type and establish whether the impulse
response is a linear-phase sequence.

We find H(F ) = 0.8 +
0.36e−j2πF

1 + 0.8e−j2πF
=

0.8 + e−j2πF

1 + 0.8e−j2πF
. So, H(0) = 1 and H(0.5) =

0.8− 1
1− 0.8

= −1.

The sequence h[n] is not a linear-phase sequence because it shows no symmetry.

Since the magnitude is identical at low and high frequencies, this could be a bandstop or an allpass
filter. Since the numerator and denominator coefficients in H(F ) appear in reversed order, it is an
allpass filter.
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(g) Let h[n] = δ[n] − δ[n − 8]. Identify the filter type and establish whether the impulse response is a
linear-phase sequence.

We find H(F ) = 1− e−j16πF . So, H(0) = 0 and H(0.5) = 0.

This suggests a bandpass filter with a maximum between F = 0 and F = 0.5. On closer examination,
we find that H(F ) = 0 at F = 0, 0.125, 0.25, 0.375, 0.5 when e−j16πF = 1 and |H(F )| = 2 at four
frequencies halfway between these. This multi-humped response is sketched in Figure E6.10G and
describes a comb filter.

We may write h[n] = {⇓1, 0, 0, 0, 0, 0, 0, 0,−1}. This is a linear-phase sequence because it shows odd
symmetry about the index n = 4.

Comment: Note that the difference equation y[n] = x[n]− x[n− 8] is reminiscent of an echo filter.

F

2

0.5

Magnitude of comb filter

Figure E6.10G Spectrum of the comb filter for Example 6.10(g)
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CHAPTER 6 PROBLEMS

6.1 (Frequency Response) For each filter, sketch the magnitude spectrum and identify the filter type.

(a) h[n] = δ[n]− δ[n− 2] (b) y[n]− 0.25y[n− 1] = x[n]− x[n− 1]

(c) H(z) =
z − 2

z − 0.5
(d) y[n]− y[n− 1] + 0.25y[n− 2] = x[n] + x[n− 1]

[Hints and Suggestions: To sketch the spectra, first find H(F ). To identify the filter type, start by
computing the gain |H(F )| at F = 0 and F = 0.5.]

6.2 (Frequency Response) Consider the 3-point averaging filter h[n] = 1
3{1,

⇓
1, 1}.

(a) Sketch its amplitude spectrum.
(b) Find its phase delay and group delay. Is this a linear-phase filter?
(c) Find its response to the input x[n] = cos(nπ/3).
(d) Find its response to the input x[n] = δ[n].
(e) Find its response to the input x[n] = (−1)n.
(f) Find its response to the input x[n] = 3 + 3δ[n]− 6 cos(nπ/3).

[Hints and Suggestions: For (a), use ejθ + e−jθ = 2 cos θ to set up H(F ) = A(F )ejφ(F ) and sketch
A(F ). For (b), use the symmetry in h[n]. For (c), evaluate H(F ) at the frequency of x[n] to find the
output. For (d), find h[n]. For (e), use (−1)n = cos(nπ). For (f), use superposition.]

6.3 (Frequency Response) Consider a filter described by h[n] = 1
3{1,

⇓
−1, 1}.

(a) Sketch its amplitude spectrum.
(b) Find its phase delay and group delay. Is this a linear-phase filter?
(c) Find its response to the input x[n] = cos(nπ/3).
(d) Find its response to the input x[n] = δ[n].
(e) Find its response to the input x[n] = (−1)n.
(f) Find its response to the input x[n] = 3 + 3δ[n]− 3 cos(2nπ/3).

[Hints and Suggestions: For (a), use ejθ + e−jθ = 2 cos θ to set up H(F ) = A(F )ejφ(F ) and sketch
A(F ). For (b), use the symmetry in h[n]. For (c), evaluate H(F ) at the frequency of x[n] to find the
output. For (d), find h[n]. For (e), use (−1)n = cos(nπ). For (f), use superposition.]

6.4 (Frequency Response) Consider the tapered 3-point averaging filter h[n] = {
⇓

0.5, 1, 0.5}.
(a) Sketch its amplitude spectrum.
(b) Find its phase delay and group delay. Is this a linear-phase filter?
(c) Find its response to the input x[n] = cos(nπ/2).
(d) Find its response to the input x[n] = δ[n− 1].
(e) Find its response to the input x[n] = 1 + (−1)n.
(f) Find its response to the input x[n] = 3 + 2δ[n]− 4 cos(nπ/2).

[Hints and Suggestions: For (a), extract e−j2πF in H(F ) to set up H(F ) = A(F )ejφ(F ) and sketch
A(F ). For (b), use φ(F ). For (c), evaluate H(F ) at the frequency of x[n] to find the output. For (d),
find h[n] and shift. For (e), use (−1)n = cos(nπ) and superposition. For (f), use superposition.]
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6.5 (Frequency Response) Consider the 2-point differencing filter h[n] = δ[n]− δ[n− 1].
(a) Sketch its amplitude spectrum.
(b) Find its phase and group delay. Is this a linear-phase filter?
(c) Find its response to the input x[n] = cos(nπ/2).
(d) Find its response to the input x[n] = u[n].
(e) Find its response to the input x[n] = (−1)n.
(f) Find its response to the input x[n] = 3 + 2u[n]− 4 cos(nπ/2).

[Hints and Suggestions: For (a), extract e−jπF in H(F ) to set up H(F ) = A(F )ejφ(F ) and sketch
A(F ). For (b), use φ(F ). For (c), evaluate H(F ) at the frequency of x[n] to find the output. For (d),
find y[n] = u[n]− u[n− 1] and simplify. For (e), use (−1)n = cos(nπ). For (f), use superposition.]

6.6 (Frequency Response) Consider the 5-point tapered averaging filter h[n] = 1
9{
⇓
1, 2, 3, 2, 1}.

(a) Sketch its amplitude spectrum.
(b) Find its phase delay and group delay. Is this a linear-phase filter?
(c) Find its response to the input x[n] = cos(nπ/4).
(d) Find its response to the input x[n] = δ[n].
(e) Find its response to the input x[n] = (−1)n.
(f) Find its response to the input x[n] = 9 + 9δ[n]− 9 cos(nπ/4).

[Hints and Suggestions: For (a), extract e−j4πF in H(F ) to set up H(F ) = A(F )ejφ(F ) and sketch
A(F ). For (b), use φ(F ). For (c), evaluate H(F ) at the frequency of x[n] to find the output. For (d),
find h[n]. For (e), use (−1)n = cos(nπ). For (f), use superposition.]

6.7 (Frequency Response) Sketch the gain |H(F )| of the following digital filters and identify the filter
type.
(a) y[n] + 0.9y[n− 1] = x[n] (b) y[n]− 0.9y[n− 1] = x[n]
(c) y[n] + 0.9y[n− 1] = x[n− 1] (d) y[n] = x[n]− x[n− 4]

[Hints and Suggestions: To sketch, start with the gain |H(F )| at F = 0 and F = 0.5 and add a few
others such as F = 0.25.]

6.8 (Frequency Response) Consider a system whose frequency response H(F ) in magnitude/phase
form is H(F ) = A(F )ejφ(F ). Find the response y[n] of this system for the following inputs.

(a) x[n] = δ[n] (b) x[n] = 1 (c) x[n] = cos(2nπF0) (d) x[n] = (−1)n

[Hints and Suggestions: For (d), note that (−1)n = cos(nπ).]

6.9 (Poles and Zeros) Find the transfer function corresponding to each pole-zero pattern shown in
Figure P6.9 and identify the filter type.

Im[ z ]

Re[ z ]

Im[ z ]

Re[ z ]

Im[ z ]

Re[ z ] 500

Im[ z ]

Re[ z ]

0.7

Filter 1

−0.6

Filter 2

0.4

Filter 3

0.7

Filter 4

Figure P6.9 Figure for Problem 6.9
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[Hints and Suggestions: To identify the filter type, evaluate |H(z)| at z = 1 (dc gain) and at z = −1
(high frequency gain).]

6.10 (Inverse Systems) Find the transfer function of the inverse systems for each of the following. Which
inverse systems are causal? Which inverse systems are stable?

(a) H(z) =
z2 + 0.1
z2 − 0.2

(b) H(z) =
z + 2

z2 + 0.25
(c) y[n]− 0.5y[n− 1] = x[n] + 2x[n− 1] (d) h[n] = n(2)nu[n]

[Hints and Suggestions: For parts (c) and (d), set up H(z) and find HI(z) = 1/H(z).]

6.11 (Minimum-Phase Systems) Classify each causal system as minimum phase, mixed phase, or max-
imum phase. Which of the systems are stable?

(a) H(z) =
z2 + 0.16
z2 − 0.25

(b) H(z) =
z2 − 4
z2 + 9

(c) h[n] = n(2)nu[n] (d) y[n] + y[n− 1] + 0.25y[n− 2] = x[n]− 2x[n− 1]

6.12 (Minimum-Phase Systems) Find the minimum-phase transfer function corresponding to the sys-
tems described by the following:

(a) H(z)H(1/z) =
1

3z2 − 10z + 3

(b) H(z)H(1/z) =
3z2 + 10z + 3
5z2 + 26z + 5

(c) |H(F )|2 =
1.25 + cos(2πF )
8.5 + 4 cos(2πF )

[Hints and Suggestions: Pick H(z) to have poles and zeros inside the unit circle. For part (c), set
cos(2πF ) = 0.5ej2πF + 0.5e−j2πF = 0.5z + 0.5z−1 and compare with H(z)H(1/z).]

6.13 (System Characteristics) Consider the system y[n]− αy[n− 1] = x[n]− βx[n− 1].

(a) For what values of α and β will the system be stable?
(b) For what values of α and β will the system be minimum-phase?
(c) For what values of α and β will the system be allpass?
(d) For what values of α and β will the system be linear phase?

6.14 (Frequency Response) Consider the recursive filter y[n] + 0.5y[n− 1] = 0.5x[n] + x[n− 1].

(a) Sketch the filter gain. What type of filter is this?
(b) Find its phase delay and group delay. Is this a linear-phase filter?
(c) Find its response to the input x[n] = cos(nπ/2).
(d) Find its response to the input x[n] = δ[n].
(e) Find its response to the input x[n] = (−1)n.
(f) Find its response to the input x[n] = 4 + 2δ[n]− 4 cos(nπ/2).

[Hints and Suggestions: For (a), start with |H(F )| at F = 0 and F = 0.5 to sketch the gain. For
(b), use equations for the first-order allpass filter. For (c), evaluate H(F ) at the frequency of x[n] to
find the output. For (d), find h[n]. For (e), use (−1)n = cos(nπ). For (f), use superposition.]

6.15 (Linear-Phase Filters) Consider a filter whose impulse response is h[n] = {⇓α, β, α}.
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(a) Find its frequency response in amplitude/phase form H(F ) = A(F )ejφ(F ) and confirm that the
phase φ(F ) varies linearly with F .

(b) Determine the values of α and β if this filter is to completely block a signal at the frequency
F = 1

3 while passing a signal at the frequency F = 1
8 with unit gain.

(c) What will be the output of the filter in part(b) if the input is x[n] = cos(0.5nπ)?

[Hints and Suggestions: In (a), extract e−j2πF in H(F ) to set up the required form. In (b), set up
A(F ) at the two frequencies and solve for α and β. In (c), evaluate H(F ) at the frequency of the input
to set up the output.]

6.16 (First-Order Filters) For each filter, sketch the pole-zero plot, sketch the frequency response to
establish the filter type, and evaluate the phase delay at low frequencies. Assume that α = 0.5.

(a) H(z) =
z − α

z + α
(b) H(z) =

z − 1/α

z + α
(c) H(z) =

z + 1/α

z + α

6.17 (Filter Concepts) Argue for or against the following. Use examples to justify your arguments.

(a) All the finite poles of an FIR filter must lie at z = 0.
(b) An FIR filter is always linear phase.
(c) An FIR filter is always stable.
(d) A causal IIR filter can never display linear phase.
(e) A linear-phase sequence is always symmetric about is midpoint.
(f) A minimum-phase filter can never display linear phase.
(g) An allpass filter can never display linear phase.
(h) An allpass filter can never be minimum phase.
(i) The inverse of a minimum-phase filter is also minimum phase.
(j) The inverse of a causal filter is also causal.
(k) For a causal minimum-phase filter to have a a causal inverse, the filter must have as many finite

poles as finite zeros.

6.18 (Filter Concepts) Let H(z) =
0.2(z + 1)
z − 0.6

. What type of filter does H(z) describe? Sketch its

pole-zero plot.

(a) What filter does H1(z) = 1−H(z) describe? Sketch its pole-zero plot.
(b) What filter does H2(z) = H(−z) describe? Sketch its pole-zero plot.
(c) What type of filter does H3(z) = 1−H(z)−H(−z) describe? Sketch its pole-zero plot.
(d) Use a combination of the above filters to implement a bandstop filter.

6.19 (Filter Design by Pole-Zero Placement) Design the following filters by pole-zero placement.

(a) A bandpass filter with a center frequency of f0 = 200 Hz, a 3-dB bandwidth of ∆f = 20 Hz, zero
gain at f = 0 and f = 400 Hz, and a sampling frequency of 800 Hz.

(b) A notch filter with a notch frequency of 1 kHz, a 3-dB stopband of 10 Hz, and sampling frequency
8 kHz.

[Hints and Suggestions: Convert to digital frequencies and put the poles at z = Re±j2πF0 where
R ≈ 1− π∆F . For (a), put zeros at z = ±1. For (b), put zeros at z = e±j2πF0 .]
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6.20 (Recursive and IIR Filters) The terms recursive and IIR are not always synonymous. A recursive
filter could in fact have a finite impulse response and even linear phase. For each of the following
recursive filters, find the transfer function H(z) and the impulse response h[n]. Which filters (if any)
describe IIR filters? Which filters (if any) are linear phase?

(a) y[n]− y[n− 1] = x[n]− x[n− 2]
(b) y[n]− y[n− 1] = x[n]− x[n− 1]− 2x[n− 2] + 2x[n− 3]

[Hints and Suggestions: Set up H(z) and cancel common factors to generate h[n].]

6.21 (Systems in Cascade and Parallel) Consider the filter realization of Figure P6.21.

(a) Find its transfer function and impulse response if α 6= β. Is the overall system FIR or IIR?
(b) Find its transfer function and impulse response if α = β. Is the overall system FIR or IIR?
(c) Find its transfer function and impulse response if α = β = 1. What does the overall system

represent?

[n]y

−1z

−1z

−1z

[n]x

α

β

++

++

+−

Σ

Σ Σ

Figure P6.21 Filter realization for Problem 6.21

6.22 (Poles and Zeros) It is known that the transfer function H(z) of a filter has two poles at z = 0, two
zeros at z = −1, and a dc gain of 8.

(a) Find the filter transfer function H(z) and impulse response h[n].
(b) Is this an IIR or FIR filter?
(c) Is this a causal or noncausal filter?
(d) Is this a linear-phase filter? If so, what is the symmetry in h[n]?
(e) Repeat parts (a)–(d) if another zero is added at z = −1.

6.23 (Frequency Response) Sketch the pole-zero plot and frequency response of the following systems
and describe the function of each system.

(a) y[n] = 0.5x[n] + 0.5x[n− 1] (b) y[n] = 0.5x[n]− 0.5x[n− 1]

(c) h[n] = 1
3{1,

⇓
1, 1} (d) h[n] = 1

3{1,
⇓
−1, 1}

(e) h[n] = {
⇓

0.5, 1, 0.5} (f) h[n] = {
⇓

0.5, −1, 0.5}
(g) H(z) =

z − 0.5
z + 0.5

(h) H(z) =
z − 2

z + 0.5

(i) H(z) =
z + 2

z + 0.5
(j) H(z) =

z2 + 2z + 3
3z2 + 2z + 1

6.24 (Inverse Systems) Consider a system described by h[n] = 0.5δ[n] + 0.5δ[n− 1].

(a) Sketch the frequency response H(F ) of this filter.
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(b) In an effort to recover the input x[n], it is proposed to cascade this filter with another filter whose
impulse response is h1[n] = 0.5δ[n]− 0.5δ[n− 1], as shown:

x[n] −→ h[n] −→ h1[n] −→ y[n]

What is the output of the cascaded filter to the input x[n]? Sketch the frequency response H1(F )
and the frequency response of the cascaded filter.

(c) What must be the impulse response h2[n] of a filter connected in cascade with the original filter
such that the output of the cascaded filter equals the input x[n], as shown?

x[n] −→ h[n] −→ h2[n] −→ x[n]

(d) Are H2(F ) and H1(F ) related in any way?

6.25 (Linear Phase and Symmetry) Assume a sequence x[n] with real coefficients with all its poles at
z = 0. Argue for or against the following statements. You may want to exploit two useful facts. First,
each pair of terms with reciprocal roots such as (z−α) and (z−1/α) yields an even symmetric impulse
response sequence. Second, the convolution of symmetric sequences is also endowed with symmetry.
(a) If all the zeros lie on the unit circle, x[n] must be linear phase.
(b) If x[n] is linear phase, its zeros must always lie on the unit circle.
(c) If there are no zeros at z = 1 and x[n] is linear phase, it is also even symmetric.
(d) If there is one zero at z = 1 and x[n] is linear phase, it is also odd symmetric.
(e) If x[n] is even symmetric, there can be no zeros at z = 1.
(f) If x[n] is odd symmetric, there must be an odd number of zeros at z = 1.

6.26 (Comb Filters) For each comb filter, identify the pole and zero locations and determine whether it
is a notch filter or a peaking filter.

(a) H(z) =
z4 − 0.4096
z4 − 0.6561

(b) H(z) =
z4 − 1

z4 − 0.6561

6.27 (Linear-Phase Filters) Argue for or against the following:
(a) The cascade connection of two linear-phase filters is also a linear-phase filter.
(b) The parallel connection of two linear-phase filters is also a linear-phase filter.

6.28 (Minimum-Phase Filters) Argue for or against the following:
(a) The cascade connection of two minimum-phase filters is also a minimum-phase filter.
(b) The parallel connection of two minimum-phase filters is also a minimum-phase filter.

6.29 (System Analysis) The impulse response of a system is h[n] = δ[n] − αδ[n − 1]. Determine α and
make a sketch of the pole-zero plot for this system to act as

(a) A lowpass filter. (b) A highpass filter. (c) An allpass filter.

6.30 (System Analysis) The impulse response of a system is h[n] = αnu[n], α 6= 0. Determine α and
make a sketch of the pole-zero plot for this system to act as

(a) A stable lowpass filter. (b) A stable highpass filter. (c) An allpass filter.

6.31 (Allpass Filters) Argue for or against the following:
(a) The cascade connection of two allpass filters is also an allpass filter.
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(b) The parallel connection of two allpass filters is also an allpass filter.

6.32 (Minimum-Phase Systems) Consider the filter y[n] = x[n]− 0.65x[n− 1] + 0.1x[n− 2].

(a) Find its transfer function H(z) and verify that it is minimum phase.
(b) Find an allpass filter A(z) with the same denominator as H(z).
(c) Is the cascade H(z)A(z) minimum phase? Is it causal? Is it stable?

6.33 (Causality, Stability, and Minimum Phase) Consider two causal, stable, minimum-phase digital
filters whose transfer functions are given by

F (z) =
z

z − 0.5
G(z) =

z − 0.5
z + 0.5

Argue that the following filters are also causal, stable, and minimum phase.

(a) The inverse filter M(z) = 1/F (z)
(b) The inverse filter P (z) = 1/G(z)
(c) The cascade H(z) = F (z)G(z)
(d) The inverse of the cascade R(z) = 1/H(z)
(e) The parallel connection N(z) = F (z) + G(z)

6.34 (Allpass Filters) Consider the filter H(z) =
z + 2

z + 0.5
. The input to this filter is x[n] = cos(2nπF0).

(a) Is H(z) an allpass filter? If so, what is its gain?
(b) What is the response y[n] and the phase delay if F0 = 0?
(c) What is the response y[n] and the phase delay if F0 = 0.25?
(d) What is the response y[n] and the phase delay if F0 = 0.5?

6.35 (Allpass Filters) Consider two causal, stable, allpass digital filters whose transfer function is de-
scribed by

F (z) =
0.5z − 1
0.5− z

G(z) =
0.5z + 1
0.5 + z

(a) Is the filter L(z) = F−1(z) causal? Stable? Allpass?
(b) Is the filter H(z) = F (z)G(z) causal? Stable? Allpass?
(c) Is the filter M(z) = H−1(z) causal? Stable? Allpass?
(d) Is the filter N(z) = F (z) + G(z) causal? Stable? Allpass?

6.36 (Stabilization by Allpass Filters) The transfer function of a filter is H(z) =
z + 3
z − 2

.

(a) Is this filter stable?
(b) What is the transfer function A1(z) of a first-order allpass filter that can stabilize this filter?

What is the transfer function HS(z) of the stabilized filter?
(c) If HS(z) is not minimum phase, pick an allpass filter A2(z) that converts HS(z) to a minimum-

phase filter HM (z).
(d) Verify that |H(F )| = |HS(F )| = |HM (F )|.

6.37 (Allpass Filters) Consider a lowpass filter with impulse response h[n] = (0.5)nu[n]. If its input is
x[n] = cos(0.5nπ), the output will have the form y[n] = A cos(0.5nπ + θ).
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(a) Find the values of A and θ.
(b) What should be the transfer function H1(z) of a first-order allpass filter that can be cascaded with

the lowpass filter to correct for the phase distortion and produce the signal z[n] = B cos(0.5nπ)
at its output?

(c) What should be the gain of the allpass filter in order that z[n] = x[n]?

6.38 (Allpass Filters) An unstable digital filter whose transfer function is H(z) =
(z + 0.5)(2z + 0.5)

(z + 5)(2z + 5)
is

to be stabilized in a way that does not affect its magnitude spectrum.
(a) What must be the transfer function H1(z) of a filter such that the cascaded filter described by

HS(z) = H(z)H1(z) is stable?
(b) What is the transfer function HS(z) of the stabilized filter?
(c) Is HS(z) causal? Minimum phase? Allpass?

6.39 (Signal Delay) The delay D of a discrete-time energy signal x[n] is defined by

D =

∞∑

k=−∞
kx2[k]

∞∑

k=−∞
x2[k]

(a) Verify that the delay of the linear-phase sequence x[n] = {4, 3, 2, 1,
⇓
0, 1, 2, 3, 4} is zero.

(b) Compute the delay of the signal f [n] = x[n− 1].
(c) Compute the delay of the signal g[n] = x[n− 2].

(d) What is the delay for the impulse response of the filter described by H(z) =
1− 0.5z

z − 0.5
?

(e) Compute the delay for the impulse response of the first-order allpass filter H(z) =
1 + αz

z + α
.

[Hints and Suggestions: For part (c), h[n] = −2δ[n] + 1.5(0.5)nu[n]. So, h[0] = −0.5 and h[n] =
1.5(0.5)n, n > 0. Use this with a table of summations to find the delay.]

COMPUTATION AND DESIGN

6.40 (FIR Filter Design) A 22.5-Hz signal is corrupted by 60-Hz hum. It is required to sample this
signal at 180 Hz and filter out the interference from the the sampled signal.
(a) Design a minimum-length, linear-phase filter that passes the desired signal with unit gain and

completely rejects the interference signal.
(b) Test your design by applying a sampled version of the desired signal, adding 60-Hz interference,

filtering the noisy signal, and comparing the desired signal and the filtered signal.

6.41 (Comb Filters) Plot the frequency response of the following filters over 0 ≤ F ≤ 0.5 and describe
the action of each filter.
(a) y[n] = x[n] + αx[n− 4], α = 0.5
(b) y[n] = x[n] + αx[n− 4] + α2x[n− 8], α = 0.5
(c) y[n] = x[n] + αx[n− 4] + α2x[n− 8] + α3x[n− 12], α = 0.5
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(d) y[n] = αy[n− 4] + x[n], α = 0.5

6.42 (Filter Design) An ECG signal sampled at 300 Hz is contaminated by interference due to 60-Hz
hum. It is required to design a digital filter to remove the interference and provide a dc gain of unity.
(a) Design a 3-point FIR filter (using zero placement) that completely blocks the interfering signal.

Plot its frequency response. Does the filter provide adequate gain at other frequencies in the
passband? Is this a good design?

(b) Design an IIR filter (using pole-zero placement) that completely blocks the interfering signal.
Plot its frequency response. Does the filter provide adequate gain at other frequencies in the
passband? Is this a good design?

(c) The Matlab based routine ecgsim (on the author’s website) simulates one period of an ECG
signal. Use the command yecg=ecgsim(3,9) to generate one period (300 samples) of the ECG
signal. Generate a noisy ECG signal by adding 300 samples of a 60-Hz sinusoid to yecg. Obtain
filtered signals, using each filter, and compare plots of the filtered signal with the original signal
yecg. Do the results support your conclusions of parts (a) and (b)? Explain.

6.43 (Nonrecursive Forms of IIR Filters) If we truncate the impulse response of an IIR filter to
N terms, we obtain an FIR filter. The larger the truncation index N , the better the FIR filter
approximates the underlying IIR filter. Consider the IIR filter described by y[n]− 0.8y[n− 1] = x[n].
(a) Find its impulse response h[n] and truncate it to N terms to obtain hN [n], the impulse response

of the approximate FIR equivalent. Would you expect the greatest mismatch in the response of
the two filters to identical inputs to occur for lower or higher values of n?

(b) Plot the frequency response H(F ) and HN (F ) for N = 3. Plot the poles and zeros of the two
filters. What differences do you observe?

(c) Plot the frequency response H(F ) and HN (F ) for N = 10. Plot the poles and zeros of the two
filters. Does the response of HN (F ) show a better match to H(F )? How do the pole-zero plots
compare? What would you expect to see in the pole-zero plot if you increase N to 50? What
would you expect to see in the pole-zero plot as N →∞?

6.44 (Phase Delay and Group Delay of Allpass Filters) Consider the filter H(z) =
z + 1/α

z + α
.

(a) Verify that this is an allpass filter.
(b) Pick values of α that correspond to a phase delay of tp = 0.1, 0.5, 0.9. For each value of α, plot

the unwrapped phase, phase delay, and group delay of the filter.
(c) Over what range of digital frequencies is the phase delay a good match to the value of tp computed

in part (b)?
(d) How does the group delay vary with frequency as α is changed?
(e) For each value of α, compute the minimum and maximum values of the phase delay and the

group delay and the frequencies at which they occur.

6.45 (Decoding a Mystery Message) During transmission, a message signal gets contaminated by a
low-frequency signal and high-frequency noise. The message can be decoded only by displaying it in
the time domain. The contaminated signal is provided on the author’s website as mystery1.mat. Load
this signal into Matlab (using the command load mystery1). In an effort to decode the message,
try the following steps and determine what the decoded message says.
(a) Display the contaminated signal. Can you “read” the message?
(b) Display the DFT of the signal to identify the range of the message spectrum.
(c) Design a peaking filter (with unit gain) centered about the message spectrum.
(d) Filter the contaminated signal and display the filtered signal to decode the message.
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Chapter 7

DIGITAL PROCESSING OF
ANALOG SIGNALS

7.0 Scope and Objectives
This chapter begins with a discussion of sampling and quantization that form the critical link between analog
and digital signals. It explains how the sampling theorem forms the basis for sampling signals with little
or no loss of information, and describes schemes for the recovery of analog signals from their samples using
idealized and practical methods. It introduces the concept of signal quantization and its effects and concludes
with applications of the digital processing of audio signals.

7.1 Ideal Sampling
Ideal sampling describes a sampled signal as a weighted sum of impulses, the weights being equal to the
values of the analog signal at the impulse locations. An ideally sampled signal xI(t) may be regarded as the
product of an analog signal x(t) and a periodic impulse train i(t), as illustrated in Figure 7.1.

st

x I(t)

st
t

Ideally sampled signal

x(t)

t

Analog signal i(t)

Multiplier

t
(1)(1)

Sampling function

Figure 7.1 The ideal sampling operation

The ideally sampled signal may be mathematically described as

xI(t) = x(t)i(t) = x(t)
∞∑

n=−∞
δ(t− nts) =

∞∑
n=−∞

x(nts)δ(t− nts) =
∞∑

n=−∞
x[n]δ(t− nts) (7.1)

Here, the discrete signal x[n] simply represents the sequence of sample values x(nts). Clearly, the sampling
operation leads to a potential loss of information in the ideally sampled signal xI(t), when compared with its
underlying analog counterpart x(t). The smaller the sampling interval ts, the less is this loss of information.
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Intuitively, there must always be some loss of information, no matter how small an interval we use. Fortu-
nately, our intuition notwithstanding, it is indeed possible to sample signals without any loss of information.
The catch is that the signal x(t) must be band-limited to some finite frequency B.

REVIEW PANEL 7.1
The Ideally Sampled Signal Is a Train of Impulses

xI(t) = x(t)
∞∑

n=−∞
δ(t− nts) =

∞∑
n=−∞

x(nts)δ(t− nts) =
∞∑

n=−∞
x[n]δ(t− nts)

The discrete signal x[n] corresponds to the sequence of the sample values x(nts).

The spectra associated with the various signals in ideal sampling are illustrated in Figure 7.2. The
impulse train i(t) is a periodic signal with period T = ts = 1/S and Fourier series coefficients I[k] = S. Its
Fourier transform is a train of impulses (at f = kS) whose strengths equal I[k].

I(f) =
∞∑

k=−∞
I[k]δ(f − kS) = S

∞∑

k=−∞
δ(f − kS) (7.2)

The ideally sampled signal xI(t) is the product of x(t) and i(t). Its spectrum XI(f) is thus described by the
convolution

XI(f) = X(f) ? I(f) = X(f) ? S

∞∑

k=−∞
δ(f − kS) = S

∞∑

k=−∞
X(f − kS) (7.3)

The spectrum XI(f) consists of X(f) and its shifted replicas or images. It is periodic in frequency, with a
period that equals the sampling rate S.

2S 2S

Multiply

Convolve

st

- B

( )S ( )S ( )S( )S
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- S - B

X I (f)

x(t) i(t)=x
I
(t)

st

and and and
Analog signal

its spectrum

Sampling function

its spectrum

Ideally sampled signal

its spectrum

i(t)
(1)(1)

t

x(t)

A

X(f)

B

t

S

I(f)

S
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B

t

f f f

Figure 7.2 Spectra of the signals for ideal sampling

REVIEW PANEL 7.2
The Spectrum of an Ideally Sampled Signal Is Periodic with Period S

XI(f) = X(f) ? S

∞∑

k=−∞
δ(f − kS) = S

∞∑

k=−∞
X(f − kS)

The spectrum is the periodic extension of SX(f) with period S.
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Since the spectral image at the origin extends over (−B, B), and the next image (centered at S) extends
over (S −B,S + B), the images will not overlap if

S −B > B or S > 2B (7.4)

Figure 7.3 illustrates the spectra of an ideally sampled band-limited signal for three choices of the sampling
frequency S. As long as the images do not overlap, each period is a replica of the scaled analog signal spectrum
SX(f). We can thus extract X(f) (and hence x(t)) as the principal period of XI(f) (between −0.5S and
0.5S) by passing the ideally sampled signal through an ideal lowpass filter with a cutoff frequency of 0.5S
and a gain of 1/S over the frequency range −0.5S ≤ f ≤ 0.5S.

f

S− B−
B−S

> 2S B

SB

Oversampling

f

S−
B−S

< 2S B

B

Undersampling

S

f

S−

= 2S B

B S

Critical sampling

Figure 7.3 Spectrum of an ideally sampled signal for three choices of the sampling frequency

This is the celebrated sampling theorem, which tells us that an analog signal band-limited to a fre-
quency B can be sampled without loss of information if the sampling rate S exceeds 2B (or the sampling
interval ts is smaller than 1

2B ). The critical sampling rate SN = 2B is often called the Nyquist rate or
Nyquist frequency and the critical sampling interval tN = 1/SN = 1/2B is called the Nyquist interval.

REVIEW PANEL 7.3
Band-Limited Analog Signals Can Be Sampled Without Loss of Information
If x(t) is band-limited to B, it must be sampled at S > 2B to prevent loss of information.
The images of X(f) do not overlap in the periodic spectrum XI(f) of the ideally sampled signal.
We can recover x(t) exactly from the principal period (−0.5S, 0.5S), using an ideal lowpass filter.

If the sampling rate S is less than 2B, the spectral images overlap and the principal period (−0.5S, 0.5S)
of XI(f) is no longer an exact replica of X(f). In this case, we cannot exactly recover x(t), and there is loss
of information due to undersampling. Undersampling results in spectral overlap. Components of X(f)
outside the principal range (−0.5S, 0.5S) fold back into this range (due to the spectral overlap from adjacent
images). Thus, frequencies higher than 0.5S appear as lower frequencies in the principal period. This is
aliasing. The frequency 0.5S is also called the folding frequency.

REVIEW PANEL 7.4
Undersampling Causes Spectral Overlap, Aliasing, and Irreversible Loss of Information
If S < 2B, the images of X(f) overlap in the periodic spectrum and we cannot recover x(t).
Aliasing: A frequency |f0| > 0.5S gets aliased to a lower frequency fa in the range (−0.5S, 0.5S).

Sampling is a band-limiting operation in the sense that in practice we typically extract only the principal
period of the spectrum, which is band-limited to the frequency range (−0.5S, 0.5S). Thus, the highest
frequency we can recover or identify is 0.5S and depends only on the sampling rate S.
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EXAMPLE 7.1 (The Nyquist Rate)
Let the signal x1(t) be band-limited to 2 kHz and x2(t) be band-limited to 3 kHz. Using properties of the
Fourier transform, we find the Nyquist rate for the following signals.

The spectrum of x1(2t) (time compression) stretches to 4 kHz. Thus, SN = 8 kHz.
The spectrum of x2(t− 3) extends to 3 kHz (a time shift changes only the phase). Thus, SN = 6 kHz.
The spectrum of x1(t) + x2(t) (sum of the spectra) extends to 3 kHz. Thus, SN = 6 kHz.
The spectrum of x1(t)x2(t) (convolution in the frequency domain) extends to 5 kHz. Thus, SN = 10 kHz.
The spectrum of x1(t) ? x2(t) (product of the spectra) extends only to 2 kHz. Thus, SN = 4 kHz.
The spectrum of x1(t)cos(1000πt) (modulation) is stretched by 500 Hz to 2.5 kHz. Thus, SN = 5 kHz.

7.1.1 Sampling of Sinusoids and Periodic Signals

The Nyquist frequency for a sinusoid x(t) = cos(2πf0t+ θ) is SN = 2f0. The Nyquist interval is tN = 1/2f0,
or tN = T/2. This amounts to taking more than two samples per period. If, for example, we acquire just two
samples per period, starting at a zero crossing, all sample values will be zero, and will yield no information.

If a signal x(t) = cos(2πf0t + θ) is sampled at S, the sampled signal is x[n] = cos(2πnf0/S + θ). Its
spectrum is periodic, with principal period (−0.5S, 0.5S). If f0 < 0.5S, there is no aliasing, and the principal
period shows a pair of impulses at ±f0 (with strength 0.5). If f0 > 0.5S, we have aliasing. The components
at ±f0 are aliased to a lower frequency ±fa in the principal range. To find the aliased frequency |fa|,
we subtract integer multiples of the sampling frequency from f0 until the result fa = f0 − NS lies in the
principal range (−0.5S, 0.5S). The spectrum then describes a sampled version of the lower-frequency aliased
signal xa(t) = cos(2πfat + θ). The relation between the aliased frequency, original frequency, and sampling
frequency is illustrated in Figure 7.4. The aliased frequency always lies in the principal range.

0.5S

f (Hz)

2S
1.5S f (Hz)0.5S

Aliased
Actual

Aliased

S Actual

S-0.5

Principal
range

Figure 7.4 Relation between the actual and aliased frequency

REVIEW PANEL 7.5
Finding Aliased Frequencies and Aliased Signals
The signal x(t) = cos(2πf0t + θ) is recovered as xa(t) = cos(2πfat + θ) if S < 2f0.
fa = f0 −NS, where N is an integer that places fa in the principal period (−0.5S, 0.5S).

A periodic signal xp(t) with period T can be described by a sum of sinusoids at the fundamental frequency
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f0 = 1/T and its harmonics kf0. In general, such a signal may not be band-limited and cannot be sampled
without aliasing for any choice of sampling rate.

EXAMPLE 7.2 (Aliasing and Sampled Sinusoids)
(a) Consider the sinusoid x(t) = A cos(2πf0t + θ) with f0 = 100 Hz.

1. If x(t) is sampled at S = 300 Hz, no aliasing occurs, since S > 2f0.
2. If x(t) is sampled at S = 80 Hz, we obtain fa = f0 − S = 20 Hz, The sampled signal describes a

sampled version of the aliased signal A cos[2π(20)t + θ].
3. If S = 60 Hz, we obtain f0 − 2S = −20 Hz. The aliased sinusoid corresponds to

A cos[2π(−20)t + θ] = A cos[2π(20)t− θ]. Note the phase reversal.

(b) Let xp(t) = 8 cos(2πt) + 6 cos(8πt) + 4 cos(22πt) + 6 sin(32πt) + cos(58πt) + sin(66πt).
If it is sampled at S = 10 Hz, the last four terms will be aliased. The reconstruction of the sampled
signal will describe an analog signal whose first two terms are identical to xp(t), but whose other
components are at the aliased frequencies. The following table shows what to expect.

f0 (Hz) Aliasing? Aliased Frequency fa Analog Equivalent

1 No (f0 < 0.5S) No aliasing 8 cos(2πt)
4 No (f0 < 0.5S) No aliasing 6 cos(8πt)

11 Yes 11− S = 1 4 cos(2πt)
16 Yes 16− 2S = −4 6 sin(−8πt) = −6 sin(8πt)
29 Yes 29− 3S = −1 cos(−2πt) = cos(2πt)
33 Yes 33− 3S = 3 sin(6πt)

The reconstructed signal corresponds to xS(t) = 13 cos(2πt) + sin(6πt) + 6 cos(8πt)− 6 sin(8πt), which
cannot be distinguished from xp(t) at the sampling instants t = nts, where ts = 0.1 s. To avoid aliasing
and recover xp(t), we must choose S > 2B = 66 Hz.

(c) Suppose we sample a sinusoid x(t) at 30 Hz and obtain the periodic spectrum of the sampled signal,
as shown in Figure E7.2C. Is it possible to uniquely identify x(t)?

f (Hz)

1

−20 −10 20 40 70 8010 50

x(t) sampled at 30 HzSpectrum of a sinusoid 

Figure E7.2C Spectrum of sampled sinusoid for Example 7.2(c)

We can certainly identify the period as 30 Hz, and thus S = 30 Hz. But we cannot uniquely identify
x(t) because it could be a sinusoid at 10 Hz (with no aliasing) or a sinusoid at 20 Hz, 50 Hz, 80 Hz, etc.
(all aliased to 10 Hz). However, the analog signal y(t) reconstructed from the samples will describe a
10-Hz sinusoid because reconstruction extracts only the principal period, (−15, 15) Hz, of the periodic
spectrum. In the absence of any a priori information, we almost invariably use the principal period as
a means to uniquely identify the underlying signal from its periodic spectrum, for better or worse.
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7.1.2 Application Example: The Sampling Oscilloscope

The sampling theorem tells us that in order to sample an analog signal without aliasing and loss of informa-
tion, we must sample above the Nyquist rate. However, some applications depend on the very act of aliasing
for their success. One example is the sampling oscilloscope. A conventional oscilloscope cannot directly
display a waveform whose bandwidth exceeds the bandwidth of the oscilloscope. However, if the signal is
periodic (or can be repeated periodically) and band-limited, a new, time-expanded waveform can be built
up and displayed by sampling the periodic signal at successively later instants in successive periods. The
idea is illustrated in Figure 7.5 for a periodic signal x(t) = 1 + cos(2πf0t) with fundamental frequency f0.

0f− 0f

0f= 1 + cos(2π t )x(t)

X(f)

f

(1)

(0.5) (0.5)

= 1 + cos[2π ( ) t]y(t) 0f S−

0f S−0f−S

Y(f)

f

SX (f)

S−
0f− 0f

0f S−0f−S

f

S

Figure 7.5 The principle of the sampling oscilloscope

If the sampling rate is chosen to be less than f0 (i.e., S < f0), the spectral component at f0 will alias
to the smaller frequency fa = f0 − S. To ensure no phase reversal, the aliased frequency must be less than
0.5S. Subsequent recovery by a lowpass filter with a cutoff frequency of fC = 0.5S will yield the signal
y(t) = 1 + cos[2π(f0 − S)t], which represents a time-stretched version of x(t). With y(t) = x(t/α), the
stretching factor α and highest sampling rate S are related by

α =
f0

fa
=

f0

f0 − S
S =

(α− 1)f0

α
(7.5)

The closer S is to the fundamental frequency f0, the larger is the stretching factor and the more slowed
down the signal y(t). This reconstructed signal y(t) is what is displayed on the oscilloscope (with appropriate
scale factors to reflect the parameters of the original signal). For a given stretching factor α, the sampling
rate may also be reduced to Sm = S/m (where m is an integer) as long as it exceeds 2f0/α and ensures that
the aliased component appears at f0/α with no phase reversal. The only disadvantage of choosing smaller
sampling rates (corresponding to fewer than one sample per period) is that we must wait much longer in
order to acquire enough samples to build up a one-period display.

More generally, if a periodic signal x(t) with a fundamental frequency of f0 is band-limited to the Nth
harmonic frequency fmax = Nf0, the stretching factor and sampling rate are still governed by the same
equations. As before, the sampling rate may also be reduced to Sm = S/m (where m is an integer) as long
as it exceeds 2fmax/α and ensures that each harmonic kf0 is aliased to kf0/α with no phase reversal.

EXAMPLE 7.3 (Sampling Oscilloscope Concepts)
(a) We wish to see a 100-MHz sinusoid slowed down by a factor of 50. The highest sampling rate we can

choose is

S =
(α− 1)f0

α
= 98 MHz

This causes the slowed down (aliased) signal to appear at 2 MHz. We may even choose a lower
sampling rate (as long as it exceeds 4 MHz) such as S2 = S/2 = 49 MHz or S7 = S/7 = 14 MHz
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or S20 = S/20 = 4.9 MHz and the original signal will still alias to 2 MHz with no phase reversal.
However, if we choose S28 = S/28 = 3.5 MHz (which is less than 4 MHz), the aliased signal will appear
at −1.5 MHz and no longer reflect the correct stretching factor.

(b) We wish to slow down a signal made up of components at 100-MHz and 400 MHz by a factor of 50.
The fundamental frequency is f0 = 100 MHz and the highest sampling rate we can choose is

S =
(α− 1)f0

α
= 98 MHz

The frequency of 100 MHz slows down to 2 MHz and the highest frequency of 400 MHz slows down
(aliases) to 8 MHz. We may also choose a lower sampling rate (as long as it exceeds 16 MHz) such as
S2 = S/2 = 49 MHz or S5 = S/5 = 19.6 MHz and the frequencies will will still alias to 4MHz and
8 Mhz with no phase reversal. However, if we choose S7 = S/7 = 14 MHz (which is less than 16 MHz),
the 400 MHz component will alias to −6 MHz and no longer reflect the correct stretching factor.

7.1.3 Sampling of Bandpass Signals

The spectrum of baseband signals includes the origin whereas the spectrum of bandpass signals occupies
a range of frequencies between fL and fH , where fL is greater than zero. The quantity B = fH − fL is a
measure of the bandwidth of the bandpass signal. Even though a Nyquist rate of 2fH can be used to recover
such signals, we can often get by with a lower sampling rate. This is especially useful for narrow-band signals
(or modulated signals) centered about a very high frequency. To retain all the information in a bandpass
signal, we actually need a sampling rate that aliases the entire spectrum to a lower frequency range without
overlap. The smallest such frequency is S = 2fH/N , where N = int(fH/B) is the integer part of fH/B.
Other choices are also possible and result in the following bounds on the sampling frequency S

2fH

k
≤ S ≤ 2fL

k − 1
, k = 1, 2, . . . , N (7.6)

The integer k can range from 1 to N . The value k = N yields the smallest sampling rate S = 2fH/N , and
k = 1 yields the highest sampling rate corresponding to the Nyquist rate S ≥ 2fH . If k is even, the spectrum
of the sampled signal shows reversal in the baseband.

EXAMPLE 7.4 (Sampling of Bandpass Signals)
Consider a bandpass signal xC(t) with fL = 4 kHz and fH = 6 kHz. Then B = fH − fL = 2 kHz and we
compute N = int(fH/B) = 3. Possible choices for the sampling rate S (in kHz) are given by

12
k
≤ S ≤ 8

k − 1
, k = 1, 2, 3

For k = 3, we have S = 4 kHz. This represents the smallest sampling rate.
For k = 2, we have 6 kHz ≤ S ≤ 8 kHz. Since k is even, the spectrum shows reversal in the baseband.
For k = 1, we have S ≥ 12 kHz and this corresponds to exceeding the Nyquist rate.
Figure E7.4 shows the spectra of the analog signal and its sampled versions for S = 4, 7, 14 kHz.
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f (kHz)

f (kHz)
4 6

Spectrum of bandpass signal

1 3 4 6

Spectrum of signal sampled at 7 kHz

f (kHz)

f (kHz)

2 4 6 8

Spectrum of signal sampled at 4 kHz

864 10

Spectrum of signal sampled at 14 kHz

Figure E7.4 Spectra of bandpass signal and its sampled versions for Example 7.4

7.1.4 Natural Sampling

Conceptually, natural sampling, is equivalent to passing the signal x(t) through a switch that opens and
closes every ts seconds. The action of the switch can be modeled as a periodic pulse train p(t) of unit height,
with period ts and pulse width td. The sampled signal xN (t) equals x(t) for the td seconds that the switch
remains closed and is zero when the switch is open, as illustrated in Figure 7.6.

st

st

xN (t) = x(t)p(t)

t

x(t)

Analog signal
Naturally sampled signal

Sampling function

Multiplier

p(t)

t

t

Figure 7.6 Natural sampling

The naturally sampled signal is described by xN (t) = x(t)p(t). The Fourier transform P (f) is a train of
impulses whose strengths P [k] equal the Fourier series coefficients of p(t):

P (f) =
∞∑

k=−∞
P [k]δ(f − kS) (7.7)

The spectrum XN (f) of the sampled signal xS(t) = x(t)p(t) is described by the convolution

XN (f) = X(f) ? P (f) = X(f) ?

∞∑

k=−∞
P [k]δ(f − kS) =

∞∑

k=−∞
P [k]X(f − kS) (7.8)

The various spectra for natural sampling are illustrated in Figure 7.7. Again, XN (f) is a superposition of
X(f) and its amplitude-scaled (by P [k]), shifted replicas. Since the P [k] decay as 1/k, the spectral images
get smaller in height as we move away from the origin. In other words, XN (f) does not describe a periodic
spectrum. However, if there is no spectral overlap, the image centered at the origin equals P [0]X(f), and
X(f) can still be recovered by passing the sampled signal through an ideal lowpass filter with a cutoff
frequency of 0.5S and a gain of 1/P [0], −0.5S ≤ f ≤ 0.5S, where P [0] is the dc offset in p(t). In theory,
natural sampling can be performed by any periodic signal with a nonzero dc offset.
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Figure 7.7 Spectra of the signals for natural sampling

REVIEW PANEL 7.6
Naturally Sampling Uses a Periodic Pulse Train p(t)

xN (t) = x(t)p(t) XN (f) =
∞∑

k=−∞
P [k]X(f − kS) P [k] =

1
ts

∫

ts

p(t)e−j2πkSt dt

7.1.5 Zero-Order-Hold Sampling

In practice, analog signals are sampled using zero-order-hold (ZOH) devices that hold a sample value
constant until the next sample is acquired. This is also called flat-top sampling. This operation is
equivalent to ideal sampling followed by a system whose impulse response h(t) = rect[(t − 0.5ts)/ts] is a
pulse of unit height and duration ts (to stretch the incoming impulses). This is illustrated in Figure 7.8.

x ZOH(t)x (t)I

st

st
st

st

x(t)
Multiplier

t t

(1)(1)

h(t)

t
1

Analog signal

Sampling function

Ideally sampled signal Hold circuit ZOH sampled signalt

t

Figure 7.8 Zero-order-hold sampling

The sampled signal xZOH(t) can be regarded as the convolution of h(t) and an ideally sampled signal:

xZOH(t) = h(t) ? xI(t) = h(t) ?

[ ∞∑
n=−∞

x(nts)δ(t− nts)

]
(7.9)
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The transfer function H(f) of the zero-order-hold circuit is the sinc function

H(f) = ts sinc(fts)e−jπfts =
1
S

sinc
( f

S

)
e−jπf/S (7.10)

Since the spectrum of the ideally sampled signal is S
∑

X(f − kS), the spectrum of the zero-order-hold
sampled signal xZOH(t) is given by the product

XZOH(f) = sinc
( f

S

)
e−jπf/S

∞∑

k=−∞
X(f − kS) (7.11)

This spectrum is illustrated in Figure 7.9. The term sinc(f/S) attenuates the spectral images X(f − kS)
and causes sinc distortion. The higher the sampling rate S, the less is the distortion in the spectral image
X(f) centered at the origin.

f

B

X(f)

B−

XZOH(f)

S−B

f

B S

Figure 7.9 Spectrum of a zero-order-hold sampled signal

REVIEW PANEL 7.7
The Zero-Order-Hold (ZOH) Sampled Signal Is a Staircase Approximation of x(t)
ZOH sampling: Ideal sampling followed by a hold system with h(t) = rect[(t− 0.5ts)/ts]

xZOH(t) = h(t) ?

[ ∞∑
n=−∞

x(nts)δ(t− nts)

]
XZOH(f) =

[
sinc

( f

S

) ∞∑

k=−∞
X(f − kS)

]
e−jπf/S

An ideal lowpass filter with unity gain over −0.5S ≤ f ≤ 0.5S recovers the distorted signal

X̃(f) = X(f)sinc
( f

S

)
e−jπf/S , −0.5S ≤ f ≤ 0.5S (7.12)

To recover X(f) with no amplitude distortion, we must use a compensating filter that negates the effects
of the sinc distortion by providing a concave-shaped magnitude spectrum corresponding to the reciprocal of
the sinc function over the principal period |f | ≤ 0.5S, as shown in Figure 7.10.

The magnitude spectrum of the compensating filter is given by

|Hr(f)| = 1
sinc(f/S)

, |f | ≤ 0.5S (7.13)
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Figure 7.10 Spectrum of a filter that compensates for sinc distortion

EXAMPLE 7.5 (Sampling Operations)

(a) The signal x(t) = sinc(4000t) is sampled at a sampling frequency S = 5 kHz. The Fourier transform of
x(t) = sinc(4000t) is X(f) = (1/4000)rect(f/4000) (a rectangular pulse over ±2 kHz). The signal x(t)
is band-limited to fB = 2 kHz. The spectrum of the ideally sampled signal is periodic with replication
every 5 kHz, and may be written as

XI(f) =
∞∑

k=−∞
SX(f − kS) = 1.25

∞∑

k=−∞
rect

(
f − 5000k

4000

)

(b) The magnitude spectrum of the zero-order-hold sampled signal is a version of the ideally sampled signal
distorted (multiplied) by sinc(f/S), and described by

XZOH(f) = sinc
( f

S

) ∞∑

k=−∞
X(f − kS) = 1.25 sinc(0.0002f)

∞∑

k=−∞
rect

(
f − 5000k

4000

)

(c) The spectrum of the naturally sampled signal, assuming a rectangular sampling pulse train p(t) with
unit height, and a duty ratio of 0.5, is given by

XN (f) =
∞∑

k=−∞
P [k]X(f − kS) =

1
4000

∞∑

k=−∞
P [k]rect

(
f − 5000k

4000

)

Here, P [k] are the Fourier series coefficients of p(t), with P [k] = 0.5 sinc(0.5k).

7.2 Sampling, Interpolation, and Signal Recovery
For a sampled sequence obtained from an analog signal x(t), an important aspect is the recovery of the
original signal from its samples. This requires “filling in” the missing details, or interpolating between the
sampled values. The nature of the interpolation that recovers x(t) may be discerned by considering the
sampling operation in the time domain. Of the three sampling operations considered earlier, only ideal (or
impulse) sampling leads to a truly discrete signal x[n] whose samples equal the strengths of the impulses
x(nts)δ(t− nts) at the sampling instants nts. This is the only case we pursue.
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7.2.1 Ideal Recovery and the Sinc Interpolating Function

The ideally sampled signal xI(t) is the product of the impulse train i(t) =
∑

δ(t−nts) and the analog signal
x(t) and may be written as

xI(t) = x(t)
∞∑

n=−∞
δ(t− nts) =

∞∑
n=−∞

x(nts)δ(t− nts) =
∞∑

n=−∞
x[n]δ(t− nts) (7.14)

The discrete signal x[n] is just the sequence of samples x(nts). We can recover x(t) by passing xI(t) through
an ideal lowpass filter with a gain of ts and a cutoff frequency of 0.5S. The frequency-domain and time-
domain equivalents are illustrated in Figure 7.11.

t/t s

X(f)= *I(f)

- S - B

X I (f)

−0.5S 0.5S

1/S

- B

X I (f) H(f)=X(f)

x I (t) * h(t)=x(t)

st

x(t) i(t)=x
I
(t)

( )sinc=h(t)

S

SA

B

f f

A

B
f

t
t

Figure 7.11 Recovery of an analog signal from its sampled version

The impulse response of the ideal lowpass filter is a sinc function given by h(t) = sinc(t/ts). The recovered
signal x(t) may therefore be described as the convolution

x(t) = xI(t) ? h(t) =

[ ∞∑
n=−∞

x(nts)δ(t− nts)

]
? h(t) =

∞∑
n=−∞

x[n]h(t− nts) (7.15)

This describes the superposition of shifted versions of h(t) weighted by the sample values x[n]. Substituting
for h(t), we obtain the following result that allows us to recover x(t) exactly from its samples x[n] as a sum
of scaled shifted versions of sinc functions:

x(t) =
∞∑

n=−∞
x[n]sinc

( t− nts
ts

)
(7.16)

The signal x(t) equals the superposition of shifted versions of h(t) weighted by the sample values x[n]. At
each sampling instant, we replace the sample value x[n] by a sinc function whose peak value equals x[n] and
whose zero crossings occur at all the other sampling instants. The sum of these sinc functions yields the
analog signal x(t), as illustrated in Figure 7.12.

If we use a lowpass filter whose impulse response is hf (t) = 2tsB sinc(2Bt) (i.e., whose cutoff frequency
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Figure 7.12 Ideal recovery of an analog signal by sinc interpolation

is B instead of 0.5S), the recovered signal x(t) may be described by the convolution

x(t) = xI(t) ? hf (t) =
∞∑

n=−∞
2tsB x[n]sinc[2B(t− nts)] (7.17)

This general result is valid for any oversampled signal with ts ≤ 0.5/B and reduces to the previously obtained
result if the sampling rate S equals the Nyquist rate (i.e., S = 2B).

Sinc interpolation is unrealistic from a practical viewpoint. The infinite extent of the sinc means that it
cannot be implemented on-line, and perfect reconstruction requires all its past and future values. We could
truncate it on either side after its magnitude becomes small enough. But, unfortunately, it decays very
slowly and must be preserved for a fairly large duration (covering many past and future sampling instants)
in order to provide a reasonably accurate reconstruction. Since the sinc function is also smoothly varying, it
cannot properly reconstruct a discontinuous signal at the discontinuities even with a large number of values.
Sinc interpolation is also referred to as band-limited interpolation and forms the yardstick by which all
other schemes are measured in their ability to reconstruct band-limited signals.

7.2.2 Interpolating Functions

Since the sinc interpolating function is a poor choice in practice, we must look to other interpolating signals.
If an analog signal x(t) is to be recovered from its sampled version x[n] using an interpolating function hi(t),
what must we require of hi(t) to obtain a good approximation to x(t)? At the very least, the interpolated
approximation x̃(t) should match x(t) at the sampling instants nts. This suggests that hi(t) should equal
zero at all sampling instants, except the origin where it must equal unity, such that

hi(t) =
{

1, t = 0
0, t = nts, (n = ±1,±2,±3, . . .) (7.18)

In addition, we also require hi(t) to be absolutely integrable to ensure that it stays finite between the
sampling instants. The interpolated signal x̃(t) is simply the convolution of hi(t) with the ideally sampled
signal xI(t), or a summation of shifted versions of the interpolating function

x̃(t) = hi(t) ? xI(t) =
∞∑

n=−∞
x[n]hi(t− nts) (7.19)
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At each instant nts, we erect the interpolating function hi(t − nts), scale it by x[n], and sum to obtain
x̃(t). At a sampling instant t = kts, the interpolating function hi(kts − nts) equals zero, unless n = k
when it equals unity. As a result, x̃(t) exactly equals x(t) at each sampling instant. At all other times, the
interpolated signal x̃(t) is only an approximation to the actual signal x(t).

7.2.3 Interpolation in Practice

The nature of hi(t) dictates the nature of the interpolating system both in terms of its causality, stability,
and physical realizability. It also determines how good the reconstructed approximation is. There is no
“best” interpolating signal. Some are better in terms of their accuracy, others are better in terms of their
cost effectiveness, still others are better in terms of their numerical implementation.

Step Interpolation

Step interpolation is illustrated in Figure 7.13 and uses a rectangular interpolating function of width ts,
given by h(t) = rect[(t − 0.5ts)/ts], to produce a stepwise or staircase approximation to x(t). Even though
it appears crude, it is quite useful in practice.

st st
stt t

h(t)

t
1

Figure 7.13 Step interpolation

At any time between two sampling instants, the reconstructed signal equals the previously sampled value
and does not depend on any future values. This is useful for on-line or real-time processing where the output
is produced at the same rate as the incoming data. Step interpolation results in exact reconstruction of
signals that are piecewise constant.

A system that performs step interpolation is just a zero-order-hold. A practical digital-to-analog converter
(DAC) for sampled signals uses a zero-order-hold for a staircase approximation (step interpolation) followed
by a lowpass (anti-imaging) filter (for smoothing the steps).

Linear Interpolation

Linear interpolation is illustrated in Figure 7.14 and uses the interpolating function h(t) = tri(t/ts) to
produce a linear approximation to x(t) between the sample values.

st st
stst− tt

h(t)

t
1

Figure 7.14 Linear interpolation

At any instant t between adjacent sampling instants nts and (n + 1)ts, the reconstructed signal equals
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x[n] plus an increment that depends on the slope of the line joining x[n] and x[n + 1]. We have

x̃(t) = x[n] + (t− nts)
x[n + 1]− x[n]

ts
, nts ≤ t < (n + 1)ts (7.20)

This operation requires one future value of the input and cannot actually be implemented on-line. It can,
however, be realized with a delay of one sampling interval ts, which is tolerable in many situations. Systems
performing linear interpolation are also called first-order-hold systems. They yield exact reconstructions
of piecewise linear signals.

Raised Cosine Interpolating Function

The sinc interpolating function forms the basis for several others described by the generic relation

h(t) = g(t)sinc(t/ts), where g(0) = 1 (7.21)

One of the more commonly used of these is the raised cosine interpolating function described by

hrc(t) =
cos(πRt/ts)

1− (2Rt/ts)2
sinc(t/ts), 0 ≤ R ≤ 1 (7.22)

Here, R is called the roll-off factor. Like the sinc interpolating function, hrc(t) equals 1 at t = 0 and 0
at the other sampling instants. It exhibits faster decaying oscillations on either side of the origin for R > 0
as compared to the sinc function. This faster decay results in improved reconstruction if the samples are
not acquired at exactly the sampling instants (in the presence of jitter, that is). It also allows fewer past
and future values to be used in the reconstruction as compared with the sinc interpolating function. The
terminology raised cosine is actually based on the shape of its spectrum. For R = 0, the raised cosine
interpolating function reduces to the sinc interpolating function.

EXAMPLE 7.6 (Signal Reconstruction from Samples)
Let x[n] = {−1, 2, 3, 2}, ts = 1. What is the value of the reconstructed signal x(t) at 2.5 s that results from
step, linear, sinc, and raised cosine (with R = 0.5) interpolation?

(a) For step interpolation, the signal value at t = 2.5 s is simply the value at t = 2. Thus, x̃(2.5) = 3.

(b) If we use linear interpolation, the signal value at t = 2.5 s is simply the average of the values at t = 2
and t = 3. Thus, x̃(2.5) = 0.5(3 + 2) = 2.5.

(c) If we use sinc interpolation, we obtain

x̃(t) =
3∑

k=0

x[k]sinc(t− kts) = −sinc(t) + 2 sinc(t− 1) + 3 sinc(t− 2) + 2 sinc(t− 3)

So, x̃(2.5) = 0.1273− 0.4244 + 1.9099 + 2.5465 = 4.1592.
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(d) If we use raised cosine interpolation (with R = 0.5), we obtain

x̃(t) =
3∑

k=0

x[k]sinc(t− k)
cos[0.5π(t− k)]

1− (t− k)2

We use this equation to compute

x̃(t) = sinc(t) cos(0.5πt)
1−t2

+ 2 sinc(t−1) cos[0.5π(t−1)]
1−(t−1)2

+ 3 sinc(t−2) cos[0.5π(t−2)]
1−(t−2)2

+ 4 sinc(t−3) cos[0.5π(t−3)]
1−(t−3)2

Thus, x̃(2.5) = 0.0171− 0.2401 + 1.8006 + 2.4008 = 3.9785.

7.3 Sampling Rate Conversion
In practice, different parts of a DSP system are often designed to operate at different sampling rates because
of the advantages it offers. Sampling rate conversion can be performed directly on an already sampled signal,
without having to re-sample the original analog signal, and requires concepts based on interpolation and
decimation. Figure 7.15 shows the spectrum of sampled signals obtained by sampling a band-limited analog
signal x(t) whose spectrum is X(f) at a sampling rate S, a higher rate NS, and a lower rate S/M . All three
rates exceed the Nyquist rate to prevent aliasing.

B

SX(f)/M

S/M

S/MSampling rate =

f

X(f)

B

f

B NS

NSX(f)

NSSampling rate =

f

B

SX(f)

S

SSampling rate =

f

Figure 7.15 Spectra of a signal sampled at three sampling rates

The spectrum of the oversampled signal shows a gain of N but covers a smaller fraction of the principal
period. The spectrum of a signal sampled at the lower rate S/M is a stretched version with a gain of 1/M .
In terms of the digital frequency F , the period of all three sampled versions is unity. One period of the
spectrum of the signal sampled at S Hz extends to B/S, whereas the spectrum of the same signal sampled at
NS Hz extends only to B/NS Hz, and the spectrum of the same signal sampled at S/M Hz extends farther
out to BM/S Hz. After an analog signal is first sampled, all subsequent sampling rate changes are typically
made by manipulating the signal samples (and not resampling the analog signal). The key to the process
lies in interpolation and decimation.

7.3.1 Zero Interpolation and Spectrum Compression

A property of the DTFT that forms the basis for signal interpolation and sampling rate conversion is that M -
fold zero interpolation of a discrete-time signal x[n] leads to an M -fold spectrum compression and replication,
as illustrated in Figure 7.16.
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1234

1234

n

y[n]

n

x[n]

0.5 1
F

X(F)

0.50.5/4 1
F

Y(F)

Discrete-time signal Spectrum of discrete-time signal

Fourfold zero interpolation Fourfold spectrum compression

Figure 7.16 Zero interpolation of a signal leads to spectrum compression

The zero-interpolated signal y[n] = x[n/N ] is nonzero only if n = kN, k = 0,±1,±2, . . . (i.e., if n is an
integer multiple of N). The DTFT Yp(F ) of y[n] = y[kN ] may be expressed as

Yp(F ) =
∞∑

n=−∞
y[n]e−j2πnF =

∞∑

k=−∞
y[kN ]e−j2πkNF =

∞∑

k=−∞
x[k]e−j2πkNF = Xp(NF ) (7.23)

This describes Yp(F ) as a scaled (compressed) version of the periodic spectrum Xp(F ) and leads to N -fold
spectrum replication. This is exactly analogous to the Fourier series result for analog periodic signals where
spectrum zero interpolation produces replication (compression) of the periodic signal. The spectrum of the
interpolated signal y[n] shows N compressed images per period, centered at F = k

N . The image centered at
F = 0 occupies the frequency range |F | ≤ 0.5/N .

Similarly, the spectrum of a decimated signal y[n] = x[nM ] is a stretched version of the original spectrum
and is described by

Yp(F ) =
1
M

Xp

( F

M

)
(7.24)

The factor 1/M ensures that we satisfy Parseval’s relation. If the spectrum of the original signal x[n] extends
to |F | ≤ 0.5/M in the central period, the spectrum of the decimated signal extends over |F | ≤ 0.5 and there
is no aliasing or overlap between the spectral images. As a result, the central image represents a stretched
version of the spectrum of the original signal x[n]. Otherwise, there is aliasing and the stretched images
overlap. Because the images are added where overlap exists, the central image gets distorted and no longer
represents a stretched version of the spectrum of the original signal. This is a situation that is best avoided.

REVIEW PANEL 7.8
The Spectra of Zero-Interpolated and Decimated Signals
Zero interpolation by N gives N compressed images per period centered at F = k

N .
In decimation by M , the gain is reduced byM and images are stretched by M (and added if they overlap).

EXAMPLE 7.7 (Zero Interpolation and Spectrum Replication)
The spectrum of a signal x[n] is X(F ) = 2 tri(5F ). Sketch X(F ) and the spectra of the following signals
and explain how they are related to X(F ).
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1. The zero interpolated signal y[n] = x[n/2]
2. The decimated signal d[n] = x[2n]
3. The signal g[n] that equals x[n] for even n, and 0 for odd n

Refer to Figure E7.7 for the spectra.

(a) The spectrum Y (F ) is a compressed version of X(F ) with Y (F ) = X(2F ).

(b) The spectrum D(F ) = 0.5X(0.5F ) is a stretched version of X(F ) with a gain factor of 0.5.

(c) The signal g[n] may be expressed as g[n] = 0.5(x[n] + (−1)nx[n]). Its spectrum (or DTFT) is
described by G(F ) = 0.5[X(F ) + X(F − 0.5)]. We may also obtain g[n] by first decimating x[n] by 2
(to get d[n]), and then zero-interpolating d[n] by 2.

X(F) Y(F)

D(F) G(F)
1 1

22

0.2 0.8 1

f

f

0.4 0.6 1

0.1 0.90.4 0.5 0.6 1

f

0.2 0.3 0.5 0.7 0.8 1

f

Figure E7.7 The spectra of the signals for Example 7.7

7.3.2 Sampling Rate Increase

A sampling rate increase by an integer factor N involves zero interpolation and digital lowpass filtering,
as shown in Figure 7.17. The signals and their spectra at various points in the system are illustrated in
Figure 7.18 for N = 2.

N Gain = N FC =
S

x[n] w[n]

NS

i[n]

NS

Anti-imaging digital filterUp-sample (zero-interpolate)
0.5
N

Figure 7.17 Sampling rate increase by an integer factor

An up-sampler inserts N − 1 zeros between signal samples and results in an N -fold zero-interpolated
signal corresponding to the higher sampling rate NS. Zero interpolation by N results in N -fold replication
of the spectrum whose central image over |F | ≤ 0.5/N corresponds to the spectrum of the oversampled signal
(except for a gain of N). The spurious images are removed by passing the zero-interpolated signal through
a lowpass filter with a gain of N and a cutoff frequency of FC = 0.5/N to obtain the required oversampled
signal. If the original samples were acquired at a rate that exceeds the Nyquist rate, the cutoff frequency of
the digital lowpass filter can be made smaller than 0.5/N . This process yields exact results as long as the
underlying analog signal has been sampled above the Nyquist rate and the filtering operation is assumed
ideal.
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Figure 7.18 Spectra of signals when increasing the sampling rate

REVIEW PANEL 7.9
To Increase the Sampling Rate by N , Up-Sample by N and Lowpass Filter
Up-sampling compresses (and replicates) spectrum. The LPF (FC = 0.5

N , gain = N) removes the images.

EXAMPLE 7.8 (Up-Sampling and Filtering)
In the system of Figure E7.8, the spectrum of the input signal is given by X(F ) = tri(2F ), the up-sampling
is by a factor of 2, and the impulse response of the digital filter is given by h[n] = 0.25 sinc(0.25n). Sketch
X(F ), W (F ), H(F ), and Y (F ) over −0.5 ≤ F ≤ 0.5.

N

w[n]

X(F)

x[n]

W(F)

y[n]

Y(F)H(F)
Digital filterUp-sample (zero-interpolate)

Figure E7.8 The system for Example 7.8

The various spectra are shown in Figure E7.8A.

The spectrum X(F ) is a triangular pulse of unit width. Zero interpolation by two results in the compressed
spectrum W (F ). Now, h[n] = 2FC sinc(2nFC) corresponds to an ideal filter with a cutoff frequency of FC .
Thus, FC = 0.125, and the filter passes only the frequency range |F | ≤ 0.125.

1/2−1/2
F

X(F)
1

−1/4 1/4
F

W(F)
1

1/8−1/8
F

1
H(F)

1/8−1/8
F

Y(F)
1

Figure E7.8A The spectra at various points for the system of Example 7.8
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7.3.3 Sampling Rate Reduction

A reduction in the sampling rate by an integer factor M involves digital lowpass filtering and decimation,
as shown in Figure 7.19. The signals and their spectra at various points in the system for M = 2 are shown
in Figure 7.20.

Gain = 1 MFC =

v[n]

S/MSS

d[n]x[n] Anti-aliasing digital filter th sample)MDown-sample (keep every
0.5
M

Figure 7.19 Sampling rate reduction by an integer factor

First, the sampled signal is passed through a lowpass filter (with unit gain) to ensure that it is band-
limited to |F | ≤ 0.5/M in the principal period and to prevent aliasing during the decimation stage. It is then
decimated by a down-sampler that retains every Mth sample. The spectrum of the decimated signal is a
stretched version that extends to |F | ≤ 0.5 in the principal period. Note that the spectrum of the decimated
signal has a gain of 1/M as required, and it is for this reason that we use a lowpass filter with unit gain.
This process yields exact results as long as the underlying analog signal has been sampled at a rate that is
M times the Nyquist rate (or higher) and the filtering operation is ideal.
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Figure 7.20 The spectra of various signals during sampling rate reduction

REVIEW PANEL 7.10
To Decrease Sampling Rate by M : Unity-Gain LPF (FC = 0.5

M ) and Down-Sampling by M

The LPF (FC = 0.5
M ) band-limits the input. Down-sampling stretches the spectrum.

Fractional sampling-rate changes by a factor M/N can be implemented by cascading a system that
increases the sampling rate by N (interpolation) and a system that reduces sampling rate by M (decimation).
In fact, we can replace the two lowpass filters that are required in the cascade (both of which operate at the

c©Ashok Ambardar, September 1, 2003



272 Chapter 7 Digital Processing of Analog Signals

sampling rate NS) by a single lowpass filter whose gain is 1/N and whose cutoff frequency is the smaller of
0.5/M and 0.5/N , as shown in Figure 7.21.

Gain = NN M
S

x[n]

NS

w[n] Digital lowpass filter

FC =
S(N/M)

y[n]Up-sample Down-sample

,Min

v[n]

NS
0.5
N

0.5
M

Figure 7.21 Illustrating fractional sampling-rate change

REVIEW PANEL 7.11
How to Implement a Fractional Sampling-Rate Change by M/N

Interpolate by N =⇒ lowpass filter (using FC = 0.5
max(M,N) and gain = 1

N ) =⇒ decimate by M.

7.4 Quantization
The importance of digital signals stems from the proliferation of high-speed digital computers for signal
processing. Due to the finite memory limitations of such machines, we can process only finite data sequences.
We must not only sample an analog signal in time but also quantize (round or truncate) the signal amplitudes
to a finite set of values. Since quantization affects only the signal amplitude, both analog and discrete-time
signals can be quantized. Quantized discrete-time signals are called digital signals.

Each quantized sample is represented as a group (word) of zeros and ones (bits) that can be processed
digitally. The finer the quantization, the longer the word. Like sampling, improper quantization leads to loss
of information. But unlike sampling, no matter how fine the quantization, its effects are irreversible, since
word lengths must necessarily be finite. The systematic treatment of quantization theory is very difficult
because finite word lengths appear as nonlinear effects. Quantization always introduces some noise, whose
effects can be described only in statistical terms, and is usually considered only in the final stages of any
design, and many of its effects (such as overflow and limit cycles) are beyond the realm of this text.

7.4.1 Uniform Quantizers

Quantizers are devices that operate on a signal to produce a finite number of amplitude levels or quantization
levels. It is common practice to use uniform quantizers with equal quantization levels.

The number of levels L in most quantizers used in an analog-to-digital converter (ADC) is invariably a
power of 2. If L = 2B, each of the L levels is coded to a binary number, and each signal value is represented
in binary form as a B-bit word corresponding to its quantized value. A 4-bit quantizer is thus capable of 24

(or 16) levels and a 12-bit quantizer yields 212 (or 4096) levels.
A signal may be quantized by rounding to the nearest quantization level, by truncation to a level

smaller than the next higher one, or by sign-magnitude truncation, which is rather like truncating
absolute values and then using the appropriate sign. These operations are illustrated in Figure 7.22.

For a quantizer with a full-scale amplitude of ±X, input values outside the range |X| will get clipped
and result in overflow. The observed value may be set to the full-scale value (saturation) or zero (zeroing),
leading to the overflow characteristics shown in Figure 7.23.

The quantized signal value is usually represented as a group (word) with a specified number of bits
called the word length. Several number representations are in use and illustrated in Table 7.1 for B = 3.
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Some forms of number representation are better suited to some combinations of quantization and overflow
characteristics and, in practice, certain combinations are preferred. In any case, the finite length of binary
words leads to undesirable, and often irreversible, effects collectively known as finite-word-length effects.

Quantized
signal

Original
signal

Rounding

∆/2

∆/2

Quantized
signal

Original
signal

∆

∆

Sign-magnitude truncation

Original
signal

Quantized
signal

∆

∆

Truncation

Figure 7.22 Various ways of quantizing a signal

V−

V−

V−

V−

Zeroing

V

V

Actual value

Observed value

Saturation

V

V

Actual value

Observed value

Figure 7.23 Two overflow characteristics

Table 7.1 Various Number Representations for B = 3 Bits

Decimal Sign and One’s Two’s Offset
Value Magnitude Complement Complement Binary

+4 111
+3 011 011 011 110
+2 010 010 010 101
+1 001 001 001 000
+0 000 000 000
−0 100 111 011
−1 101 110 111 010
−2 110 101 110 001
−3 111 100 101 000
−4 100

7.4.2 Quantization Error and Quantization Noise

The quantization error, naturally enough, depends on the number of levels. If the quantized signal
corresponding to a discrete signal x[n] is denoted by xQ[n], the quantization error ε[n] equals

ε[n] = x[n]− xQ[n] (7.25)

c©Ashok Ambardar, September 1, 2003



274 Chapter 7 Digital Processing of Analog Signals

It is customary to define the quantization signal-to-noise ratio (SNRQ) as the ratio of the power PS in
the signal and the power PN in the error ε[n] (or noise). This is usually measured in decibels, and we get

PS =
1
N

N−1∑
n=0

x2[n] PN =
1
N

N−1∑
n=0

ε2[n] SNRQ(dB) = 10 log
PS

PN
= 10 log

∑
x2[n]∑
ε2[n]

(7.26)

The effect of quantization errors due to rounding or truncation is quite difficult to quantify analytically
unless statistical estimates are used. The dynamic range or full-scale range of a signal x(t) is defined as
its maximum variation D = xmax−xmin. If x(t) is sampled and quantized to L levels using a quantizer with
a full-scale range of D, the quantization step size, or resolution, ∆, is defined as

∆ = D/L (7.27)

This step size also corresponds to the least significant bit (LSB). The dynamic range of a quantizer is often
expressed in decibels. For a 16-bit quantizer, the dynamic range is 20 log 216 ≈ 96 dB.

For quantization by rounding, the maximum value of the quantization error must lie between −∆/2 and
∆/2. If L is large, the error is equally likely to take on any value between −∆/2 and ∆/2 and is thus
uniformly distributed. Its probability density function f(ε) has the form shown in Figure 7.24.

f (ε)

−∆/2 ∆/2

1/∆

ε

Figure 7.24 Probability density function of a signal quantized by rounding

The noise power PN equals its variance σ2 (the second central moment), and is given by

PN = σ2 =
∫ ∆/2

−∆/2

ε2f(ε) dε =
1
∆

∫ ∆/2

−∆/2

ε2 dε =
∆2

12
(7.28)

The quantity σ = ∆/
√

12 defines the rms quantization error. With ∆ = D/L, we compute

10 log PN = 10 log
D2

12L2
= 20 log D − 20 log L− 10.8 (7.29)

A statistical estimate of the SNR in decibels, denoted by SNRS , is thus provided by

SNRS(dB) = 10 log PS − 10 log PN = 10 log PS + 10.8 + 20 log L− 20 log D (7.30)

For a B-bit quantizer with L = 2B levels (and ∆ = D/2B), we obtain

SNRS(dB) = 10 log PS + 10.8 + 6B − 20 log D (7.31)

This result suggests a 6-dB improvement in the SNR for each additional bit. It also suggests a reduction in
the SNR if the dynamic range D is chosen to exceed the signal limits. In practice, signal levels do not often
reach the extreme limits of their dynamic range. This allows us to increase the SNR by choosing a smaller
dynamic range D for the quantizer but at the expense of some distortion (at very high signal levels).
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EXAMPLE 7.9 (Quantization Effects)

(a) A sampled signal that varies between −2 V and 2 V is quantized using B bits. What value of B will
ensure an rms quantization error of less than 5 mV?

The full-scale range is D = 4 V. The rms error is given by σ = ∆/
√

12. With ∆ = D/2B , we obtain

2B =
D

σ
√

12
=

4
0.005

√
12

= 230.94 B = log2 230.94 = 7.85

Rounding up this result, we get B = 8 bits.

(b) Consider the ramp x(t) = 2t over (0, 1). For a sampling interval of 0.1 s, and L = 4, we obtain the
sampled signal, quantized (by rounding) signal, and error signal as

x[n] = {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}
xQ[n] = {0, 0.0, 0.5, 0.5, 1.0, 1.0, 1.0, 1.5, 1.5, 2.0, 2.0}

e[n] = {0, 0.2,−0.1, 0.1,−0.2, 0.0, 0.2,−0.1, 0.1,−0.2, 0.0}

We can now compute the SNR in several ways.

1. SNRQ = 10 log
PS

PN
= 10 log

∑
x2[n]∑
e2[n]

= 10 log
15.4
0.2

= 18.9 dB

2. We could also use SNRQ = 10 log PS + 10.8 + 20 log L− 20 log D. With D = 2 and N = 11,

SNRS = 10 log

[
1
N

N−1∑
n=0

x2[n]

]
+ 10.8 + 20 log 4− 20 log 2 = 18.7 dB

3. If x(t) forms one period of a periodic signal with T = 1, we can also find PS and SNRS as

PS =
1
T

∫
x2(t) dt =

4
3

SNRS = 10 log( 4
3 ) + 10 log 12 + 20 log 4− 20 log 2 = 18.062 dB

Why the differences between the various results? Because SNRS is a statistical estimate. The larger
the number of samples N , the less SNRQ and SNRS differ. For N = 500, for example, we find that
SNRQ = 18.0751 dB and SNRS = 18.0748 dB are very close indeed.

(c) Consider the sinusoid x(t) = A cos(2πft). The power in x(t) is PS = 0.5A2. The dynamic range of
x(t) is D = 2A (the peak-to-peak value). For a B-bit quantizer, we obtain the widely used result

SNRS = 10 log PS + 10.8 + 6B − 20 log D = 6B + 1.76 dB
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7.4.3 Quantization and Oversampling

Even though sampling and quantization are independent operations, it turns out that oversampling allows
us to use quantizers with fewer bits per sample. The idea is that the loss of accuracy in the sample values
(by using fewer bits) is offset by the larger number of samples (by using a higher sampling rate). This is a
consequence of how the quantization noise power is distributed.

The quantized signal is xQ[n] = x[n] + ε[n]. The quantization error ε[n] may be assumed to be a white-
noise sequence that is uncorrelated with the signal x[n], with a uniform probability density over the range
(−0.5∆, 0.5∆). The variance (average power) of ε[n] is σ2 = ∆2/12. The spectrum of ε[n] is flat over the
principal range (0.5S, 0.5S), and the average power σ2 is equally distributed over this range. The power
spectral density of ε[n] is thus Pee(f) = σ2/S. If a signal is oversampled at the rate NS, the noise spectrum
is spread over a wider frequency range (−0.5NS, 0.5NS). The power spectral density is thus N times less
for the same total quantization noise power. In fact, the in-band quantization noise in the region of interest,
(−0.5S, 0.5S), is also decreased by a factor of N . This is illustrated in Figure 7.25.
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Figure 7.25 Quantization noise spectrum of an oversampled signal

If we were to keep the in-band noise power the same as before, we can recover the signal using fewer bits.
For such a quantizer with B2 = (B −∆B) bits per sample, an average power of σ2

2 , and a sampling rate of
S2 = NS Hz, we obtain the same in-band quantization noise power when its power spectral density is also
σ2/S, as illustrated in Figure 7.25. Thus,

σ2

S
=

σ2
2

NS
σ2 =

σ2
2

N
(7.32)

Assuming the same full-scale range D for each quantizer, we obtain

D2

(12)22B
=

D2

(12N)22(B−∆B)
N = 22∆B ∆B = 0.5 log2 N (7.33)

This result suggests that we gain 0.5 bits for every doubling of the sampling rate. For example, N = 4
(four-times oversampling) leads to a gain of 1 bit. In practice, a better trade-off between bits and samples
is provided by quantizers that not only use oversampling but also shape the noise spectrum (using filters)
to further reduce the in-band noise, as shown in Figure 7.25. A typical noise shape is the sine function, and
a pth-order noise-shaping filter has the form HNS(f) = |2 sin(πf/NS)|p, −0.5NS ≤ f ≤ 0.5NS, where N is
the oversampling factor. Equating the filtered in-band noise power to σ2, we obtain

σ2 =
(

σ2
2

N

)
1
S

∫ S/2

−S/2

|HNS(f)|2df (7.34)

If N is large, HNS(f) ≈ |(2πf/NS)|p over the much smaller in-band range (−0.5S, 0.5S), and we get

σ2 =
(

σ2
2

N

)
1
S

∫ S/2

−S/2

(
2πf

NS

)2p

df =
σ2

2π2p

(2p + 1)N2p+1
(7.35)
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Simplification, with σ2
2/σ2 = 22∆B , gives

∆B = (p + 0.5)log2N − 0.5 log2

(
π2p

2p + 1

)
(7.36)

This shows that noise shaping (or error-spectrum shaping) results in a savings of p log2 N additional bits.
With p = 1 and N = 4, for example, ∆B ≈ 2 bits. This means that we can make do with a (B−2)-bit DAC
during reconstruction if we use noise shaping with four-times oversampling. In practical implementation,
noise shaping is achieved by using an oversampling sigma-delta ADC. State-of-the-art CD players make use
of this technology. What does it take to achieve 16-bit quality using a 1-bit quantizer (which is just a sign
detector)? Since ∆B = 15, we could, for example, use oversampling by N = 64 (to 2.8 MHz for audio signals
sampled at 44.1 kHz) and p = 3 (third-order noise shaping).

7.5 Digital Processing of Analog Signals
The crux of the sampling theorem is not just the choice of an appropriate sampling rate. More important,
the processing of an analog signal is equivalent to the processing of its Nyquist sampled version, because it
retains the same information content as the original. This is how the sampling theorem is used in practice.
It forms the link between analog and digital signal processing, and allows us to use digital techniques to
manipulate analog signals. When we sample a signal x(t) at the instants nts, we imply that the spectrum
of the sampled signal is periodic with period S = 1/ts and band-limited to a highest frequency B = 0.5S.
Figure 7.26 illustrates a typical system for analog-to-digital conversion.

0110100111 0
Sampler Hold

Quantizer
and

Analog signal DT signal Staircase signal encoder Digital signalcircuit

Figure 7.26 Block diagram of a system for analog-to-digital conversion

An analog lowpass pre-filter or anti-aliasing filter (not shown) limits the highest analog signal frequency
to allow a suitable choice of the sampling rate and ensure freedom from aliasing. The sampler operates
above the Nyquist sampling rate and is usually a zero-order-hold device. The quantizer limits the sampled
signal values to a finite number of levels (16-bit quantizers allow a signal-to-noise ratio close to 100 dB). The
encoder converts the quantized signal values to a string of binary bits or zeros and ones (words) whose
length is determined by the number of quantization levels of the quantizer.

A digital signal processing system, in hardware or software (consisting of digital filters), processes the
encoded digital signal (or bit stream) in a desired fashion. Digital-to-analog conversion essentially reverses
the process and is accomplished by the system shown in Figure 7.27.
A decoder converts the processed bit stream to a discrete signal with quantized signal values. The zero-
order-hold device reconstructs a staircase approximation of the discrete signal. The lowpass analog post-
filter, or anti-imaging filter, extracts the central period from the periodic spectrum, removes the unwanted
replicas (images), and results in a smoothed reconstructed signal.
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011 0100111 0
Decoder Hold Analog

Digital signal Staircase signal Analog signalcircuit post-
DT signal filter

Figure 7.27 Block diagram of a system for analog-to-digital conversion

7.5.1 Multirate Signal Processing and Oversampling

In practice, different parts of a DSP system are often designed to operate at different sampling rates because
of the advantages it offers. Since real-time digital filters must complete all algorithmic operations in one sam-
pling interval, a smaller sampling interval (i.e. a higher sampling rate) can impose an added computational
burden during the digital processing stage. It is for this reason that the sampling rate is often reduced (by
decimation) before performing DSP operations and increased (by interpolation) before reconstruction. This
leads to the concept of multirate signal processing where different subsystems operate at different sampling
rates best suited for the given task.

Oversampling does offer several advantages. At the input end, oversampling an analog signal prior to
quantization allows the use of simple anti-aliasing filters. It also allows the use of quantizers with lower
resolution (fewer bits) to achieve a given SNR because oversampling reduces the quantization noise level by
spreading the quantization noise over a wider bandwidth. At the output end, oversampling of the processed
digital signal (by sampling rate conversion) prior to reconstruction can reduce the errors (sinc distortion)
caused by zero-order-hold devices. It also allows us to use a DAC with lower resolution and a lower-order
anti-imaging filter for final analog reconstruction.

7.5.2 Practical ADC Considerations

An analog-to-digital converter (ADC) for converting analog to digital signals consists of a sample-and-hold
circuit followed by a quantizer and encoder. A block diagram of a typical sample-and-hold circuit and its
practical realization is shown in Figure 7.28.
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+

Implementation using an FET as a switch

C

T

Ground

Block diagram of sample-and-hold system

C

Buffer

Switch

Figure 7.28 Block diagram of a sample-and-hold system and a practical realization

A clock signal controls a switch (an FET, for example) that allows the hold capacitor C to charge
very rapidly to the sampled value (when the switch is closed) and to discharge very slowly through the
high input resistance of the buffer amplifier (when the switch is open). Ideally, the sampling should be as
instantaneous as possible and, once acquired, the level should be held constant until it can be quantized and
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encoded. Practical circuits also include an operational amplifier at the input to isolate the source from the
hold capacitor and provide better tracking of the input. In practice, the finite aperture time TA (during
which the signal is being measured), the finite acquisition time TH (to switch from the hold mode to the
sampling mode), the droop in the capacitor voltage (due to the leakage of the hold capacitor), and the finite
conversion time TC (of the quantizer) are all responsible for less than perfect performance.

A finite aperture time limits both the accuracy with which a signal can be measured and the highest
frequency that can be handled by the ADC. Consider the sinusoid x(t) = A sin(2πf0t). Its derivative
x′(t) = 2πAf0 cos(2πf0t) describes the rate at which the signal changes. The fastest rate of change equals
2πAf0 at the zero crossings of x(t). If we assume that the signal level can change by no more than ∆X
during the aperture time TA, we must satisfy

2πAf0 ≤ ∆X

TA
or f0 ≤ ∆X

πDTA
(7.37)

where D = 2A corresponds to the full-scale range of the quantizer. Typically, ∆X may be chosen to equal the
rms quantization error (which equals ∆/

√
12) or 0.5 LSB (which equals 0.5∆). In the absence of a sample-

and-hold circuit (using only a quantizer), the aperture time must correspond to the conversion time of the
quantizer. This time may be much too large to permit conversion of frequencies encountered in practice. An
important reason for using a sample-and-hold circuit is that it holds the sampled value constant and allows
much higher frequencies to be handled by the ADC. The maximum sampling rate S that can be used for
an ADC (with a sample-and-hold circuit) is governed by the aperture time TA, and hold time TH , of the
sample-and-hold circuit, as well as the conversion time TC of the quantizer, and corresponds to

S ≤ 1
TA + TH + TC

(7.38)

Naturally, this sampling rate must also exceed the Nyquist rate. During the hold phase, the capacitor
discharges through the high input resistance R of the buffer amplifier, and the capacitor voltage is given
by vC(t) = V0e

−t/τ , where V0 is the acquired value and τ = RC. The voltage during the hold phase is
not strictly constant but shows a droop. The maximum rate of change occurs at t = 0 and is given by
v′(t)|t=0 = −V0/τ . A proper choice of the holding capacitor C can minimize the droop. If the maximum
droop is restricted to ∆V during the hold time TH , we must satisfy

V0

RC
≤ ∆V

TH
or C ≥ V0TH

R ∆V
(7.39)

To impose a lower bound, V0 is typically chosen to equal the full-scale range, and ∆V may be chosen to
equal the rms quantization error (which equals ∆/

√
12) or 0.5 LSB (which corresponds to 0.5∆). Naturally,

an upper bound on C is also imposed by the fact that during the capture phase the capacitor must be able
to charge very rapidly to the input level.

A digital-to-analog converter (DAC) allows the coded and quantized signal to be converted to an analog
signal. In its most basic form, it consists of a summing operational amplifier, as shown in Figure 7.29.

The switches connect either to ground or to the input. The output voltage V0 is a weighted sum of only
those inputs that are switched in. If the resistor values are selected as

R0 = R R1 =
R

2
R2 =

R

22
· · · RN−1 =

R

2N−1
(7.40)

the output is given by

V0 = −Vi
RF

R

(
bN−12N−1 + bN−22N−2 + · · ·+ b121 + b020

)
(7.41)
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V0
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R0

−
+

Ground

Figure 7.29 A system for digital-to-analog conversion

where the coefficients bk correspond to the position of the switches and equal 1 (if connected to the input)
or 0 (if connected to the ground). Practical circuits are based on modifications that use only a few different
resistor values (such as R and 2R) to overcome the problem of choosing a wide range of resistor values
(especially for high-bit converters). Of course, a 1-bit DAC simply corresponds to a constant gain.

EXAMPLE 7.10 (ADC Considerations)
(a) Suppose we wish to digitize a signal band-limited to 15 kHz using only a 12-bit quantizer. If we

assume that the signal level can change by no more than the rms quantization error during capture,
the aperture time TA must satisfy

TA ≤ ∆X

πDf0
=

D/2B
√

12
πDf0

=
1

212π(15)(103)
≈ 5.18 ns

The conversion time of most practical quantizers is much larger (in the microsecond range), and as a
result, we can use such a quantizer only if it is preceded by a sample-and-hold circuit whose aperture
time is less than 5 ns.

(b) If we digitize a signal band-limited to 15 kHz, using a sample-and-hold circuit (with a capture time of
4 ns and a hold time of 10 µs) followed by a 12-bit quantizer, the conversion time of the quantizer can
be computed from

S ≤ 1
TA + TH + TC

TA + TH + TC ≤ 1
S

=
1

(30)103
TC = 23.3 µs

The value of TC is well within the capability of practical quantizers.

(c) Suppose the sample-and-hold circuit is buffered by an amplifier with an input resistance of 1 MΩ. To
ensure a droop of no more that 0.5 LSB during the hold phase, we require

C ≥ V0TH

R∆V

Now, if V0 corresponds to the full-scale value, ∆V = 0.5LSB = V0/2B+1, and

C ≥ V0TH

R(V0/2B+1)
=

(10)10−6213

106
≈ 81.9 nF
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7.5.3 Anti-Aliasing Filter Considerations

The purpose of the anti-aliasing filter is to band-limit the input signal. In practice, however, we cannot
design brick-wall filters, and some degree of aliasing is inevitable. The design of anti-aliasing filters must
ensure that the effects of aliasing are kept small. One way to do this is to attenuate components above
the Nyquist frequency to a level that cannot be detected by the ADC. The choice of sampling frequency
S is thus dictated not only by the highest frequency of interest but also the resolution of the ADC. If the
aliasing level is ∆V and the maximum passband level is V , we require a filter with a stopband attenuation
of As > 20 log V

∆V dB. If the peak signal level equals A, and the passband edge is defined as the half-power
(or 3-dB) frequency, and ∆V is chosen as the rms quantization error for a B-bit quantizer, we have

As > 20 log
maximum rms passband level
minimum rms stopband level

=
A/
√

2
∆/
√

12
=

A/
√

2
A/(2B

√
12)

= 20 log(2B
√

6) dB (7.42)

EXAMPLE 7.11 (Anti-Aliasing Filter Considerations)
Suppose we wish to process a noisy speech signal with a bandwidth of 4 kHz using an 8-bit ADC.
We require a minimum stopband attenuation of As = 20 log(2B

√
6) ≈ 56 dB.

If we use a fourth-order Butterworth anti-aliasing filter with a 3-dB passband edge of fp, the normalized
frequency νs = fs/fp at which the stopband attenuation of 56 dB occurs is computed from

As = 10 log(1 + ν2n
s ) νs =

(
100.1As − 1

)1/2n ≈ 5

If the passband edge fp is chosen as 4 kHz, the actual stopband frequency is fs = νsfp = 20 kHz.
If the stopband edge also corresponds to highest frequency of interest, then S = 40 kHz.
The frequency fa that gets aliased to the passband edge fp corresponds to fa = S − fp = 36 kHz.
The attenuation Aa (in dB) at this frequency fa is

Aa = 10 log(1 + ν2n
a ) = 10 log(1 + 98) ≈ 76.3 dB

This corresponds to a signal level (relative to unity) of (1.5)10−4, well below the rms quantization error
(which equals 1/(2B

√
12) = 0.0011).

7.5.4 Anti-Imaging Filter Considerations

The design of reconstruction filters requires that we extract only the central image and minimize the sinc
distortion caused by practical zero-order-hold sampling. The design of such filters must meet stringent spec-
ifications unless oversampling is employed during the digital-to-analog conversion. In theory, oversampling
(at a rate much higher than the Nyquist rate) may appear wasteful, because it can lead to the manipulation
of a large number of samples. In practice, however, it offers several advantages. First, it provides ade-
quate separation between spectral images and thus allows filters with less stringent cutoff requirements to
be used for signal reconstruction. Second, it minimizes the effects of the sinc distortion caused by practical
zero-order-hold sampling. Figure 7.30 shows staircase reconstructions at two sampling rates.

The smaller steps in the staircase reconstruction for higher sampling rates lead to a better approximation
of the analog signal, and these smaller steps are much easier to smooth out using lower-order filters with less
stringent specifications.
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Figure 7.30 Staircase reconstruction of a signal at low (left) and high (right) sampling rates

EXAMPLE 7.12 (Anti-Imaging Filter Considerations)

(a) Consider the reconstruction of an audio signal band-limited to 20 kHz, assuming ideal sampling. The
reconstruction filter is required to have a maximum signal attenuation of 0.5 dB and to attenuate all
images by at least 60 dB.

The passband and stopband attenuations are Ap = 0.5 dB at the passband edge fp = 20 kHz and
As = 60 dB at the stopband edge fs = S− fp = S− 20 kHz, where S is the sampling rate in kilohertz.
This is illustrated in Figure E7.12A.

f (kHz)
S−20

sinc( )f/S

S20

Spectral images

Figure E7.12A Spectra for Example 7.12(a)

If we design a Butterworth filter, its order n is given by

n =
log[(100.1As − 1)/ε2]1/2

log(fs/fp)
ε2 = 100.1Ap − 1

1. If we choose S = 44.1 kHz, we compute fs = 44.1− 20 = 22.1 kHz and n = 80.

2. If we choose S = 176.4 kHz (four-times oversampling), we compute fs = 176.4− 20 = 156.4 kHz
and n = 4. This is an astounding reduction in the filter order

(b) If we assume zero-order-hold sampling and S = 176.4 kHz, the signal spectrum is multiplied by
sinc(f/S). This already provides a signal attenuation of −20 log[sinc(20/176.4)] = 0.184 dB at the
passband edge of 20 kHz and −20 log[sinc(156.4/176.4)] = 18.05 dB at the stopband edge of 156.4 kHz.
The new filter attenuation specifications are thus Ap = 0.5− 0.184 = 0.316 dB and As = 60− 18.05 =
41.95 dB, and we require a Butterworth filter whose order is given by

n =
log[(100.1As − 1)/ε2]1/2

log(fs/fp)
= 2.98 ⇒ n = 3
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We see that oversampling allows us to use reconstruction filters of much lower order. In fact, the
earliest commercial CD players used four-times oversampling (during the DSP stage) and second-order
or third-order Bessel reconstruction filters (for linear phase).

The effects of sinc distortion may also be minimized by using digital filters with a 1/sinc response
during the DSP phase itself (prior to reconstruction).

7.6 Compact Disc Digital Audio
One application of digital signal processing that has had a profound effect on the consumer market is in
compact disc (CD) digital audio systems. The human ear is an incredibly sensitive listening device that
depends on the pressure of the air molecules on the eardrum for the perception of sound. It covers a
whopping dynamic range of 120 dB, from the Brownian motion of air molecules (the threshold of hearing)
all the way up to the threshold of pain. The technology of recorded sound has come a long way since
Edison’s invention of the phonograph in 1877. The analog recording of audio signals on long-playing (LP)
records suffers from poor signal-to-noise ratio (about 60 dB), inadequate separation between stereo channels
(about 30 dB), wow and flutter, and wear due to mechanical tracking of the grooves. The CD overcomes
the inherent limitations of LP records and cassette tapes and yields a signal-to-noise ratio, dynamic range,
and stereo separation, all in excess of 90 dB. It makes full use of digital signal processing techniques during
both recording and playback.

7.6.1 Recording

A typical CD recording system is illustrated in Figure 7.31. The analog signal recorded from each microphone
is passed through an anti-aliasing filter, sampled at the industry standard of 44.1 kHz and quantized to 16
bits in each channel. The two signal channels are then multiplexed, the multiplexed signal is encoded, and
parity bits are added for later error correction and detection. Additional bits are also added to provide
information for the listener (such as playing time and track number). The encoded data is then modulated
for efficient storage, and more bits (synchronization bits) are added for subsequent recovery of the sampling
frequency. The modulated signal is used to control a laser beam that illuminates the photosensitive layer
of a rotating glass disc. As the laser turns on or off, the digital information is etched on the photosensitive
layer as a pattern of pits and lands in a spiral track. This master disk forms the basis for mass production
of the commercial CD from thermoplastic material.
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Figure 7.31 Components of a compact disc recording system

How much information can a CD store? With a sampling rate of 44.1 kHz and 32 bits per sample (in
stereo), the bit rate is (44.1)(32)103 = (1.41)106 audio bits per second. After encoding, modulation, and
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synchronization, the number of bits roughly triples to give a bit rate of (4.23)106 channel bits per second.
For a recording time of an hour, this translates to about 600 megabytes (with 8 bits corresponding to a byte
and 1024 bytes corresponding to a kilobyte).

7.6.2 Playback

The CD player reconstructs the audio signal from the information stored on the compact disc in a series
of steps that essentially reverses the process at the recording end. A typical CD player is illustrated in
Figure 7.32. During playback, the tracks on a CD are optically scanned by a laser to produce a digital
signal. This digital signal is demodulated, and the parity bits are used for the detection of any errors (due
to manufacturing defects or dust, for example) and to correct the errors by interpolation between samples
(if possible) or to mute the signal (if correction is not possible). The demodulated signal is now ready for
reconstruction using a DAC. However, the analog reconstruction filter following the DAC must meet tight
specifications in order to remove the images that occur at multiples of 44.1 kHz. Even though the images are
well above the audible range, they must be filtered out to prevent overloading of the amplifier and speakers.
What is done in practice is to digitally oversample the signal (by a factor of 4) to a rate of 176.4 kHz and
pass it through the DAC. A digital filter that compensates for the sinc distortion of the hold operation is
also used prior to digital-to-analog conversion. Oversampling relaxes the requirements of the analog filter,
which must now smooth out much smaller steps. The sinc compensating filter also provides an additional
attenuation of 18 dB for the spectral images and further relaxes the stopband specifications of the analog
reconstruction filter. The earliest systems used a third-order Bessel filter with a 3-dB passband of 30 kHz.
Another advantage of oversampling is that it reduces the noise floor and spreads the quantization noise over
a wider bandwidth. This allows us to round the oversampled signal to 14 bits and use a 14-bit DAC to
provide the same level of performance as a 16-bit DAC.
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Figure 7.32 Components of a compact disc playback system

7.7 Dynamic Range Processors
There are many instances in which an adjustment of the dynamic range of a signal is desirable. Sound
levels above 100 dB appear uncomfortably loud, and the dynamic range should be matched to the listening
environment for a pleasant listening experience. Typically, compression is desirable when listening to music
with a large dynamic range in small enclosed spaces (unlike a concert hall) such as a living room or an
automobile where the ambient (background) noise is not very low. For example, if the music has a dynamic
range of 80 dB and the background noise is 40 dB above the threshold of hearing, it can lead to sound
levels as high as 120 dB (close to the threshold of pain). Dynamic range compression is also desirable for
background music (in stores or elevators). It is also used to prevent distortion when recording on magnetic
tape, and in studios to adjust the dynamic range of the individual tracks in a piece of recorded music.

There are also situations where we may like to expand the dynamic range of a signal. For example, the
dynamic range of LP records and cassette tapes is not very high (typically, between 50 dB and 70 dB) and
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can benefit from dynamic range expansion, which in effect makes loud passages louder and soft passages
softer and in so doing also reduces the record or tape hiss.

A compressor is a variable gain device whose gain is unity for low signal levels and decreases at higher
signal levels. An expander is an amplifier with variable gain (which never exceeds unity). For high signal
levels it provides unity gain, whereas for low signal levels it decreases the gain and makes the signal level
even lower. Typical compression and expansion characteristics are shown in Figure 7.33 and are usually
expressed as a ratio, such as a 2:1 compression or a 1:4 expansion. A 10:1 compression ratio (or higher)
describes a limiter and represents an extreme form of compression. A 1:10 expansion ratio describes a noise
gate whose output for low signal levels may be almost zero. Noise gating is one way to eliminate noise or
hiss during moments of silence in a recording.

Dynamic range compression
Output level (dB)

10:1 compression
(limiter)

No compression

2:1 compression
4:1 compression

Input level (dB)

Dynamic range expansion
Output level (dB)

Input level (dB)

1:2 expansion
1:4 expansion
1:10 expansion

(noise gate)

No expansion

Threshold Threshold

Figure 7.33 Input-output characteristics of dynamic range processors
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Figure 7.34 Block digram of a dynamic range processor

Control of the dynamic range requires variable gain devices whose gain is controlled by the signal level,
as shown in Figure 7.34. Dynamic range processing uses a control signal c(t) to adjust the gain. If the
gain decreases with increasing c(t), we obtain compression; if the gain increases with increasing c(t), we
obtain expansion. Following the signal too closely is undesirable because it would eliminate the dynamic
variation altogether. Once the signal level exceeds the threshold, a typical compressor takes up to 0.1 s
(called the attack time) to respond, and once the level drops below threshold, it takes another second or
two (called the release time) to restore the gain to unity. Analog circuits for dynamic range processing may
use a peak detector (much like the one used for the detection of AM signals) that provides a control signal.
Digital circuits replace the rectifier by simple binary operations and simulate the control signal and the
attack characteristics and release time by using digital filters. In concept, the compression ratio (or gain),
the delay, attack, and release characteristics may be adjusted independently.
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7.7.1 Companders

Dynamic range expanders and compressors are often used to combat the effects of noise during transmission
of signals, especially if the dynamic range of the channel is limited. A compander is a combination of a
compressor and expander. Compression allows us to increase the signal level relative to the noise level. An
expander at the receiving end returns the signal to its original dynamic range. This is the principle behind
noise reduction systems for both professional and consumer use. An example is the Dolby noise reduction
system.

In the professional DolbyA system, the input signal is split into four bands by a lowpass filter with a
cutoff frequency of 80 Hz, a bandpass filter with band edges at [80, 3000] Hz, and two highpass filters with
cutoff frequencies of 3 kHz and 8 kHz. Each band is compressed separately before being mixed and recorded.
During playback, the process is reversed. The characteristics of the compression and expansion are shown
in Figure 7.35.

Input level (dB)−50
−40

−30
−50
−40
−30
−20

−20

Output level (dB)

Compression during recording
Expansion during playback

Figure 7.35 Compression and expansion characteristics for DolbyA noise reduction

During compression, signal levels below −40 dB are boosted by a constant 10 dB, signal levels between
−40 dB and −20 dB are compressed by 2:1, and signal levels above −20 dB are not affected. During playback
(expansion), signal levels above −20 dB are cut by 10 dB, signal levels between −30 dB and −20 dB face a 1:2
expansion, and signal levels below −30 dB are not affected. In the immensely popular DolbyB system found
in consumer products (and also used by some FM stations), the input signal is not split but a pre-emphasis
circuit is used to provide a high-frequency boost above 600 Hz. Another popular system is dbx, which uses
pre-emphasis above 1.6 kHz with a maximum high-frequency boost of 20 dB.

Voice-grade telephone communication systems also make use of dynamic range compression because the
distortion caused is not significant enough to affect speech intelligibility. Two commonly used compressors
are the µ-law compander (used in North America and Japan) and the A-law compander (used in Europe).
For a signal x(t) whose peak level is normalized to unity, the two compression schemes are defined by

yµ(x) =
ln(1 + µ|x|)
ln(1 + µ)

sgn(x) yA(x) =





A|x|
1 + ln A

sgn(x), 0 ≤ |x| ≤ 1
A

1 + ln(A|x|)
1 + ln A

sgn(x), 1
A ≤ |x| ≤ 1

(7.43)

The characteristics of these compressors are illustrated in Figure 7.36. The value µ = 255 has become
the standard in North America, and A = 100 is typically used in Europe. For µ = 0 (and A = 1), there is no
compression or expansion. The µ-law compander is nearly linear for µ|x| ¿ 1. In practice, compression is
based on a piecewise linear approximation of the theoretical µ-law characteristic and allows us to use fewer
bits to digitize the signal. At the receiving end, an expander (ideally, a true inverse of the compression law)
restores the dynamic range of the original signal (except for the effects of quantization). The inverse for
µ-law compression is

|x| = (1 + µ)|y| − 1
µ

(7.44)
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Figure 7.36 Characteristics of µ-law and A-law compressors

The quantization of the compressed signal using the same number of bits as the uncompressed signal results
in a higher quantization SNR. For example, the value of µ = 255 increases the SNR by about 24 dB. Since
the SNR improves by 6 dB per bit, we can use a quantizer with fewer (only B − 4) bits to achieve the same
performance as a B-bit quantizer with no compression.

7.8 Audio Equalizers
Audio equalizers are typically used to tailor the sound to suit the taste of the listener. The most common
form of equalization is the tone controls (for bass and treble, for example) found on most low-cost audio
systems. Tone controls employ shelving filters that boost or cut the response over a selected frequency band
while leaving the rest of the spectrum unaffected (with unity gain). As a result, the filters for the various
controls are typically connected in cascade. Graphic equalizers offer the next level in sophistication and
employ a bank of (typically, second-order) bandpass filters covering a fixed number of frequency bands, and
with a fixed bandwidth and center frequency for each range. Only the gain of each filter can be adjusted by
the user. Each filter isolates a selected frequency range and provides almost zero gain elsewhere. As a result,
the individual sections are connected in parallel. Parametric equalizers offer the ultimate in versatility
and comprise filters that allow the user to vary not only the gain but also the filter parameters (such as
the cutoff frequency, center frequency, and bandwidth). Each filter in a parametric equalizer affects only a
selected portion of the spectrum (providing unity gain elsewhere), and as a result, the individual sections
are connected in cascade.

7.8.1 Shelving Filters

To vary the bass and treble content, it is common to use first-order shelving filters with adjustable gain
and cutoff frequency. The transfer function of a first-order lowpass filter whose dc gain is unity and whose
response goes to zero at F = 0.5 (or z = −1) is described by

HLP(z) =
(

1− α

2

)
z + 1
z − α

(7.45)

The half-power or 3-dB cutoff frequency ΩC of this filter is given by

ΩC = cos−1

(
2α

1 + α2

)
(7.46)
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The transfer function of a first-order highpass filter with the same cutoff frequency ΩC is simply HHP(z) =
1−HLP(z), and gives

HHP(z) =
(

1 + α

2

)
z − 1
z − α

(7.47)

Its gain equals zero at F = 0 and unity at F = 0.5.
A lowpass shelving filter consists of a first-order lowpass filter with adjustable gain G in parallel with a

highpass filter. With HLP(z) + HHP(z) = 1, its transfer function may be written as

HSL = GHLP(z) + HHP(z) = 1 + (G− 1)HLP(z) (7.48)

A highpass shelving filter consists of a first-order highpass filter with adjustable gain G in parallel with a
lowpass filter. With HLP(z) + HHP(z) = 1, its transfer function may be written as

HSH = GHHP(z) + HLP(z) = 1 + (G− 1)HHP(z) (7.49)

The realizations of these lowpass and highpass shelving filters are shown in Figure 7.37.

G−1 G−1H
HP

(z)H
LP

(z)

Lowpass shelving filter

+
+

Highpass shelving filter

+
+

Σ Σ

Figure 7.37 Realizations of lowpass and highpass shelving filters

The response of a lowpass and highpass shelving filter is shown for various values of gain (and a fixed
α) in Figure 7.38. For G > 1, the lowpass shelving filter provides a low-frequency boost, and for 0 < G < 1
it provides a low-frequency cut. For G = 1, we have HSL = 1, and the gain is unity for all frequencies.
Similarly, for G > 1, the highpass shelving filter provides a high-frequency boost, and for 0 < G < 1 it
provides a high-frequency cut. In either case, the parameter α allows us to adjust the cutoff frequency.
Practical realizations of shelving filters and parametric equalizers typically employ allpass structures.

7.8.2 Graphic Equalizers

Graphic equalizers permit adjustment of the tonal quality of the sound (in each channel of a stereo system)
to suit the personal preference of a listener and represent the next step in sophistication, after tone controls.
They employ a bank of (typically, second-order) bandpass filters covering the audio frequency spectrum, and
with a fixed bandwidth and center frequency for each range. Only the gain of each filter can be adjusted
by the user. Each filter isolates a selected frequency range and provides almost zero gain elsewhere. As a
result, the individual sections are connected in parallel, as shown in Figure 7.39.

The input signal is split into as many channels as there are frequency bands, and the weighted sum of
the outputs of each filter yields the equalized signal. A control panel, usually calibrated in decibels, allows
for gain adjustment by sliders, as illustrated in Figure 7.39. The slider settings provide a rough visual
indication of the equalized response, hence the name graphic equalizer. The design of each second-order
bandpass section is based on its center frequency and its bandwidth or quality factor Q. A typical set of
center frequencies for a ten-band equalizer is [31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000] Hz. A
typical range for the gain of each filter is ±12 dB (or 0.25 times to 4 times the nominal gain).
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Figure 7.38 Frequency response of lowpass and highpass shelving filters
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Figure 7.39 A graphic equalizer (left) and the display panel (right)

EXAMPLE 7.13 (A Digital Graphic Equalizer)
We design a five-band audio equalizer operating at a sampling frequency of 8192 Hz, with center frequencies
of [120, 240, 480, 960, 1920] Hz. We select the 3-dB bandwidth of each section as 0.75 times its center
frequency to cover the whole frequency range without overlap. This is equivalent to choosing each section
with Q = 4/3. Each section is designed as a second-order bandpass IIR filter. Figure E7.13 shows the
spectrum of each section and the overall response. The constant Q design becomes much more apparent
when the gain is plotted in dB against log(f), as shown in Figure E7.13(b). A change in the gain of any
section results in a change in the equalized response.
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Figure E7.13 Frequency response of the audio equalizer for Example 7.13

7.8.3 Parametric Equalizers

Parametric equalizers offer the ultimate in versatility and allow the user to vary not only the gain but
also the filter parameters (such as the cutoff frequency, center frequency, and bandwidth). Each filter in a
parametric equalizer affects only a selected portion of the spectrum (while providing unity gain elsewhere),
and as a result, the individual sections are connected in cascade. Most parametric equalizers are based on
second-order IIR peaking or notch filters whose transfer functions we reproduce here:

HBP(z) =
C

1 + C

(
z2 − 1

z2 − 2β
1+C z + 1−C

1+C

)
HBS(z) =

1
1 + C

(
z2 − 2βz + 1

z2 − 2β
1+C z + 1−C

1+C

)
(7.50)

The center frequency and bandwidth for the filters are given by

Ω0 = cos−1β ∆Ω = cos−1

(
2α

1 + α2

)
, where α =

1− C

1 + C
(7.51)

It is interesting to note that HBS(z) = 1−HBP(z). A tunable second-order equalizer stage HPAR(z) consists
of the bandpass filter HBP(z), with a peak gain of G, in parallel with the bandstop filter HBS(z):

HPAR(z) = GHBP(z) + HBS(z) = 1 + (G− 1)HBP(z) (7.52)

A realization of this filter is shown in Figure 7.40.

G−1H (z)
BP

+
+
Σ

Figure 7.40 A second-order parametric equalizer
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For G = 1, we have HPAR = 1, and the gain is unity for all frequencies. The parameters α and β allow
us to adjust the bandwidth and the center frequency, respectively. The response of this filter is shown for
various values of these parameters in Figure 7.41.
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Figure 7.41 Typical response of a parametric equalizer

7.9 Digital Audio Effects
Signal processing techniques allow us not only to compensate for the acoustics of a listening environment,
but also to add special musical effects such as delay, echo, and reverb, if desired. The most common example
is the audio equalizer that allows us to enhance the bass or treble content of an audio signal. What a listener
hears in a room depends not only on the acoustic characteristics of that room, but also on the location of the
listener. A piece of music recorded in a concert hall does not sound quite the same elsewhere. The ambiance
of a concert hall can, however, be duplicated in the living room environment by first compensating for the
room acoustics, and then adding the reverberation characteristics of the concert hall. The compensation
is achieved by passing the audio signal through an inverse filter corresponding to the impulse response of
the room (which can be measured). The concert hall ambiance is then added by a filter that simulates the
concert hall acoustics. High-end audio systems allow us not only to measure the room acoustics, but also to
simulate the acoustics of a variety of well-known concert hall environments.

In any listening space, what we hear from an audio source consists not only of the direct sound, but also
early echoes reflected directly from the walls and other structures, and a late sound or reverberation that
describes multiple reflections (that get added to other echoes). This is illustrated in Figure 7.42.

t

Direct sound

Early reflections

Late reflections

Direct sound

Echo filters

Reverb filters

(reverb)

(echo)

Source ListenerΣ

Delay

Figure 7.42 Illustrating echo and reverb

The direct sound provides clues to the location of the source, the early echoes provide an indication of
the physical size of the listening space, and the reverberation characterizes the warmth and liveliness that
we usually associate with sounds. The amplitude of the echoes and reverberation decays exponentially with
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time. Together, these characteristics determine the psycho-acoustic qualities we associate with any perceived
sound. Typical 60-dB reverberation times (for the impulse response to decay to 0.001 of its peak value) for
concert halls are fairly long, up to two seconds. A conceptual model of a listening environment, also shown
in Figure 7.42, consists of echo filters and reverb filters.

A single echo can be modeled by a feed-forward system of the form

y[n] = x[n] + αx[n−D] H(z) = 1 + αzD h[n] = δ[n]− αδ[n−D] (7.53)

This is just a comb filter in disguise. The zeros of this filter lie on a circle of radius R = α1/D, with angular
orientations of Ω = (2k + 1)π/D. Its comb-like magnitude spectrum H(F ) shows minima of 1 − α at the
frequencies F = (2k + 1)/D, and peaks of 1 + α midway between the dips. To perceive an echo, the index
D must correspond to a delay of at least about 50 ms.

A reverb filter that describes multiple reflections has a feedback structure of the form

y[n] = αy[n−D] + x[n] H(z) =
1

1− αz−D
(7.54)

This filter has an inverse-comb structure, and its poles lie on a circle of radius R = α1/D, with an angular
separation of Ω = 2π/D. The magnitude spectrum shows peaks of 1/(1−α) at the pole frequencies F = k/D,
and minima of 1/(1 + α) midway between the peaks.

Conceptually, the two systems just described can form the building blocks for simulating the acoustics
of a listening space. Many reverb filters actually use a combination of reverb filters and allpass filters. A
typical structure is shown in Figure 7.43. In practice, however, it is more of an art than a science to create
realistic effects, and many of the commercial designs are propriety information.

Reverb filter

Reverb filter

Reverb filter

Allpass filter

Direct sound

+
++

+
+ Σ Σ

Figure 7.43 Echo and reverb filters for simulating acoustic effects

The reverb filters in Figure 7.43 typically incorporate irregularly spaced delays to allow the blending of
echoes, and the allpass filter serves to create the effect of early echoes. Some structures for the reverb filter
and allpass filter are shown in Figure 7.44. The first structure is the plain reverb. In the second structure,
the feedback path incorporates a first-order lowpass filter that accounts for the dependence (increase) of
sound absorption with frequency. The allpass filter has the form

H(z) =
−α + z−L

1− αzL
= − 1

α
+

1
α − α

1− αz−L
(7.55)

The second form of this expression (obtained by long division) shows that, except for the constant term, the
allpass filter has the same form as a reverb filter.

7.9.1 Gated Reverb and Reverse Reverb

Two other types of audio effects can also be generated by reverb filters. A gated reverb results from the
truncation (abrupt or gradual) of the impulse response of a reverb filter, resulting in an FIR filter. A reverse
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Figure 7.44 Realization of typical reverb filters

reverb is essentially a folded version of the impulse response of a gated reverb filter. The impulse response
increases with time, leading to a sound that first gets louder, and then dies out abruptly.

7.9.2 Chorusing, Flanging, and Phasing

The echo filter also serves as the basis for several other audio special effects. Two of these effects, chorusing
and phasing, are illustrated in Figure 7.45.
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Tunable
notch filter

Direct sound
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+ Σ

Figure 7.45 Illustrating special audio effects

Chorusing mimics a chorus (or group) singing (or playing) in unison. In practice, of course, the voices
(or instruments) are not in perfect synchronization, nor identical in pitch. The chorusing effect can be
implemented by a weighted combination of echo filters, each with a time-varying delay dn of the form

y[n] = x[n] + αx[n− dn] (7.56)

Typical delay times used in chorusing are between 20 ms and 30 ms. If the delays are less than 10 ms (but
still variable), the resulting “whooshing” sound is known as flanging.

Phase shifting or phasing also creates many interesting effects, and may be achieved by passing the
signal through a notch filter whose frequency can be tuned by the user. It is the sudden phase jumps at
the notch frequency that are responsible for the phasing effect. The effects may also be enhanced by the
addition of feedback.

7.9.3 Plucked-String Filters

Comb filters, reverb filters, and allpass filters have also been used to synthesize the sounds of plucked
instruments, such as the guitar. What we require is a filter that has a comb-like response, with resonances
at multiples of the fundamental frequency of the note. We also require that the harmonics decay in time,
with higher frequencies decaying at a faster rate. A typical structure, first described by Karplus and Strong,
is illustrated in Figure 7.46.
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Figure 7.46 The Karplus-Strong plucked-string filter

In the Karplus-Strong structure, the lowpass filter has the transfer function GLP(z) = 0.5(1 + z−1), and
contributes a 0.5-sample phase delay. The delay line contributes an additional D-sample delay, and the loop
delay is thus D + 0.5 samples. The overall transfer function of the first structure is

H(z) =
1

1−Az−DGLP(z)
GLP(z) = 0.5(1 + z−1) (7.57)

The frequency response of this Karplus-Strong filter is shown in Figure 7.47, for D = 8 and D = 16,
and clearly reveals a resonant structure with sharp peaks. The lowpass filter GLP(z) is responsible for the
decrease in the amplitude of the peaks, and for making them broader as the frequency increases.

0 0.1 0.2 0.3 0.4 0.5
0

5

10
(a)  Karplus−Strong filter:   D = 8,  A = 0.9

Digital frequency   F

M
ag

ni
tu

de

0 0.1 0.2 0.3 0.4 0.5
0

5

10
(b)  Karplus−Strong filter:   D = 16,  A = 0.9

Digital frequency   F

M
ag

ni
tu

de

Figure 7.47 Frequency response of the Karplus-Strong plucked-string filter

If A is close to unity, the peaks occur at (or very close to) multiples of the fundamental digital frequency
F0 = 1/(D + 0.5). For a sampling rate S, the note frequency thus corresponds to f0 = S/(D + 0.5) Hz.
However, since D is an integer, we cannot achieve precise tuning (control of the frequency). For example,
to generate a 1600-Hz note at a sampling frequency of 14 kHz requires that D + 0.5 = 8.75. The closest we
can come is by picking D = 8 (to give a frequency of f0 = 14

8.5 ≈ 1647 Hz). To generate the exact frequency
requires an additional 0.25-sample phase delay. The second structure of Figure 18.46 includes an allpass
filter of the form GAP(z) = (1+αz)/(z +α) in the feedback path that allows us to implement such fractional
delays by appropriate choice of the allpass parameter α. Recall that the delay of this allpass filter, at low
frequencies at least, is approximated by

DAP ≈ 1− α

1 + α
α ≈ 1−DAP

1 + DAP
(7.58)

In order to implement the 0.25-sample delay, we require

α =
1− 0.25
1 + 0.25

= 0.6
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In order to synthesize the sound of a plucked instrument, we require a reverb (or comb) filter (with its
integer delay) to provide the multiple resonances, a lowpass filter to ensure that the resonances decay with
frequency, and an allpass filter (with its fractional delay and constant gain) to fine-tune the note frequency.

7.10 Digital Oscillators and DTMF Receivers
The impulse response and transfer function of a causal oscillator that generates a pure cosine are

h[n] = cos(nΩ)u[n] H(z) =
z2 − z cosΩ

z2 − 2z cosΩ + 1
(7.59)

Similarly, a system whose impulse response is a pure sine is given by

h[n] = sin(nΩ)u[n] H(z) =
z sinΩ

z2 − 2z cosΩ + 1
(7.60)

The realizations of these two systems, called digital oscillators, are shown in Figure 7.48.
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Figure 7.48 Realization of cosine and sine digital oscillators

7.10.1 DTMF Receivers

A touch-tone phone or dual-tone multi-frequency (DTMF) transmitter/receiver makes use of digital oscilla-
tors to generate audible tones by pressing buttons on a keypad, as shown in Figure 7.49. Pressing a button
produces a two-tone signal containing a high- and a low-frequency tone. Each button is associated with a
unique pair of low-frequency and high-frequency tones. For example, pressing the button marked 5 would
generate a combination of 770-Hz and 1336-Hz tones. There are four low frequencies and four high frequen-
cies. The low- and high-frequency groups have been chosen to ensure that the paired combinations do not
interfere with speech. The highest frequency (1633 Hz) is not currently in commercial use. The tones can be
generated by using a parallel combination of two programmable digital oscillators, as shown in Figure 7.50.

The sampling rate typically used is S = 8 kHz. The digital frequency corresponding to a typical high-
frequency tone fH is ΩH = 2πfH/S. The code for each button selects the appropriate filter coefficients.

The keys pressed are identified at the receiver by first separating the low- and high-frequency groups using
a lowpass filter (with a cutoff frequency of around 1000 Hz) and a highpass filter (with a cutoff frequency
of around 1200 Hz) in parallel, and then isolating each tone, using a parallel bank of narrow-band bandpass
filters tuned to the (eight) individual frequencies. The (eight) outputs are fed to a level detector and decision
logic that establishes the presence or absence of a tone. The keys may also be identified by computing the
FFT of the tone signal, followed by threshold detection.

c©Ashok Ambardar, September 1, 2003



296 Chapter 7 Digital Processing of Analog Signals

1209 1336 1477 1633

697

770

852

941

1 2 3 A

4 5 6

7 8 9

0 # D

B

C

*

group (Hz)

High-frequency group (Hz)

Low-frequency

Figure 7.49 Layout of a DTMF touch-tone keypad

Ωcos2 L

Ωcos− HΩcos2 H

Ωcos− L

[n]δ [n]y

−1z

−1z

−1z

−1z

+
+

+

+

+
+

+
++

+

+

+

−1

−1

+

+

Σ

Σ

Σ

Σ

generator

generator
High-frequency

Low-frequency

Σ Σ

Σ

Figure 7.50 Digital oscillators for DTMF tone generation

CHAPTER 7 PROBLEMS

7.1 (Sampling Operations) The signal x(t) = cos(4000πt) is sampled at intervals of ts. Sketch the
sampled signal over 0 ≤ t ≤ 2 ms and also sketch the spectrum of the sampled signal over a frequency
range of at least −5 kHz ≤ f ≤ 5 kHz for the following choices of the sampling function and ts.
(a) Impulse train (ideal sampling function) with ts = 0.2 ms
(b) Impulse train (ideal sampling function) with ts = 0.8 ms
(c) Rectangular pulse train with pulse width td = 0.1 ms and ts = 0.2 ms

[Hints and Suggestions: The spectrum X(f) = 0.5δ(f −B) + 0.5δ(f + B) is an impulse pair. The
spectrum of the sampled signals is

∑
X[k]X(f −k/ts). In parts (a)–(b), X[k] = 1/ts and the impulses
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are replicated every S = 1/ts Hz. For (c), X[k] = 0.5sinc(0.5k) and the replicated impulses decay in
strength.]

7.2 (Sampling Operations) The signal x(t) = sinc(4000t) is sampled at intervals of ts. Sketch the
sampled signal over 0 ≤ t ≤ 2 ms and also sketch the spectrum of the sampled signal for the following
choices of the sampling function and ts

(a) Impulse train (ideal sampling function) with ts = 0.2 ms
(b) Impulse train (ideal sampling function) with ts = 0.25 ms
(c) Impulse train (ideal sampling function) with ts = 0.4 ms
(d) Rectangular pulse train with pulse width td = 0.1 ms and ts = 0.2 ms
(e) Flat-top (zero-order-hold) sampling with ts = 0.2 ms

[Hints and Suggestions: X(f) = 1
4000 rect( f

4000 ) is a rectangular pulse. The spectrum of the sampled
signals is

∑
X[k]X(f−k/ts). In parts (a)–(c), X[k] = 1/ts and the pulses are replicated every S = 1/ts

Hz and added (where they overlap). For (d), X[k] = 0.5sinc(0.5k) and the replicated pulses decrease
in height. For (e), the spectrum of (d) is multiplied by sinc(f/S).]

7.3 (Digital Frequency) Express the following signals using a digital frequency |F | < 0.5.
(a) x[n] = cos( 4nπ

3 )
(b) x[n] = cos( 4nπ

7 ) + sin( 8nπ
7 )

7.4 (Sampling Theorem) Establish the Nyquist sampling rate for the following signals.

(a) x(t) = 5 sin(300πt + π/3) (b) x(t) = cos(300πt)− sin(300πt + 51◦)
(c) x(t) = 3 cos(300πt) + 5 sin(500πt) (d) x(t) = 3 cos(300πt)sin(500πt)
(e) x(t) = 4 cos2(100πt) (f) x(t) = 6 sinc(100t)
(g) x(t) = 10 sinc2(100t) (h) x(t) = 6 sinc(100t)cos(200πt)

[Hints and Suggestions: For the product signals, time-domain multiplication means convolution of
their spectra. The width of this convolution gives the highest frequency. For example, in (d), the
spectra extend to ±150 Hz and ±250 Hz, their convolution covers ±400 Hz, and fmax = 400 Hz.]

7.5 (Sampling Theorem) A sinusoid x(t) = A cos(2πf0t) is sampled at three times the Nyquist rate for
six periods. How many samples are acquired?

[Hints and Suggestions: For sinusoids, the Nyquist rate means taking two samples per period.]

7.6 (Sampling Theorem) The sinusoid x(t) = A cos(2πf0t) is sampled at twice the Nyquist rate for 1 s.
A total of 100 samples is acquired. What is f0 and the digital frequency of the sampled signal?

[Hints and Suggestions: For sinusoids, the Nyquist rate means taking two samples per period.]

7.7 (Sampling Theorem) A sinusoid x(t) = sin(150πt) is sampled at a rate of five samples per three
periods. What fraction of the Nyquist sampling rate does this correspond to? What is the digital
frequency of the sampled signal?

[Hints and Suggestions: For sinusoids, the Nyquist rate means taking two samples per period.]

7.8 (Sampling Theorem) A periodic square wave with period T = 1 ms whose value alternates between
+1 and −1 for each half-period is passed through an ideal lowpass filter with a cutoff frequency of
4 kHz. The filter output is to be sampled. What is the smallest sampling rate we can choose? Consider
both the symmetry of the signal as well as the Nyquist criterion.

[Hints and Suggestions: Even-indexed harmonics are absent if the signal is half-wave symmetric.]
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7.9 (Spectrum of Sampled Signals) Given the spectrum X(f) of an analog signal x(t), sketch the
spectrum of its ideally sampled version x[n], assuming a sampling rate of 50, 40, and 30 Hz.

(a) X(f) = rect(f/40) (b) X(f) = tri(f/20)

[Hints and Suggestions: The spectrum of the sampled signals is
∑

SX(f − kS). The images of
SX(f) are replicated every S Hz and added (where they overlap).]

7.10 (Spectrum of Sampled Signals) Sketch the spectrum of the following signals against the digital
frequency F .
(a) x(t) = cos(200πt), ideally sampled at 450 Hz
(b) x(t) = sin(400πt− π

4 ), ideally sampled at 300 Hz
(c) x(t) = cos(200πt) + sin(350πt), ideally sampled at 300 Hz
(d) x(t) = cos(200πt + π

4 ) + sin(250πt− π
4 ), ideally sampled at 120 Hz

[Hints and Suggestions: The spectrum X(f) contains impulse pairs. The spectrum of the ideally
sampled signals is

∑
SX(f − kS). The images of SX(f) are replicated every S Hz.]

7.11 (Sampling and Aliasing) A signal x(t) is made up of the sum of pure sines with unit peak value at
the frequencies 10, 40, 200, 220, 240, 260, 300, 320, 340, 360, 380, and 400 Hz.
(a) Sketch the magnitude and phase spectra of x(t).
(b) If x(t) is sampled at S = 140 Hz, which components, if any, will show aliasing?
(c) The sampled signal is passed through an ideal reconstruction filter whose cutoff frequency is

fC = 0.5S. Write an expression for the reconstructed signal y(t) and sketch its magnitude
spectrum and phase spectrum. Is y(t) identical to x(t)? Should it be? Explain.

(d) What minimum sampling rate S will allow ideal reconstruction of x(t) from its samples?

7.12 (Sampling and Aliasing) The signal x(t) = cos(100πt) is applied to the following systems. Is it
possible to find a minimum sampling rate required to sample the system output y(t)? If so, find the
Nyquist sampling rate.
(a) y(t) = x2(t) (b) y(t) = x3(t)
(c) y(t) = |x(t)| (d) h(t) = sinc(200t)
(e) h(t) = sinc(500t) (f) h(t) = δ(t− 1)
(g) y(t) = x(t)cos(400πt) (h) y(t) = u[x(t)]

[Hints and Suggestions: The Nyquist rate applies only if y(t) is bandlimited. In (b), y(t) is a
periodic full-rectified cosine. In (h), y(t) is a periodic square wave.]

7.13 (Sampling and Aliasing) The sinusoid x(t) = cos(2πf0t + θ) is sampled at 400 Hz and shows up as
a 150-Hz sinusoid upon reconstruction. When the signal x(t) is sampled at 500 Hz, it again shows up
as a 150-Hz sinusoid upon reconstruction. It is known that f0 < 2.5 kHz.
(a) If each sampling rate exceeds the Nyquist rate, what is f0?
(b) By sampling x(t) again at a different sampling rate, explain how you might establish whether

aliasing has occurred?
(c) If aliasing occurs and the reconstructed phase is θ, find all possible values of f0.
(d) If aliasing occurs but the reconstructed phase is −θ, find all possible values of f0.

[Hints and Suggestions: In (b), S > 2f0 for no aliasing. In (c), the aliased frequency is positive
and so, 150 = f0 − 500k = f0 − 400m giving k

m = 4
5 where k and m are chosen as integers to ensure

f0 < 2.5 kHz. In (d), start with −150 = f0 − 500k = f0 − 400m.]
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7.14 (Sampling and Aliasing) One period of a periodic signal with period T = 4 is given by x(t) =

2tri(0.5t)− 1. The periodic signal is ideally sampled by the impulse train i(t) =
∞∑

k=−∞
δ(t− k).

(a) Sketch the signals x(t) and xs(t) and confirm that xS(t) is a periodic signal with T = 4 whose
one period is given by xs(t) = δ(t)− δ(t− 2), 0 ≤ t < 4.

(b) If xs(t) is passed through an ideal lowpass filter with a cutoff frequency of 0.6 Hz, what is the
filter output y(t).

(c) How do xs(t) and y(t) change if the sampling function is i(t) =
∞∑

k=−∞
(−1)kδ(t− k)?

[Hints and Suggestions: For (b), xS(t) is half-wave symmetric with T = 4 and Fourier series
coefficients X[k] = 0.5(1 − e−jkπ). For (c), xS(t) is periodic with T = 2 and xS(t) = δ(t), 0 ≤ t < 2.
Its Fourier series coefficients are X[k] = 0.5.]

7.15 (Bandpass Sampling) The signal x(t) is band-limited to 500 Hz. The smallest frequency present in
x(t) is f0. Find the minimum rate S at which we can sample x(t) without aliasing if
(a) f0 = 0.
(b) f0 = 300 Hz.
(c) f0 = 400 Hz.

7.16 (Bandpass Sampling) A signal x(t) is band-limited to 40 Hz and modulated by a 320-Hz carrier
to generate the modulated signal y(t). The modulated signal is processed by a square law device that
produces g(t) = y2(t).
(a) What is the minimum sampling rate for x(t) to prevent aliasing?
(b) What is the minimum sampling rate for y(t) to prevent aliasing?
(c) What is the minimum sampling rate for g(t) to prevent aliasing?

7.17 (Sampling Oscilloscopes) It is required to ideally sample a signal x(t) at S Hz and pass the
sampled signal s(t) through an ideal lowpass filter with a cutoff frequency of 0.5S Hz such that its
output y(t) = x(t/α) is a stretched-by-α version of x(t).

(a) Suppose x(t) = 1 + cos(20πt). What values of S will ensure that the output of the lowpass filter
is y(t) = x(0.1t). Sketch the spectra of x(t), s(t), and y(t) for the chosen value of S.

(b) Suppose x(t) = 2 cos(80πt) + cos(160πt) and the sampling rate is chosen as S = 48 Hz. Sketch
the spectra of x(t), s(t), and y(t). Will the output y(t) be a stretched version of x(t) with
y(t) = x(t/α)? If so, what will be the value of α?

(c) Suppose x(t) = 2 cos(80πt) + cos(100πt). What values of S will ensure that the output of the
lowpass filter is y(t) = x(t/20)? Sketch the spectra of x(t), s(t), and y(t) for the chosen value of
S to confirm your results.

[Hints and Suggestions: We require α = f0
f0−S where f0 is the fundamental frequency. In part (a),

try Sm = S/m (with integer m) for other choices (as long as Sm > 2fmax/α).]

7.18 (Sampling and Reconstruction) A periodic signal whose one full period is x(t) = tri(20t) is band-
limited by an ideal analog lowpass filter whose cutoff frequency is fC . It is then ideally sampled at
80Hz. The sampled signal is reconstructed using an ideal lowpass filter whose cutoff frequency is 40
Hz to obtain the signal y(t). Find y(t) if fC = 20, 40, and 60 Hz.
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7.19 (Sampling and Reconstruction) Sketch the spectra at the intermediate points and at the output
of the following cascaded systems. Assume that the input is x(t) = 5sinc(5t), the sampler operates at
S = 10 Hz and performs ideal sampling, and the cutoff frequency of the ideal lowpass filter is 5 Hz.

(a) x(t) −→ sampler −→ ideal LPF −→ y(t)

(b) x(t) −→ sampler −→ h(t)=u(t)−u(t− 0.1) −→ ideal LPF −→ y(t)

(c) x(t) −→ sampler −→ h(t)=u(t)−u(t− 0.1) −→ ideal LPF −→ |H(f)|= 1
|sinc(0.1f)| −→ y(t)

[Hints and Suggestions: X(f) is a rectangular pulse. In part (a), replicate X(f). In part (b), the
lowpass filter preserves only the central central image distorted (multiplied) by sinc(f/S). In (c), the
compensating filter removes the sinc distortion.]

7.20 (Sampling and Aliasing) The signal x(t) = e−tu(t) is sampled at a rate S such that the maximum
aliased magnitude is less than 5% of the peak magnitude of the un-aliased image. Estimate the sampling
rate S.

[Hints and Suggestions: Sketch the replicated spectra and observe that the maximum aliasing occurs
at f = 0.5S. So, we require |X(0.5S)| ≤ 0.05|X(0)|.]

7.21 (Signal Recovery) A sinusoid x(t) = sin(150πt) is ideally sampled at 80 Hz. Describe the signal
y(t) that is recovered if the sampled signal is passed through the following filters.

(a) An ideal lowpass filter with cutoff frequency fC = 10 Hz
(b) An ideal lowpass filter with cutoff frequency fC = 100 Hz
(c) An ideal bandpass filter with a passband between 60 Hz and 80 Hz
(d) An ideal bandpass filter with a passband between 60 Hz and 100 Hz

[Hints and Suggestions: The spectrum of the sampled signal contains impulse pairs at ±75 Hz
replicated every 80 Hz. Sketch this with the two-sided spectrum of each filter to obtain each output.]

7.22 (Sampling and Aliasing) A speech signal x(t) band-limited to 4 kHz is sampled at 10 kHz to
obtain x[n]. The sampled signal x[n] is filtered by an ideal bandpass filter whose passband extends
over 0.03 ≤ F ≤ 0.3 to obtain y[n]. Will the sampled output y[n] be contaminated if x(t) also includes
an undesired signal at the following frequencies?

(a) 60 Hz (b) 360 Hz (c) 8.8 kHz (d) 9.8 kHz

[Hints and Suggestions: Use the digital frequency of x[n] in the principal range.]

7.23 (DTFT and Sampling) The transfer function of a digital filter is H(F ) = rect(2F )e−j0.5πF .

(a) What is the impulse response h[n] of this filter?
(b) The analog signal x(t) = cos(0.25πt) applied to the system shown.

x(t) −→ sampler −→ H(F ) −→ ideal LPF −→ y(t)

The sampler is ideal and operates at S = 1 Hz. The cutoff frequency of the ideal lowpass filter
is fC = 0.5 Hz. How are X(f) and Y (f) related? What is y(t)?

[Hints and Suggestions: In (b), find the digital frequency of x[n] in the principal range and use it
to find y[n] and y(t). Then, find the Fourier transform of y(t).]
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7.24 (Sampling and Filtering) The analog signal x(t) = cos(2πf0t) is applied to the following system:

x(t) −→ sampler −→ H(F ) −→ ideal LPF −→ y(t)

The sampler is ideal and operates at S = 60 Hz. The filter H(F ) describes the frequency response of

a three-point averaging filter whose impulse response is h[n] = 1
3{1,

⇓
1, 1}. The cutoff frequency of the

ideal lowpass filter is fC = 40 Hz. Find y(t) if

(a) f0 = 20 Hz. (b) f0 = 50 Hz. (c) f0 = 75 Hz.

[Hints and Suggestions: Find the digital frequency of x[n] in the principal range and use it to find
y[n] and the reconstructed signal y(t).]

7.25 (Sampling and Filtering) A periodic signal x(t) with period T = 0.1 s, whose Fourier series
coefficients are given by X[k] = 2.5sinc2(0.5k), is applied to the following system:

x(t) −→ prefilter −→ sampler −→ H(F ) −→ ideal LPF −→ y(t)

The prefilter band-limits the signal x(t) to B Hz. The sampler is ideal and operates at S = 80 Hz.
The transfer function of the digital filter is H(F ) = tri(2F ). The cutoff frequency of the ideal lowpass
filter is fC = 40 Hz. Find y(t) if

(a) B = 20 Hz. (b) B = 40 Hz. (c) B = 80 Hz.

[Hints and Suggestions: Find the digital frequency of each nonzero harmonic in x(t) up to B Hz in
the principal range and use it to find the output of the digital filter and the reconstructed signal y(t)
(by superposition).]

7.26 (Sampling) A speech signal band-limited to 4 kHz is ideally sampled at a sampling rate S, and the
sampled signal x[n] is processed by the squaring filter y[n] = x2[n] whose output is ideally reconstructed
to obtain y(t) as follows:

x(t) −→ sampler −→ y[n] = x2[n] −→ ideal reconstruction −→ y(t)

What minimum sampling rate S will ensure that y(t) = x2(t)?

[Hints and Suggestions: The spectrum of y[n] extends to twice the frequency of x[n].]

7.27 (Sampling) Consider the signal x(t) = sin(200πt)cos(120πt). This signal is sampled at a sampling
rate S1, and the sampled signal x[n] is ideally reconstructed at a sampling rate S2 to obtain y(t). What
is the reconstructed signal if

(a) S1 = 400 Hz and S2 = 200 Hz.
(b) S1 = 200 Hz and S2 = 100 Hz.
(c) S1 = 120 Hz and S2 = 120 Hz.

[Hints and Suggestions: Use 2 sin α cos β = sin(α + β) + sin(α − β), find the digital frequency of
each component in the principal range, and set up the reconstructed signal (by superposition).]

7.28 (Sampling and Filtering) A speech signal x(t) whose spectrum extends to 5 kHz is filtered by an
ideal analog lowpass filter with a cutoff frequency of 4 kHz to obtain the filtered signal xf (t).

(a) If xf (t) is to be sampled to generate y[n], what is the minimum sampling rate that will permit
recovery of xf (t) from y[n]?
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(b) If x(t) is first sampled to obtain x[n] and then digitally filtered to obtain z[n], what must be
the minimum sampling rate and the impulse response h[n] of the digital filter such that z[n] is
identical to y[n]?

7.29 (Sampling and Filtering) The analog signal x(t) = sinc2(10t) is applied to the following system:

x(t) −→ sampler −→ H(F ) −→ reconstruction −→ y(t)

The sampler is ideal and operates at a sampling rate S that corresponds to the Nyquist rate. The
transfer function of the digital filter is H(F ) = rect(2F ). Sketch the spectra at the output of each
subsystem if the reconstruction is based on

(a) An ideal analog filter whose cutoff frequency is fC = 0.5S.
(b) A zero-order-hold followed by an ideal analog filter with fC = 0.5S.

[Hints and Suggestions: In (a), the output is a version of X(f) truncated in frequency. In (b), the
output will show sinc distortion (due to the zero-order-hold).]

7.30 (Interpolation) The signal x[n] = {
⇓
−1, 2, 3, 2} (with ts = 1 s) is passed through an interpolating

filter.

(a) Sketch the output if the filter performs step interpolation.
(b) Sketch the output if the filter performs linear interpolation.
(c) What is the interpolated value at t = 2.5 s if the filter performs sinc interpolation?
(d) What is the interpolated value at t = 2.5 s if the filter performs raised cosine interpolation

(assume that R = 0.5)?

[Hints and Suggestions: For (a), sketch the staircase signal. In (b), simply ’connect the dots’. For
(c), evaluate x(t) =

∑
x[k]sinc(t− k) at t = 2.5. For (d), use the raised-cosine formula.]

7.31 (DTFT and Sampling) A signal is reconstructed using a filter that performs step interpolation
between samples. The reconstruction sampling interval is ts.

(a) What is the impulse response h(t) and transfer function H(f) of the interpolating filter?
(b) What is the transfer function HC(f) of a filter that can compensate for the non-ideal reconstruc-

tion?

[Hints and Suggestions: For the step interpolation filter, h(t) = 1
ts

[u(t)− u(t− ts)].]

7.32 (DTFT and Sampling) A signal is reconstructed using a filter that performs linear interpolation
between samples. The reconstruction sampling interval is ts.

(a) What is the impulse response h(t) and transfer function H(f) of the interpolating filter?
(b) What is the transfer function HC(f) of a filter that can compensate for the non-ideal reconstruc-

tion?

[Hints and Suggestions: For the linear interpolation filter, h(t) = 1
ts

tri( t
ts

).]

7.33 (Interpolation) We wish to sample a speech signal band-limited to B = 4 kHz using zero-order-hold
sampling.

(a) Select the sampling frequency S if the spectral magnitude of the sampled signal at 4 kHz is to
be within 90% of its peak magnitude.

c©Ashok Ambardar, September 1, 2003



Chapter 7 Problems 303

(b) On recovery, the signal is filtered using a Butterworth filter with an attenuation of less than 1 dB
in the passband and more than 30 dB for all image frequencies. Compute the total attenuation
in decibels due to both the sampling and filtering operations at 4 kHz and 12 kHz.

(c) What is the order of the Butterworth filter?

[Hints and Suggestions: The zero-order-hold causes sinc distortion of the form sinc(f/S). For (a),
we require sinc(B/S) ≥ 0.9. For (b), it gives an additional attenuation of −20 log |sinc(f/S)|.]

7.34 (Up-Sampling) The analog signal x(t) = 4000sinc2(4000t) is sampled at 12 kHz to obtain the signal
x[n]. The sampled signal is up-sampled (zero interpolated) by N to obtain the signal y[n] as follows:

x(t) −→ sampler → x[n] → up-sample ↑ N −→ y[n]

Sketch the spectra of X(F ) and Y (F ) over −1 ≤ F ≤ 1 for N = 2 and N = 3.

[Hints and Suggestions: After up-sampling by N , there are N compressed images per period (cen-
tered at F = k

N ).]

7.35 (Up-Sampling) The signal x[n] is up-sampled (zero interpolated) by N to obtain the signal y[n].
Sketch X(F ) and Y (F ) over −1 ≤ F ≤ 1 for the following cases.

(a) x[n] = sinc(0.4n), N = 2
(b) X(F ) = tri(4F ), N = 2
(c) X(F ) = tri(6F ), N = 3

[Hints and Suggestions: After up-sampling by N , there are N compressed images per period (cen-
tered at F = k

N ).]

7.36 (Linear Interpolation) Consider a system that performs linear interpolation by a factor of N . One
way to construct such a system is to perform up-sampling by N (zero interpolation between signal
samples) and pass the up-sampled signal through an interpolating filter with impulse response h[n]
whose output is the linearly interpolated signal y[n] as shown.

x[n] −→ up-sample ↑ N −→ filter h[n] −→ y[n]

(a) What impulse response h[n] will result in linear interpolation by a factor of N = 2?
(b) Sketch the frequency response H(F ) of the interpolating filter for N = 2.
(c) Let the input to the system be X(F ) = rect(2F ). Sketch the spectrum at the output of the

up-sampler and the interpolating filter.

[Hints and Suggestions: In (a), linear interpolation requires h[n] = tri(n/N). In (c), there are N
compressed images per period after up-sampling (centered at F = k

N ). The digital filter removes any
images outside |FC |.]

7.37 (Interpolation) The input x[n] is applied to a system that up-samples by N followed by an ideal
lowpass filter with a cutoff frequency of FC to generate the output y[n]. Draw a block diagram of the
system. Sketch the spectra at various points of this system and find y[n] and Y (F ) for the following
cases.

(a) x[n] = sinc(0.4n), N = 2, FC = 0.4
(b) X(F ) = tri(4F ), N = 2, FC = 0.375
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[Hints and Suggestions: After up-sampling by N , there are N compressed images per period (cen-
tered at F = k

N ). The digital filter removes any images outside |FC |.]
7.38 (Decimation) The signal x(t) = 2 cos(100πt) is ideally sampled at 400 Hz to obtain the signal x[n],

and the sampled signal is decimated by N to obtain the signal y[n]. Sketch the spectra X(F ) and
Y (F ) over −1 ≤ F ≤ 1 for the cases N = 2 and N = 3.

[Hints and Suggestions: In decimation by N , the images are stretched by N , amplitude scaled by
1
N and added (where overlap exists).]

7.39 (Decimation) The signal x[n] is decimated by N to obtain the decimated signal y[n]. Sketch X(F )
and Y (F ) over −1 ≤ F ≤ 1 for the following cases.
(a) x[n] = sinc(0.4n), N = 2
(b) X(F ) = tri(4F ), N = 2
(c) X(F ) = tri(3F ), N = 2

[Hints and Suggestions: In decimation by N , the images are stretched by N , amplitude scaled by
1
N and added (where overlap exists).]

7.40 (Interpolation and Decimation) Consider the following system:

x[n] −→ up-sample ↑ N −→ digital LPF −→ down-sample ↓ M −→ y[n]

The signal x[n] is up-sampled (zero-interpolated) by N = 2, the digital lowpass filter is ideal and has
a cutoff frequency of FC , and down-sampling is by M = 3. Sketch X(F ) and Y (F ) and explain how
they are related for the following cases.

(a) X(F ) = tri(4F ) and FC = 0.125 (b) X(F ) = tri(2F ) and FC = 0.25

[Hints and Suggestions: After up-sampling by N , there are N compressed images per period (cen-
tered at F = k

N ). The digital filter removes any images outside |FC |. In down-sampling by M , the
images are stretched by M , amplitude scaled by 1

M and added (where overlap exists).]

7.41 (Interpolation and Decimation) For each of the following systems, X(F ) = tri(4F ). The digital
lowpass filter is ideal and has a cutoff frequency of FC = 0.25 and a gain of 2. Sketch the spectra at
the various points over −1 ≤ F ≤ 1 and determine whether any systems produce identical outputs.

(a) x[n] −→ up-sample ↑ N = 2 −→ digital LPF −→ down-sample ↓ M = 2 −→ y[n]

(b) x[n] −→ down-sample ↓ M = 2 −→ digital LPF −→ up-sample ↑ N = 2 −→ y[n]

(c) x[n] −→ down-sample ↓ M = 2 −→ up-sample ↑ N = 2 −→ digital LPF −→ y[n]

[Hints and Suggestions: After up-sampling by N , there are N compressed images per period (cen-
tered at F = k

N ). The digital filter removes any images outside |FC |. In down-sampling by M , the
images are stretched by M , amplitude scaled by 1

M and added (where overlap exists).]

7.42 (Interpolation and Decimation) For each of the following systems, X(F ) = tri(3F ). The digital
lowpass filter is ideal and has a cutoff frequency of FC = 1

3 and a gain of 2. Sketch the spectra at the
various points over −1 ≤ F ≤ 1 and determine whether any systems produce identical outputs.

(a) x[n] −→ up-sample ↑ N = 2 −→ digital LPF −→ down-sample ↓ M = 2 −→ y[n]

(b) x[n] −→ down-sample ↓ M = 2 −→ digital LPF −→ up-sample ↑ N = 2 −→ y[n]

(c) x[n] −→ down-sample ↓ M = 2 −→ up-sample ↑ N = 2 −→ digital LPF −→ y[n]
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[Hints and Suggestions: After up-sampling by N , there are N compressed images per period (cen-
tered at F = k

N ). The digital filter removes any images outside |FC |. In down-sampling by M , the
images are stretched by M , amplitude scaled by 1

M and added (where overlap exists).]

7.43 (Interpolation and Decimation) You are asked to investigate the claim that interpolation by N
and decimation by N performed in any order, as shown, will recover the original signal.

Method 1: x[n] −→ up-sample ↑ N −→ digital LPF −→ down-sample ↓ N −→ y[n]

Method 2: x[n] −→ down-sample ↓ N −→ up-sample ↑ N −→ digital LPF −→ y[n]

(a) Let X(F ) = tri(4F ) and N = 2. Let the lowpass filter have a cutoff frequency of FC = 0.25 and
a gain of 2. Sketch the spectra over −1 ≤ F ≤ 1 at the various points. For which method does
y[n] equal x[n]? Do the results justify the claim?

(b) Let X(F ) = tri(3F ) and N = 2. Let the lowpass filter have a cutoff frequency of FC = 1
3 and

a gain of 2. Sketch the spectra over −1 ≤ F ≤ 1 at the various points. For which method does
y[n] equal x[n]? Do the results justify the claim?

(c) Are any restrictions necessary on the input for x[n] to equal y[n] in each method? Explain.

[Hints and Suggestions: After up-sampling by N , there are N compressed images per period (cen-
tered at F = k

N ). The digital filter removes any images outside |FC |. In down-sampling by M , the
images are stretched by M , amplitude scaled by 1

M and added (where overlap exists).]

7.44 (Fractional Delay) The following system is claimed to implement a half-sample delay:

x(t) −→ sampler −→ H(F ) −→ ideal LPF −→ y(t)

The signal x(t) is band-limited to fC , and the sampler is ideal and operates at the Nyquist rate. The
digital filter is described by H1(F ) = e−jπF , |F | ≤ FC , and the cutoff frequency of the ideal lowpass
filter is fC .
(a) Sketch the magnitude and phase spectra at the various points in this system.
(b) Show that y(t) = x(t− 0.5ts) (corresponding to a half-sample delay).

7.45 (Fractional Delay) In practice, the signal y[n] = x[n − 0.5] may be generated from x[n] using
interpolation by 2 (to give x[0.5n]) followed by a one-sample delay (to give x[0.5(n−1)]) and decimation
by 2 (to give x[n− 0.5]). This is implemented as follows:

x[n] −→ up-sample ↑ 2 −→ ideal LPF −→ 1-sample delay −→ down-sample ↓ 2 −→ y[n]

(a) Let X(F ) = tri(4F ). Sketch the magnitude and phase spectra at the various points.
(b) What should be the gain and the cutoff frequency of the ideal lowpass filter if y[n] = x[n− 0.5]

or Y (F ) = X(F )e−jπF (implying a half-sample delay).

[Hints and Suggestions: Up-sampling by N gives N compressed images per period (centered at F =
k
N ). The digital filter removes images outside |FC |. The delay adds the linear phase −2πF, |F | < FC .
In down-sampling by M , the images are stretched by M , amplitude scaled by 1

M .]

7.46 (Quantization SNR) Consider the signal x(t) = t2, 0 ≤ t < 2. Choose ts = 0.1 s, four quantization
levels, and rounding to find the following:
(a) The sampled signal x[n]
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(b) The quantized signal xQ[n]
(c) The actual quantization signal to noise ratio SNRQ

(d) The statistical estimate of the quantization SNRS

(e) An estimate of the SNR, assuming x(t) to be periodic, with period T = 2 s

[Hints and Suggestions: For (e), use PS = 1
T

∫ 2

0
t4 dt to estimate the SNR.]

7.47 (Quantization SNR) A sinusoid with a peak value of 4 V is sampled and then quantized by a 12-bit
quantizer whose full-scale range is ±5 V. What is the quantization SNR of the quantized signal?

[Hints and Suggestions: The dynamic range is D = 10 V and the signal power is PS = 0.5(4)2.]

7.48 (Quantization Noise Power) The quantization noise power based on quantization by rounding is
σ2 = ∆2/12, where ∆ is the quantization step size. Find an expression for the quantization noise
power based on

(a) Quantization by truncation.
(b) Quantization by sign-magnitude truncation.

[Hints and Suggestions: For part (a), the error is equally distributed between −∆ and 0, and so
f(ε) = 1

∆ , −∆ < ε < 0 with mean m = −0.5∆. For part (b), the error is equally distributed between
−∆ and ∆, and so f(ε) = 1

2∆ , −∆ < ε < ∆ with mean m = 0.]

7.49 (Sampling and Quantization) A sinusoid with amplitude levels of ±1 V is quantized by rounding,
using a 12-bit quantizer. What is the rms quantization error and the quantization SNR?

[Hints and Suggestions: With ∆ = VFS
2B , the quantization error is σ = ∆√

12
.]

7.50 (Anti-Aliasing Filters) A speech signal is to be band-limited using an anti-aliasing third-order
Butterworth filter with a half-power frequency of 4 kHz, and then sampled and quantized by an 8-bit
quantizer. Determine the minimum stopband attenuation and the corresponding stopband frequency
to ensure that the maximum stopband aliasing level (relative to the passband edge) is less than the
rms quantization error.

[Hints and Suggestions: The attenuation is As = 20 log(2B
√

6) = 10 log(1 + ν2n
s ) with νs = fs/fp.]

7.51 (Anti-Aliasing Filters) A noise-like signal with a flat magnitude spectrum is filtered using a third-
order Butterworth filter with a half-power frequency of 3 kHz, and the filtered signal is sampled at
10 kHz. What is the aliasing level (relative to the signal level) at the half-power frequency in the
sampled signal?

[Hints and Suggestions: The signal level at the passband edge (half-power frequency) is 0.707. The
aliasing level at the passband edge is (1 + ν2n)−1/2 with ν = (S − fp)/fp.]

7.52 (Anti-Aliasing Filters) A speech signal with amplitude levels of ±1 V is to be band-limited using an
anti-aliasing second-order Butterworth filter with a half-power frequency of 4 kHz, and then sampled
and quantized by an 8-bit quantizer. What minimum sampling rate S will ensure that the maximum
aliasing error at the passband edge is less than the rms quantization level?

[Hints and Suggestions: With VFS = 2, find ∆ = VFS/2B and the quantization noise level ∆/
√

12.
The aliasing level at the passband edge is (1 + ν2n)−1/2 with ν = (S − fp)/fp.]
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7.53 (Sampling and Quantization) The signal x(t) = 2 cos(2000πt) − 4 sin(4000πt) is quantized by
rounding, using a 12-bit quantizer. What is the rms quantization error and the quantization SNR?

[Hints and Suggestions: The signal power is PS = 0.5(22 + 42). The peak value cannot exceed 6,
so choose D = 12 (or twice the actual peak value).]

7.54 (Sampling and Quantization) A speech signal, band-limited to 4 kHz, is to be sampled and
quantized by rounding, using an 8-bit quantizer. What is the conversion time of the quantizer if it is
preceded by a sample-and-hold circuit with an aperture time of 20 ns and an acquisition time of 2µs?
Assume sampling at the Nyquist rate.

[Hints and Suggestions: Use S ≤ 1
TA+TH+TC

.]

7.55 (Sampling and Quantization) A 10-kHz sinusoid with amplitude levels of ±1 V is to be sampled
and quantized by rounding. How many bits are required to ensure a quantization SNR of 45 dB? What
is the bit rate (number of bits per second) of the digitized signal if the sampling rate is chosen as twice
the Nyquist rate?

[Hints and Suggestions: The signal power is PS = 0.5. The noise power is ∆2/12 where ∆ = 2/2B .
The SNR equals 10 log(PS/PN ). The bit rate equals SB bits/second.]

7.56 (Anti-Imaging Filters) A digitized speech signal, band-limited to 4 kHz, is to be reconstructed
using a zero-order-hold. What minimum reconstruction sampling rate will ensure that the signal level
in the passband is attenuated by less than 1.2 dB due to the sinc distortion of the zero-order-hold?
What will be the image rejection at the stopband edge?

[Hints and Suggestions: The sinc distortion is sinc(f/S). So, 20 log |sinc(fp/S)| = −1.2. To find S,
you will need to find a way to compute the inverse sinc!]

7.57 (Anti-Imaging Filters) A digitized speech signal, band-limited to 4 kHz, is to be reconstructed using
a zero-order-hold followed by an analog Butterworth lowpass filter. The signal level in the passband
should be attenuated less than 1.5 dB, and an image rejection of better than 45 dB in the stopband is
required. What are the specifications for the Butterworth filter if the reconstruction sampling rate is
16 kHz? What is the order of the Butterworth filter?

[Hints and Suggestions: Assume fs = S−fp and subtract the attenuations −20 log |sinc(fp/S)| and
−20 log |sinc(fs/S)| due to sinc distortion from the given values to find the filter specifications.]

7.58 (Anti-Aliasing and Anti-Imaging Filters) A speech signal is to be band-limited using an anti-
aliasing Butterworth filter with a half-power frequency of 4 kHz. The sampling frequency is 20 kHz.
What filter order will ensure that the in-band aliasing level is be less 1% of the signal level? The
processed signal is to be reconstructed using a zero-order-hold. What is the stopband attenuation
required of an anti-imaging filter to ensure image rejection of better than 50 dB?

[Hints and Suggestions: The signal level at the half-power frequency is 0.707. The aliasing level
at the passband edge is (1 + ν2n)−1/2 with ν = (S − fp)/fp. Find the filter order n and subtract the
attenuation due to sinc distortion from 50 dB to set the filter stopband attenuation.]

COMPUTATION AND DESIGN

7.59 (Interpolating Functions) Consider the signal x(t) = cos(0.5πt) sampled at S = 1 Hz to generate
the sampled signal x[n]. We wish to compute the value of x(t) at t = 0.5 by interpolating between its
samples.
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(a) Superimpose a plot of x(t) and its samples x[n] over one period. What is the value of x(t)
predicted by step interpolation and linear interpolation of x[n]? How good are these estimates?
Can these estimates be improved by taking more signal samples (using the same interpolation
schemes)?

(b) Use the sinc interpolation formula

x(t) =
∞∑

n=−∞
x[n]sinc[(t− nts)/ts]

to obtain an estimate of x(0.5). With t = 0.5 and ts = 1/S = 1, compute the summation for
|n| ≤ 10, 20, 50 to generate three estimates of x(0.5). How good are these estimates? Would you
expect the estimate to converge to the actual value as more terms are included in the summation
(i.e., as more signal samples are included)? Compare the advantages and disadvantages of sinc
interpolation with the schemes in part (a).

7.60 (Interpolating Functions) To interpolate a signal x[n] by N , we use an up-sampler (that places
N−1 zeros after each sample) followed by a filter that performs the appropriate interpolation as shown:

x[n] −→ up-sample ↑ N −→ interpolating filter −→ y[n]

The filter impulse response for step interpolation, linear interpolation, and ideal (sinc) interpolation is

hS [n] = u[n]− u[n− (N − 1)] hL[n] = tri(n/N) hI [n] = sinc(n/N), |n| ≤ M

Note that the ideal interpolating function is actually of infinite length but must be truncated in practice.
Generate the test signal x[n] = cos(0.5nπ), 0 ≤ n ≤ 3. Up-sample this by N = 8 (seven zeros after
each sample) to obtain the signal xU [n]. Use the Matlab routine filter to filter xU [n], using
(a) The step interpolation filter to obtain the filtered signal xS [n]. Plot xU [n] and xS [n] on the same

plot. Does the system perform the required interpolation? Does the result look like a sine wave?
(b) The linear interpolation filter to obtain the filtered signal xL[n]. Plot xU [n] and a delayed (by

8) version of xL[n] (to account for the noncausal nature of hL[n]) on the same plot. Does the
system perform the required interpolation? Does the result look like a sine wave?

(c) The ideal interpolation filter (with M = 4, 8, 16) to obtain the filtered signal xI [n]. Plot xU [n]
and a delayed (by M) version of xI [n] (to account for the noncausal nature of hI [n]) on the same
plot. Does the system perform the required interpolation? Does the result look like a sine wave?
What is the effect of increasing M on the interpolated signal? What is the effect of increasing
both M and the signal length? Explain.

7.61 (Compensating Filters) Digital filters are often used to compensate for the sinc distortion of a
zero-order-hold DAC by providing a 1/sinc(F ) boost. Two such filters are described by

Compensating Filter 1: y[n] = 1
16 (x[n]− 18x[n− 1] + x[n− 2])

Compensating Filter 2: y[n] + 1
8y[n− 1] = 9

8x[n]

(a) For each filter, state whether it is FIR (and if so, linear phase) or IIR.
(b) Plot the frequency response of each filter and compare with |1/sinc(F )|.
(c) Over what digital frequency range does each filter provide the required sinc boost? Which of

these filters provides better compensation?

7.62 (Up-Sampling and Decimation) Let x[n] = cos(0.2nπ) + 0.5 cos(0.4nπ), 0 ≤ n ≤ 100.
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(a) Plot the spectrum of this signal.
(b) Generate the zero-interpolated signal y[n] = x[n/2] and plot its spectrum. Can you observe the

spectrum replication? Is there a correspondence between the frequencies in y[n] and x[n]? Should
there be? Explain.

(c) Generate the decimated signal d[n] = x[2n] and plot its spectrum. Can you observe the stretching
effect in the spectrum? Is there a correspondence between the frequencies in d[n] and x[n]? Should
there be? Explain.

(d) Generate the decimated signal g[n] = x[3n] and plot its spectrum. Can you observe the stretching
effect in the spectrum? Is there a correspondence between the frequencies in g[n] and x[n]? Should
there be? Explain.

7.63 (Frequency Response of Interpolating Functions) The impulse response of filters for step in-
terpolation, linear interpolation, and ideal (sinc) interpolation by N are given by

hS [n] = u[n]− u[n− (N − 1)] hL[n] = tri(n/N) hI [n] = sinc(n/N)

Note that the ideal interpolating function is of infinite length.
(a) Plot the frequency response of each interpolating function for N = 4 and N = 8.
(b) How does the response of the step-interpolation and linear-interpolation schemes compare with

ideal interpolation?

7.64 (Interpolating Functions) To interpolate a signal x[n] by N , we use an up-sampler (that places
N − 1 zeros after each sample) followed by a filter that performs the appropriate interpolation. The
filter impulse response for step interpolation, linear interpolation, and ideal (sinc) interpolation is
chosen as

hS [n] = u[n]− u[n− (N − 1)] hL[n] = tri(n/N) hI [n] = sinc(n/N), |n| ≤ M

Note that the ideal interpolating function is actually of infinite length and must be truncated in
practice. Generate the test signal x[n] = cos(0.5nπ), 0 ≤ n ≤ 3. Up-sample this by N = 8 (seven
zeros after each sample) to obtain the signal xU [n]. Use the Matlab routine filter to filter xU [n] as
follows:
(a) Use the step-interpolation filter to obtain the filtered signal xS [n]. Plot xU [n] and xS [n] on the

same plot. Does the system perform the required interpolation? Does the result look like a sine
wave?

(b) Use the step-interpolation filter followed by the compensating filter y[n] = {x[n] − 18x[n − 1] +
x[n − 2]}/16 to obtain the filtered signal xC [n]. Plot xU [n] and xC [n] on the same plot. Does
the system perform the required interpolation? Does the result look like a sine wave? Is there
an improvement compared to part (a)?

(c) Use the linear-interpolation filter to obtain the filtered signal xL[n]. Plot xU [n] and a delayed
(by 8) version of xL[n] (to account for the noncausal nature of hL[n]) on the same plot. Does the
system perform the required interpolation? Does the result look like a sine wave?

(d) Use the ideal interpolation filter (with M = 4, 8, 16) to obtain the filtered signal xI [n]. Plot
xU [n] and a delayed (by M) version of xI [n] (to account for the noncausal nature of hI [n]) on
the same plot. Does the system perform the required interpolation? Does the result look like a
sine wave? What is the effect of increasing M on the interpolated signal? Explain.

7.65 (FIR Filter Design) A 22.5-Hz sinusoid is contaminated by 60-Hz interference. We wish to sample
this signal and design a causal 3-point linear-phase FIR digital filter operating at a sampling frequency
of S = 180 Hz to eliminate the interference and pass the desired signal with unit gain.

c©Ashok Ambardar, September 1, 2003



310 Chapter 7 Digital Processing of Analog Signals

(a) Argue that an impulse response of the form h[n] = {⇓α, β, α} can be used. Choose α and β to
satisfy the design requirements.

(b) To test your filter, generate two signals x[n] and s[n], 0 ≤ n ≤ 50, by sampling x(t) = cos(45πt)
and s(t) = 3 cos(120πt) at 180 Hz. Generate the noisy signal g[n] = x[n] + s[n] and pass it
through your filter to obtain the filtered signal y[n]. Compare y[n] with the noisy signal g[n] and
the desired signal x[n] to confirm that the filter meets design requirements. What is the phase
of y[n] at the desired frequency? Can you find an exact expression for y[n]?

7.66 (Sampling and Quantization) The signal x(t) = cos(2πt) + cos(6πt) is sampled at S = 20 Hz.
(a) Generate 200 samples of x[n] and superimpose plots of x(t) vs. t and x[n] vs. n/S. Use a 4-bit

quantizer to quantize x[n] by rounding and obtain the signal xR[n]. Superimpose plots of x(t)
vs. t and xR[n] vs. n/S. Obtain the quantization error signal e[n] = x[n]− xR[n] and plot e[n]
and its 10-bin histogram. Does it show a uniform distribution? Compute the quantization SNR
in decibels. Repeat for 800 samples. Does an increase in the signal length improve the SNR?

(b) Generate 200 samples of x[n] and superimpose plots of x(t) vs. t and x[n] vs. n/S. Use an 8-bit
quantizer to quantize x[n] by rounding and obtain the signal xR[n]. Superimpose plots of x(t)
vs. t and xR[n] vs. n/S. Obtain the quantization error signal e[n] = x[n]− xR[n] and plot e[n]
and its 10-bin histogram. Compute the quantization SNR in decibels. Compare the quantization
error, the histogram, and the quantization SNR for the 8-bit and 4-bit quantizer and comment
on any differences. Repeat for 800 samples. Does an increase in the signal length improve the
SNR?

(c) Based on your knowledge of the signal x(t), compute the theoretical SNR for a 4-bit and 8-bit
quantizer. How does the theoretical value compare with the quantization SNR obtained in parts
(a) and (b)?

(d) Repeat parts (a) and (b), using quantization by truncation of x[n]. How does the quantization
SNR for truncation compare with the the quantization SNR for rounding?

7.67 (LORAN) A LORAN (long-range radio and navigation) system for establishing positions of marine
craft uses three transmitters that send out short bursts (10 cycles) of 100-kHz signals in a precise phase
relationship. Using phase comparison, a receiver (on the craft) can establish the position (latitude and
longitude) of the craft to within a few hundred meters. Suppose the LORAN signal is to be digitally
processed by first sampling it at 500 kHz and filtering the sampled signal using a second-order peaking
filter with a half-power bandwidth of 1 kHz. Design the peaking filter and use Matlab to plot its
frequency response.

7.68 (Plucked-String Filters) Figure P7.68 shows three variants of the Karplus-Strong filter for synthe-
sizing plucked-string instruments. Assume that GLP(z) = 0.5(1 + z−1).

GLP(z)

−Dz

+ +

A

Σ GLP(z)

−Dz

+ +

A

Σ

GLP(z)

−Dz+ +

A

Σ

Figure P7.68 Plucked-string filters for Problem 7.68

(a) Find the transfer function of each circuit.
(b) Plot the frequency response of each filter for D = 12 (choose an appropriate value for A).
(c) Describe the differences in the frequency response and impulse response of each filter.
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7.69 (Plucked-String Filters) We wish to use the Karplus-Strong filter to synthesize a guitar note
played at exactly 880 Hz, using a sampling frequency of 10 kHz, by including a first-order allpass filter
GAP(z) = (1+αz)/(z +α) in the feedback loop. Choose the second variant from the previous problem
and assume that GLP(z) = 0.5(1 + z−1).

(a) What is the value of D and the value of the allpass parameter α?
(b) Plot the frequency response of the designed filter, using an appropriate value for A.
(c) How far off is the fundamental frequency of the designed filter from 880 Hz?
(d) Show that the exact relation for finding the parameter α from the phase delay tp at any frequency

is given by

α =
sin[(1− tp)πF ]
sin[(1 + tp)πF ]

(e) Use the result of part (d) to compute the exact value of α at the digital frequency corresponding
to 880 Hz and plot the frequency response of the designed filter. Is the fundamental frequency
of the designed filter any closer to 880 Hz? Will the exact value of α be more useful for lower or
higher sampling rates?

7.70 (Generating DTMF Tones) In dual-tone multi-frequency (DTMF) or touch-tone telephone dialing,
each number is represented by a dual-frequency tone (as described in the text). It is required to generate
the signal at each frequency as a pure cosine, using a digital oscillator operating at a sampling rate of
S = 8192 Hz. By varying the parameters of the digital filter, it should be possible to generate a signal
at any of the required frequencies. A DTMF tone can then be generated by adding the appropriate
low-frequency and high-frequency signals.

(a) Design the digital oscillator and use it to generate tones corresponding to all the digits. Each
tone should last for 0.1 s.

(b) Use the FFT to obtain the spectrum of each tone and confirm that its frequencies correspond to
the appropriate digit.

7.71 (Decoding DTMF Tones) To decode a DTMF signal, we must be able to isolate the tones and
then identify the digits corresponding to each tone. This may be accomplished in two ways: using the
FFT or by direct filtering.

(a) Generate DTMF tones (by any method) at a sampling rate of 8192 Hz.
(b) For each tone, use the FFT to obtain the spectrum and devise a test that would allow you to

identify the digit from the frequencies present in its FFT. How would you automate the decoding
process for an arbitrary DTMF signal?

(c) Apply each tone to a parallel bank of bandpass (peaking) filters, compute the output signal energy,
compare with an appropriate threshold to establish the presence or absence of a frequency, and
relate this information to the corresponding digit. You will need to design eight peaking filters
(centered at the appropriate frequencies) to identify the frequencies present and the corresponding
digit. How would you automate the decoding process for an arbitrary DTMF signal?
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DESIGN OF FIR FILTERS

8.0 Scope and Objectives
FIR filters are always stable and can be designed with linear phase, and hence no phase distortion. Their
design is typically based on selecting a symmetric impulse response sequence whose length is chosen to meet
design specifications. For given specifications, FIR filters require many more elements in their realization
than do IIR filters. This chapter starts with an introduction to filter design. It describes symmetric sequences
and their application to FIR filters. It examines various methods of FIR filter design, including the window
method and frequency sampling. It concludes with special-purpose FIR filters such as differentiators and
Hilbert transformers, and an introduction to adaptive signal processing.

8.1 Introduction
Digital filters process discrete-time signals. They are essentially mathematical implementations of a filter
equation in software or hardware. They suffer from few limitations. Among their many advantages are
high noise immunity, high accuracy (limited only by the roundoff error in the computer arithmetic), easy
modification of filter characteristics, freedom from component variations, and, of course, low and constantly
decreasing cost. Digital filters are therefore rapidly replacing analog filters in many applications where they
can be used effectively. The term digital filtering is to be understood in its broadest sense, not only as a
smoothing or averaging operation, but also as any processing of the input signal.

8.1.1 The Design Process

A filter may be regarded as a frequency-selective device that allows us to shape the magnitude or phase
response in a prescribed manner. We concentrate on the design of lowpass filters because it can easily be
converted to other forms by suitable frequency transformations. Typical magnitude (or gain) specifications
for a lowpass digital filter are illustrated in Figure 8.1 and include the passband and stopband frequencies,
the passband attenuation (or gain or ripple), and the stopband attenuation (or gain or ripple). The passband
ripple (deviation from maximum gain) and stopband ripple (deviation from zero gain) are usually described
by their attenuation (reciprocal of the linear gain) expressed in decibels.

REVIEW PANEL 8.1
How Are the Gain and Attenuation Related on a Linear or Decibel Scale?
Linear: Attenuation equals the reciprocal of gain: G = |H(f)|, A = 1/|H(f)|.
Decibel: Attenuation equals the negative of dB gain: GdB = 20 log |H(f)|, AdB = −20 log |H(f)|.
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Figure 8.1 The features of a typical lowpass digital filter

If analog frequencies are specified in the design or if the digital filter is to be designed for processing
sampled analog signals, the sampling rate must also be given. The design process is essentially a three-step
process that requires specification of the design parameters, design of the least complex transfer function
that meets or beats the design specifications, and realization of the transfer function in software or hardware.
The design based on any set of performance specifications is, at best, a compromise at all three levels. At
the first level, the actual filter may never meet performance specifications if they are too stringent; at the
second, the same set of specifications may lead to several possible realizations; and at the third, quantization
and roundoff errors may render the design useless if based on too critical a set of design values. The fewer
or less stringent the specifications, the better is the possibility of achieving both design objectives and
implementation.

8.1.2 Techniques of Digital Filter Design

Digital filter design revolves around two distinctly different approaches. If linear phase is not critical, IIR
filters yield a much smaller filter order for a given application. Only FIR filters can be designed with linear
phase (no phase distortion). Their design is typically based on selecting a symmetric impulse response
sequence whose length is chosen to meet design specifications. This choice is often based on iterative
techniques or trial and error. For given specifications, FIR filters require many more elements in their
realization than do IIR filters.

8.2 Symmetric Sequences and Linear Phase
Symmetric sequences possess linear phase and result in a constant delay with no amplitude distortion. This
is an important consideration in filter design. The DTFT of a real, even symmetric sequence x[n] is of
the form H(F ) = A(F ) and always real, and the DTFT of a real, odd symmetric sequence is of the form
H(F ) = jA(F ) and purely imaginary. Symmetric sequences also imply noncausal filters. However, such
filters can be made causal if the impulse response is suitably delayed. A time shift of x[n] to x[n − M ]
introduces only a linear phase of φ(F ) = e−j2MπF . The DTFT of sequences that are symmetric about their
midpoint is said to possess generalized linear phase. Generalized linear phase is illustrated in Figure 8.2.

The term generalized means that φ(F ) may include a jump (of π at F = 0, if H(F ) is imaginary). There
may also be phase jumps of 2π (if the phase is restricted to the principal range π ≤ φ(F ) ≤ π). If we plot
the magnitude |H(F )|, there will also be phase jumps of π (where the amplitude A(F ) changes sign).

REVIEW PANEL 8.2
Linear-Phase Filters Provide a Constant Group Delay
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Figure 8.2 Examples of linear phase and generalized linear phase

8.2.1 Classification of Linear-Phase Sequences

The length N of finite symmetric sequences can be odd or even, since the center of symmetry may fall on
a sample point (for odd N) or midway between samples (for even N). This results in four possible types of
symmetric sequences.

Type 1 Sequences

A type 1 sequence h1[n] and its amplitude spectrum A1(F ) are illustrated in Figure 8.3.
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Figure 8.3 Features of a type 1 symmetric sequence

This sequence is even symmetric with odd length N , and a center of symmetry at the integer value
M = (N − 1)/2. Using Euler’s relation, its frequency response H1(F ) may be expressed as

H1(F ) =

[
h[M ] + 2

M−1∑

k=0

h[k]cos[(M − k)2πF ]

]
e−j2πMF = A1(F )e−j2πMF (8.1)

Thus, H1(F ) shows a linear phase of −2πMF , and a constant group delay of M . The amplitude spectrum
A1(F ) is even symmetric about both F = 0 and F = 0.5, and both |H1(0)| and |H1(0.5)| can be nonzero.

Type 2 Sequences

A type 2 sequence h2[n] and its amplitude spectrum A2(F ) are illustrated in Figure 8.4.
This sequence is also even symmetric but of even length N , and a center of symmetry at the half-integer

value M = (N − 1)/2. Using Euler’s relation, its frequency response H2(F ) may be expressed as

H2(F ) =


2

M−1/2∑

k=0

h[k]cos[(M − k)2πF ]


e−j2πMF = A2(F )e−j2πMF (8.2)
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Thus, H2(F ) also shows a linear phase of −2πMF , and a constant group delay of M . The amplitude
spectrum A2(F ) is even symmetric about F = 0, and odd symmetric about F = 0.5, and as a result, |H2(0.5)|
is always zero.

Type 3 Sequences

A type 3 sequence h3[n] and its amplitude spectrum A3(F ) are illustrated in Figure 8.5.
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Figure 8.5 Features of a type 3 symmetric sequence

This sequence is odd symmetric with odd length N , and a center of symmetry at the integer value
M = (N − 1)/2. Using Euler’s relation, its frequency response H3(F ) may be expressed as

H3(F ) = j

[
2

M−1∑

k=0

h[k]sin[(M − k)2πF ]

]
e−j2πMF = A3(F )ej(0.5π−2πMF ) (8.3)

Thus, H3(F ) shows a generalized linear phase of π
2−2πMF , and a constant group delay of M . The amplitude

spectrum A3(F ) is odd symmetric about both F = 0 and F = 0.5, and as a result, |H3(0)| and |H3(0.5)| are
always zero.

Type 4 Sequences

A type 4 sequence h4[n] and its amplitude spectrum A4(F ) are illustrated in Figure 8.6.
This sequence is odd symmetric with even length N , and a center of symmetry at the half-integer value

M = (N − 1)/2. Using Euler’s relation, its frequency response H4(F ) may be expressed as

H4(F ) = j


2

M−1/2∑

k=0

h[k]sin[2(M − k)πF ]


e−j2πMF = A4(F )ej(0.5π−2πMF ) (8.4)
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Thus, H4(F ) also shows a generalized linear phase of π
2 − 2πMF , and a constant group delay of M . The

amplitude spectrum A4(F ) is odd symmetric about F = 0, and even symmetric about F = 0.5, and as a
result, |H4(0)| is always zero.

8.2.2 Applications of Linear-Phase Sequences

Table 8.1 summarizes the amplitude response characteristics of the four types of linear-phase sequences and
their use in FIR digital filter design. Type 1 sequences are by far the most widely used because they allow
us to design any filter type by appropriate choice of filter coefficients. Type 2 sequences can be used for
lowpass and bandpass filters, but not for bandstop or highpass filters (whose response is not zero at F = 0.5).
Type 3 sequences are useful primarily for bandpass filters, differentiators, and Hilbert transformers. Type 4
sequences are suitable for highpass or bandpass filters, and for differentiators and Hilbert transformers.

Bandstop filters (whose response is nonzero at F = 0 and F = 0.5) can be designed only with type 1
sequences. Only antisymmetric sequences (whose transfer function is imaginary) or their causal versions
(which correspond to type 3 and type 4 sequences) can be used to design digital differentiators and Hilbert
transformers.

Table 8.1 Applications of Symmetric Sequences

Type H(F ) = 0 (or H(Ω) = 0) at Application

1 All filter types. Only sequence for BSF

2 F = 0.5 (Ω = π) Only LPF and BPF

3 F = 0 (Ω = 0), F = 0.5 (Ω = π) BPF, differentiators, Hilbert transformers

4 F = 0 (Ω = 0) HPF, BPF, differentiators, Hilbert transformers

8.2.3 FIR Filter Design

The design of FIR filters involves the selection of a finite sequence that best represents the impulse response
of an ideal filter. FIR filters are always stable. Even more important, FIR filters are capable of perfectly
linear phase (a pure time delay), meaning total freedom from phase distortion. For given specifications,
however, FIR filters typically require a much higher filter order or length than do IIR filters. And sometimes
we must go to great lengths to ensure linear phase! The three most commonly used methods for FIR filter
design are window-based design using the impulse response of ideal filters, frequency sampling, and iterative
design based on optimal constraints.
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8.3 Window-Based Design
The window method starts by selecting the impulse response hN [n] as a symmetrically truncated version of
the impulse response h[n] of an ideal filter with frequency response H(F ). The impulse response of an ideal
lowpass filter with a cutoff frequency FC is h[n] = 2FC sinc(2nFC). Its symmetric truncation yields

hN [n] = 2FC sinc(2nFC), |n| ≤ 0.5(N − 1) (8.5)

Note that for an even length N , the index n is not an integer. Even though the designed filter is an
approximation to the ideal filter, it is the best approximation (in the mean square sense) compared to any
other filter of the same length. The problem is that it shows certain undesirable characteristics. Truncation
of the ideal impulse response h[n] is equivalent to multiplication of h[n] by a rectangular window w[n] of
length N . The spectrum of the windowed impulse response hW [n] = h[n]w[n] is the (periodic) convolution
of H(F ) and W (F ). Since W (F ) has the form of a Dirichlet kernel, this spectrum shows overshoot and
ripples (the Gibbs effect). It is the abrupt truncation of the rectangular window that leads to overshoot and
ripples in the magnitude spectrum. To reduce or eliminate the Gibbs effect, we use tapered windows.

REVIEW PANEL 8.3
The Spectrum of the Truncated Ideal Impulse Response Shows the Gibbs Effect
hN [n] = 2FC sinc(2nFC), |n| ≤ 0.5(N − 1)
The Gibbs effect (spectral overshoot and oscillation) is due to abrupt truncation of h[n].
Tapered windows reduce (or eliminate) the spectral overshoot and oscillation.

8.3.1 Characteristics of Window Functions

The amplitude response of symmetric, finite-duration windows invariably shows a mainlobe and decaying
sidelobes that may be entirely positive or that may alternate in sign. The spectral measures for a typical
window are illustrated in Figure 8.7.
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Figure 8.7 Spectrum of a typical window

Amplitude-based measures for a window include the peak sidelobe level (PSL), usually in decibels, and
the decay rate DS in dB/dec. Frequency-based measures include the mainlobe width WM , the 3-dB and
6-dB widths (W3 and W6), and the width WS to reach the peak sidelobe level. The windows commonly used
in FIR filter design and their spectral features are listed in Table 8.2 and illustrated in Figure 8.8. As the
window length N increases, the width parameters decrease, but the peak sidelobe level remains more or less
constant. Ideally, the spectrum of a window should approximate an impulse and be confined to as narrow a
mainlobe as possible, with as little energy in the sidelobes as possible.

c©Ashok Ambardar, September 1, 2003



318 Chapter 8 Design of FIR Filters

Table 8.2 Some Windows for FIR Filter Design

Note: I0(x) is the modified Bessel function of order zero.

Window Expression w[n], −0.5(N − 1) ≤ n ≤ 0.5(N − 1)

Boxcar 1

Cosine cos
( nπ

N − 1

)

Riemann sincL
( 2n

N − 1

)
, L > 0

Bartlett 1− 2|n|
N − 1

von Hann (Hanning) 0.5 + 0.5 cos
( 2nπ

N − 1

)

Hamming 0.54 + 0.46 cos
( 2nπ

N − 1

)

Blackman 0.42 + 0.5 cos
( 2nπ

N − 1

)
+ 0.08 cos

( 4nπ

N − 1

)

Kaiser I0(πβ
√

1− 4[n/(N − 1)]2)
I0(πβ)

Spectral Characteristics of Window Functions

Window GP GS/GP ASL (dB) WM WS W6 W3 DS

Boxcar 1 0.2172 13.3 1 0.81 0.6 0.44 20

Cosine 0.6366 0.0708 23 1.5 1.35 0.81 0.59 40

Riemann 0.5895 0.0478 26.4 1.64 1.5 0.86 0.62 40

Bartlett 0.5 0.0472 26.5 2 1.62 0.88 0.63 40

von Hann (Hanning) 0.5 0.0267 31.5 2 1.87 1.0 0.72 60

Hamming 0.54 0.0073 42.7 2 1.91 0.9 0.65 20

Blackman 0.42 0.0012 58.1 3 2.82 1.14 0.82 60

Kaiser (β = 2.6) 0.4314 0.0010 60 2.98 2.72 1.11 0.80 20

NOTATION:
GP : Peak gain of mainlobe GS : Peak sidelobe gain DS : High-frequency attenuation (dB/decade)

ASL: Sidelobe attenuation (GP
GS

) in dB W6: 6-dB half-width WS : Half-width of mainlobe to reach PS

W3 3-dB half-width WM : Half-width of mainlobe

Notes:
1. All widths (WM , WS , W6, W3) must be normalized (divided) by the window length N .
2. Values for the Kaiser window depend on the parameter β. Empirically determined relations are

GP =
|sinc(jβ)|
I0(πβ)

,
GS

GP
=

0.22πβ

sinh(πβ)
, WM = (1 + β2)1/2, WS = (0.661 + β2)1/2
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Figure 8.8 Commonly used DTFT windows and their spectra
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320 Chapter 8 Design of FIR Filters

Most windows have been developed with some optimality criterion in mind. Ultimately, the trade-off
is a compromise between the conflicting requirements of a narrow mainlobe (or a small transition width),
and small sidelobe levels. Some windows are based on combinations of simpler windows. For example,
the von Hann (or Hanning) window is the sum of a rectangular and a cosine window, the Bartlett window
is the convolution of two rectangular windows, and the cosa window is the product of a von Hann and
a cosine window. Other windows are designed to emphasize certain desirable features. The von Hann
window improves the high-frequency decay (at the expense of a larger peak sidelobe level). The Hamming
window minimizes the sidelobe level (at the expense of a slower high-frequency decay). The Kaiser window
has a variable parameter β that controls the peak sidelobe level. Still other windows are based on simple
mathematical forms or easy application. For example, the cosa windows have easily recognizable transforms,
and the von Hann window is easy to apply as a convolution in the frequency domain. An optimal time-limited
window should maximize the energy in its spectrum over a given frequency band. In the continuous-time
domain, this constraint leads to a window based on prolate spheroidal wave functions of the first order. The
Kaiser window best approximates such an optimal window in the discrete domain.

8.3.2 Some Other Windows

The Dolph (also called Chebyshev) window corresponds to the inverse DTFT of a spectrum whose sidelobes
remain constant (without decay) at a specified level and whose mainlobe width is the smallest for a given
length. The time-domain expression for this window is cumbersome. This window can be computed from

w[n] = IDFT
{

TN−1

[
α cos

(
nπ

N − 1

)]}
α = cosh

[
cosh−1(10A/20)

N − 1

]
(odd n only) (8.6)

Here, Tn(x) is the Chebyshev polynomial of order n, and A is the sidelobe attenuation in decibels.

Table 8.3 Characteristics of Harris Windows

Notes: ASL is the normalized peak sidelobe attenuation in dB (decibels).
WS is the half-width of the main lobe to reach PS .
DS is the high frequency decay rate in dB/octave (6 dB/oct = 20 dB/dec).
Type b0 b1 b2 b3 ASL (dB) WS = K/N DS

0 0.375 0.5 0.125 0.0 46.74 K = 2.89 30
1 10/32 15/32 6/32 1/32 60.95 K = 3.90 42
2 0.40897 0.5 0.09103 0.0 64.19 K = 2.94 18
3 0.42323 0.49755 0.07922 0.0 70.82 K = 2.95 6
4 0.4243801 0.4973406 0.0782793 0.0 71.48 K = 2.95 6
5 0.338946 0.481973 0.161054 0.018027 82.6 K = 3.95 30
6 0.355768 0.487396 0.144232 0.012604 92.32 K = 3.96 18
7 0.3635819 0.4891775 0.1365995 0.0106411 98.17 K = 3.96 6

Harris windows offer a variety of peak sidelobe levels and high-frequency decay rates. Their characteristics
are listed in Table 8.3. Harris windows have the general form

w[n] = b0 − b1 cos(m) + b2 cos(2m)− b3 cos(3m), where m =
2nπ

N − 1
, |n| ≤ N − 1

2
(8.7)
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8.3.3 What Windowing Means

Symmetric windowing of the impulse response of an ideal filter is accomplished by windows that are them-
selves symmetric, as illustrated in Figure 8.9.

N = 13 N = 10

1 Bartlett window

12  intervals 9  intervals

Figure 8.9 The mechanics of windowing

An N -point FIR window uses N −1 intervals to generate N samples (including both end samples). Once
selected, the window sequence must be symmetrically positioned with respect to the symmetric impulse
response sequence. Windowing is then simply a pointwise multiplication of the two sequences.

The symmetrically windowed impulse response of an ideal lowpass filter may be written as

hW [n] = 2FC sinc(2nFC)w[n], −0.5(N − 1) ≤ n ≤ 0.5(N − 1) (8.8)

For even N , the index n is not an integer, even though it is incremented every unit, and we require a non-
integer delay to produce a causal sequence. If the end samples of w[n] equal zero, so will those of hW [n],
and the true filter length will be less by 2.

EXAMPLE 8.1 (Truncation and Windowing)
Consider a lowpass filter with a cutoff frequency of 5 kHz and a sampling frequency of 20 kHz.
Then, FC = 0.25 and h[n] = 2FC sinc(2nFC) = 0.5 sinc(0.5n).

(a) With N = 9 and a Bartlett window w = 1− 2|n|
N−1 , −4 ≤ n ≤ 4, we find

h[n] = {0, −0.1061, 0, 0.3183,
⇓

0.5, 0.3183, 0, −0.1061, 0}
w[n] = {0, 0.25, 0.5, 0.75,

⇓
1, 0.75, 0.5, 0.25, 0}

Pointwise multiplication of hN and wN gives

hW [n] = {0, −0.0265, 0, 0.2387,
⇓

0.5, 0.2387, 0, −0.0265, 0}
If we include the end samples, the causal filter requires a delay of four samples to give

HC(z) = 0− 0.0265z−1 + 0.2387z−3 + 0.5z−4 + 0.2387z−5 − 0.0265z−7

Since S = 20 kHz, we have ts = 1/S = 0.05 ms, and a four-sample delay corresponds to an actual
delay of 4(0.05) = 0.2 ms. If we ignore the end samples, the causal filter requires a delay of only three
(not four) samples to give

HC(z) = −0.0265 + 0.2387z−2 + 0.5z−3 + 0.2387z−4 − 0.0265z−6

This corresponds to a delay of 0.15 ms.
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(b) With N = 6, we have FC = 0.25 and hN [n] = 2FC sinc(2nFC) = 0.5 sinc(0.5n), −2.5 ≤ n ≤ 2.5.

For a von Hann (Hanning) window, w[n] = 0.5+0.5 cos( 2nπ
N−1 ) = 0.5+0.5 cos(0.4nπ), −2.5 ≤ n ≤ 2.5.

We then compute values of h[n], w[n], and hW [n] = h[n]w[n] as

h[n] = −0.09 0.1501 0.4502 0.4502 0.1501 −0.09
w[n] = 0.0 0.3455 0.9045 0.9045 0.3455 0.0
hW [n] = 0.0 0.0518 0.4072 0.4072 0.0518 0.0

Since the first sample of hW [n] is zero, the minimum delay required for a causal filter is only 1.5 (and
not 2.5) samples, and the transfer function of the causal sequence is

HC(z) = 0.0518 + 0.4072z−1 + 0.4072z−2 + 0.0518z−3

8.3.4 Some Design Issues

The gain of a typical lowpass filter using window-based design is illustrated in Figure 8.10. The gain
specifications of an FIR filter are often based on the passband ripple δp (the maximum deviation from unit
gain) and the stopband ripple δs (the maximum deviation from zero gain). Since the decibel gain is usually
normalized with respect to the peak gain, the passband and stopband attenuation Ap and As (in decibels)
are related to these ripple parameters by

Ap(dB) = −20 log
(

1− δp

1 + δp

)
As(dB) = −20 log

(
δs

1 + δp

)
≈ −20 log δs, δp ¿ 1 (8.9)

To convert attenuation specifications (in decibels) to values for the ripple parameters, we use

δp =
10Ap/20 − 1
10Ap/20 + 1

δs = (1 + δp)10−As/20 ≈ 10−As/20, δp ¿ 1 (8.10)

1+δp

1−δp

δs

FsFp FsFp

A− p

A− s

F

Stopband

Passband

Magnitude

Transition band

0

F

dB Magnitude  20 log

0.5 0.5

H(F) H(F)

Figure 8.10 The features of a typical filter

Window-based design calls for normalization of the design frequencies by the sampling frequency, devel-
oping the lowpass filter by windowing the impulse response of an ideal filter, and conversion to the required
filter type, using spectral transformations. The method may appear deceptively simple (and it is), but some
issues can only be addressed qualitatively. For example, the choice of cutoff frequency is affected by the
window length N . The smallest length N that meets specifications depends on the choice of window, and
the choice of the window, in turn, depends on the (stopband) attenuation specifications.
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8.3.5 Characteristics of the Windowed Spectrum

When we multiply the ideal impulse response h[n] = 2FC sinc(2nFC) by a window w[n] of length N in the
time domain, the spectrum of the windowed impulse response hW [n] = h[n]w[n] is the (periodic) convolution
of H(F ) and W (F ), as illustrated in Figure 8.11.

FTTransition width

FsFp

FTTransition width
Periodic

convolution

F

Ideal filter

≅Peak stopband ripple

≅ window mainlobe width

peak sidelobe level of window

0.5
0.5−0.5 (Not to scale)

Window

F
F

Windowed magnitude spectrum

Peak stopband ripple*

Figure 8.11 The spectrum of a windowed ideal filter

The ideal spectrum has a jump discontinuity at F = FC . The windowed spectrum shows overshoot and
ripples, and a finite transition width but no abrupt jump. Its magnitude at F = FC equals 0.5 (corresponding
to an attenuation of 6 dB).

Table 8.4 lists the characteristics of the windowed spectrum for various windows. It excludes windows
(such as the Bartlett window) whose amplitude spectrum is entirely positive (because they result in a
complete elimination of overshoot and the Gibbs effect). Since both the window function and the impulse
response are symmetric sequences, the spectrum of the windowed filter is also endowed with symmetry. Here
are some general observations about the windowed spectrum:

1. Even though the peak passband ripple equals the peak stopband ripple (δp = δs), the passband (or
stopband) ripples are not of equal magnitude.

2. The peak stopband level of the windowed spectrum is typically slightly less than the peak sidelobe level
of the window itself. In other words, the filter stopband attenuation (listed as AWS in Table 8.4) is
typically greater (by a few decibels) than the peak sidelobe attenuation of the window (listed as ASL in
Tables 8.2 and 8.3). The peak sidelobe level, the peak passband ripple, and the passband attenuation
(listed as AWP in Table 8.4) remain more or less constant with N .

3. The peak-to-peak width across the transition band is roughly equal to the mainlobe width of the
window (listed as WM in Tables 8.2 and 8.3). The actual transition width (listed as FW in Table 8.4)
of the windowed spectrum (when the response first reaches 1− δp and δs) is less than this width. The
transition width FWS is inversely related to the window length N (with FWS ≈ C/N , where C is more
or less a constant for each window).

The numbers vary in the literature, and the values in Table 8.4 were found here by using an ideal impulse
response h[n] = 0.5 sinc(0.5n), with FC = 0.25, windowed by a 51-point window. The magnitude specifi-
cations are normalized with respect to the peak magnitude. The passband and stopband attenuation are
computed from the passband and stopband ripple (with δp = δs), using the relations already given.
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Table 8.4 Characteristics of the Windowed Spectrum

Peak Passband Peak Sidelobe Transition

Window Ripple Attenuation Attenuation Width

δp = δs AWP (dB) AWS (dB) FWS ≈ C/N

Boxcar 0.0897 1.5618 21.7 C = 0.92

Cosine 0.0207 0.36 33.8 C = 2.1

Riemann 0.0120 0.2087 38.5 C = 2.5

von Hann (Hanning) 0.0063 0.1103 44 C = 3.21

Hamming 0.0022 0.0384 53 C = 3.47

Blackman (1.71)10−4 (2.97)10−3 75.3 C = 5.71

Dolph (R = 40 dB) 0.0036 0.0620 49 C = 3.16

Dolph (R = 50 dB) (9.54)10−4 0.0166 60.4 C = 3.88

Dolph (R = 60 dB) (2.50)10−4 0.0043 72 C = 4.6

Harris (0) (8.55)10−4 0.0148 61.4 C = 5.36

Harris (1) (1.41)10−4 (2.44)10−3 77 C = 7.45

Harris (2) (1.18)10−4 (2.06)10−3 78.5 C = 5.6

Harris (3) (8.97)10−5 (1.56)10−3 81 C = 5.6

Harris (4) (9.24)10−5 (1.61)10−3 81 C = 5.6

Harris (5) (9.96)10−6 (1.73)10−4 100 C = 7.75

Harris (6) (1.94)10−6 (3.38)10−5 114 C = 7.96

Harris (7) (5.26)10−6 (9.15)10−5 106 C = 7.85

8.3.6 Selection of Window and Design Parameters

The choice of a window is based primarily on the design stopband specification As. The peak sidelobe
attenuation AWS of the windowed spectrum (listed in Table 8.4) should match (or exceed) the specified
stopband attenuation As. Similarly, the peak passband attenuation AWP of the windowed spectrum should
not exceed the specified passband attenuation Ap, a condition that is often ignored because it is usually
satisfied for most practical specifications.

The windowed spectrum is the convolution of the spectra of the impulse response and the window function,
and this spectrum changes as we change the filter length. An optimal (in the mean square sense) impulse
response and an optimal (in any sense) window may not together yield a windowed response with optimal
features. Window selection is at best an art, and at worst a matter of trial and error. Just so you know, the
three most commonly used windows are the von Hann (Hanning), Hamming, and Kaiser windows.

Choosing the Filter Length

The transition width of the windowed spectrum decreases with the length N . There is no accurate way to
establish the minimum filter length N that meets design specifications. However, empirical estimates are
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based on matching the given transition width specification FT to the transition width FWS = C/N of the
windowed spectrum (as listed in Table 8.4)

FT = Fs − Fp = FWS ≈ C

N
N =

C

Fs − Fp
(8.11)

Here, Fp and Fs are the digital passband and stopband frequencies. The window length depends on the
choice of window (which dictates the choice of C). The closer the match between the stopband attenuation
As and the stopband attenuation AWS of the windowed spectrum, the smaller is the window length N . In
any case, for a given window, this relation typically overestimates the smallest filter length, and we can often
decrease this length and still meet design specifications.

The Kaiser Window

Empirical relations have been developed to estimate the filter length N of FIR filters based on the Kaiser
window. We first compute the peak passband ripple δp, and the peak stopband ripple δs, and choose the
smallest of these as the ripple parameter δ:

δp =
10Ap/20 − 1
10Ap/20 + 1

δs = 10−As/20 δ = min(δp, δs) (8.12)

The ripple parameter δ is used to recompute the actual stopband attenuation As0 in decibels:

As0 = −20 log δ dB (8.13)

Finally, the length N is well approximated by

N ≥





As0 − 7.95
14.36(Fs − Fp)

+ 1, As0 ≥ 21 dB

0.9222
Fs − Fp

+ 1, As0 < 21 dB
(8.14)

The Kaiser window parameter β is estimated from the actual stopband attenuation As0, as follows:

β =





0.0351(As0 − 8.7), As0 > 50 dB
0.186(As0 − 21)0.4 + 0.0251(As0 − 21), 21 dB ≤ As0 ≤ 50 dB

0, As0 < 21 dB
(8.15)

Choosing the Cutoff Frequency

A common choice for the cutoff frequency (used in the expression for h[n]) is FC = 0.5(Fp +Fs). The actual
frequency that meets specifications for the smallest length is often less than this value. The cutoff frequency
is affected by the filter length N . A design that ensures the minimum length N is based on starting with the
above value of FC , and then changing (typically reducing) the length and/or tweaking (typically decreasing)
FC until we just meet specifications (typically at the passband edge).

8.3.7 Spectral Transformations

A useful approach to the design of FIR filters other than lowpass starts with a lowpass prototype developed
from given specifications. This is followed by appropriate spectral transformations to convert the lowpass
prototype to the required filter type. Finally, the impulse response may be windowed by appropriate windows.
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The spectral transformations are developed from the shifting and modulation properties of the DTFT. Unlike
analog and IIR filters, these transformations do not change the filter order (or length). The starting point is
an ideal lowpass filter, with unit passband gain and a cutoff frequency of FC = 0.5(Fp+Fs), whose noncausal
impulse response hLP[n] is symmetrically truncated to length N and given by

hLP[n] = 2FC sinc(2nFC), −0.5(N − 1) ≤ n ≤ 0.5(N − 1) (8.16)

If N is even, then n takes on non-integer values and it is more useful to work with the causal version that
has the form hLP[k], 0 ≤ k ≤ N − 1 where k = n+0.5(N − 1) is always an integer. The sample values of the
causal and noncausal versions are identical. Generating the causal version simply amounts to re-indexing
the impulse response.

hLP[k] = 2FC sinc{2[k − 0.5(N − 1)]FC}, 0 ≤ k ≤ N − 1

The lowpass-to-highpass (LP2HP) transformation may be achieved in two ways, as illustrated in Figure 8.12.

FpFs FC

[n]wFCsinc(2n )FC2[n]hHP = (−1)n

FC Fp Fs+ )= 0.5 − 0.5(

FpFs FC

[n]w[n]hHP = [n]δ − FCsinc(2n )FC2

Fp Fs= 0.5( + )FC

0.5

1

F

H(F) Highpass

1

F
0.5

0.5

1

F

H(F) Highpass

1

F
0.5

Lowpass prototype

Lowpass prototype

Figure 8.12 The lowpass-to-highpass transformation

The first form of the LP2HP transformation of Figure 8.12 is based on the result

HHP(F ) = 1−HLP(F )

The noncausal impulse response has the form

hHP[n] = δ[n]− hLP[n]

Note that this transformation is valid only if the filter length N is odd. It also assumes unit passband gain.
For a passband gain of G, it modifies to hHP[n] = Gδ[n]−hLP[n]. If hLP[n] describes the (truncated) impulse
response of an ideal lowpass filter with FC = 0.5(Fp + Fs), the cutoff frequency FH of the highpass filter
also equals FC . Upon delaying the sequence by 0.5(N − 1) or re-indexing with n = k − 0.5(N − 1), we get
the causal version of the highpass filter as

hHP[k] = δ[k − 0.5(N − 1)]− 2FC sinc{2[k − 0.5(N − 1)]FC}, 0 ≤ k ≤ N − 1

As an example, if we wish to design a highpass filter of length N = 15 with a cutoff frequency of FH = 0.3,
we start with a lowpass prototype whose cutoff frequency is also FC = 0.3 and whose (noncausal) impulse
response is hLP[n] = 0.6sinc(0.6n). This gives the noncausal impulse response of the highpass filter as

hHP[n] = δ[n]− hLP[n] = δ[n]− 0.6sinc(0.6n), −7 ≤ n ≤ 7
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The causal impulse response has the form

hHP[k] = δ[k − 7]− 0.6sinc[0.6(k − 7)], 0 ≤ k ≤ 14

The second form of the LP2HP transformation uses the shifting property of the DTFT. Shifting the spectrum
by F = 0.5 results in multiplication of the corresponding time signal by (−1)n (a change in the sign of every
other sample value). Shifting the spectrum of a lowpass filter by F = 0.5 results in the highpass form

HHP(F ) = HLP(F − 0.5)

Note that this transformation is valid for any lowpass filter (FIR or IIR) with any length N (even or odd).
If the lowpass filter has a cutoff frequency of FC , a consequence of the frequency shift is that the cutoff
frequency of the resulting highpass filter is FH = 0.5−FC regardless of the filter type. To design a highpass
filter with a cutoff frequency of FH , we must start with a lowpass prototype whose cutoff frequency is
FC = 0.5− FH . For an ideal causal filter, we start with the lowpass prototype

hLP[k] = 2FC sinc{2[k − 0.5(N − 1)]FC}, 0 ≤ k ≤ N − 1 where FC = 0.5− FH

The causal impulse response of the highpass filter is then

hHP[k] = (−1)khLP[k], 0 ≤ k ≤ N − 1 (8.17)

As an example, if we wish to design a highpass filter of length N = 12 with a cutoff frequency of FH = 0.3,
we start with a causal lowpass prototype whose cutoff frequency is FC = 0.2 and whose impulse response is

hLP[k] = 0.4sinc[0.4(k − 5.5)], 0 ≤ k ≤ 11

The causal impulse response of the highpass filter is then given by

hHP[k] = (−1)khLP[k], 0 ≤ k ≤ 11

The LP2BP and LP2BS transformations are based on arithmetic symmetry about the center frequency
F0. If the band edges are [F1, F2, F3, F4] in increasing order, arithmetic symmetry means that F1 + F4 =
F2 + F3 = 2F0 and implies equal transition widths. If the transition widths are not equal, we must relocate
a band edge to make both transition widths equal to the smaller transition width, as shown in Figure 8.13.

F3F1 F2 F4 F3F1 F2 F4

F4Relocate 

No arithmetic symmetry

1
H(F) Bandpass

F

1
H(F) Bandpass

F

Arithmetic symmetry

Figure 8.13 How to ensure arithmetic symmetry of the band edges

The LP2BP and LP2BS transformations are illustrated in Figure 8.14. In each transformation, the center
frequency F0 is given by

F0 = 0.5(F2 + F3) = 0.5(F1 + F4) (8.18)

The lowpass-to-bandpass (LP2BP) transformation results by shifting the spectrum of a lowpass filter by
±F0 to give

HBP(F ) = HLP(F + F0) + HLP(F − F0)
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From Figure 8.14, the cutoff frequency FC of the lowpass prototype is

FC = 0.5(F3 + F4)− F0 (8.19)

From the modulation property of the DTFT, shifting the spectrum HLP(F ) of the lowpass filter by ±F0

results in multiplication of its impulse response hLP[n] by 2 cos(2πnF0) and we obtain the impulse response
of the bandpass filter as

hBP[n] = 2 cos(2nπF0)hLP[n] = 4FC sinc(2nFC) cos(2πnF0), −N − 1
2

≤ n ≤ N − 1
2

(8.20)

Upon re-indexing, its causal version assumes the form hBP[k], 0 ≤ k ≤ N − 1 where k = n + 0.5(N − 1).
A bandstop filter requires a type 4 sequence (with even symmetry and odd length N). The lowpass-to-

bandstop (LP2BS) transformation of Figure 8.14 is described by HBS(F ) = 1 − HBP(F ) and leads to the
noncausal impulse response

hBS[n] = δ[n]− hBP[n] = δ[n]− 4FC sinc(2nFC) cos(2πnF0), −N − 1
2

≤ n ≤ N − 1
2

(8.21)

Upon re-indexing, its causal version has the form hBS[k], 0 ≤ k ≤ N − 1 where k = n + 0.5(N − 1).
A second form of the LP2BS transformation results by describing the bandstop filter as the sum of a

lowpass filter with a cutoff frequency of FL = 0.5(F1 + F2) and a highpass filter with a cutoff frequency of
FH = 0.5(F3 + F4). The noncausal impulse response of the bandstop filter is thus given by

hBS[n] = 2FL sinc(2nFL) + 2(−1)n(0.5− FH) sinc[2n(0.5− FH)], −N − 1
2

≤ n ≤ N − 1
2

(8.22)

Upon re-indexing, its causal version has the form hBS[k], 0 ≤ k ≤ N − 1 where k = n + 0.5(N − 1).
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Figure 8.14 The lowpass-to-bandpass and lowpass-to-bandstop transformations

REVIEW PANEL 8.4
Impulse Response of Windowed Filters Over |n| ≤ 0.5(N − 1)
hP [n] = 2FC sinc(2nFC) hHP[n] = δ[n]− hP [n] FC = cutoff frequency of lowpass prototype
hBP[n] = 2hP [n]cos(2πnF0) hBS[n] = δ[n]− hBP[n] F0 = center frequency (for BPF and BSF)
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REVIEW PANEL 8.5
Recipe for Window-Based FIR Filter Design
Normalize the analog design frequencies by the sampling frequency S.
Obtain the band edges Fp and Fs of the lowpass prototype.
Choose the lowpass prototype cutoff as FC = 0.5(Fp + Fs).
Choose a window (from Table 8.4) that satisfies AWS ≥ As and AWP ≤ Ap.
Compute the window length N from FT = Fs − Fp = FWS = C

N (with C as in Table 8.4).
Compute the prototype impulse response h[n] = 2FC sinc[2nFC ], |n| ≤ 0.5(N − 1).
Window h[n] and apply spectral transformations (if needed) to convert to required filter type.
Minimum-length design: Adjust N and/or FC until the design specifications are just met.

EXAMPLE 8.2 (FIR Filter Design Using Windows)
(a) Design an FIR filter to meet the following specifications:

fp = 2 kHz, fs = 4 kHz, Ap = 2 dB, As = 40 dB, and sampling frequency S = 20 kHz.

This describes a lowpass filter. The digital frequencies are Fp = fp/S = 0.1 and Fs = fs/S = 0.2.

With As = 40 dB, possible choices for a window are (from Table 8.4) von Hann (with AWS = 44 dB)
and Blackman (with AWS = 75.3 dB). Using FWS ≈ (Fs − Fp) = C/N , the approximate filter lengths
for these windows (using the values of C from Table 8.4) are:

von Hann:N ≈ 3.21
0.1 ≈ 33 Blackman:N ≈ 5.71

0.1 ≈ 58

We choose the cutoff frequency as FC = 0.5(Fp + Fs) = 0.15. The impulse then response equals

hN [n] = 2FC sinc(2nFC) = 0.3 sinc(0.3n)

Windowing gives the impulse response of the required lowpass filter

hLP[n] = w[n]hN [n] = 0.3w[n]sinc(0.3n)

As Figure E8.2A(a) shows, the design specifications are indeed met by each filter (but the lengths are
actually overestimated). The Blackman window requires a larger length because of the larger difference
between As and AWS. It also has the larger transition width.
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Figure E8.2A Lowpass FIR filters for Example 8.2(a and b)
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(b) (Minimum-Length Design) By trial and error, the cutoff frequency and the smallest length that
just meet specifications turn out to be FC = 0.1313, N = 23, for the von Hann window, and FC =
0.1278, N = 29, for the Blackman window. Figure E8.2A(b) shows the response of these minimum-
length filters. The passband and stopband attenuation are [1.9, 40.5] dB for the von Hann window,
and [1.98, 40.1] dB for the Blackman window. Even though the filter lengths are much smaller, each
filter does meet the design specifications.

(c) Design an FIR filter to meet the following specifications:

fp = 4 kHz, fs = 2 kHz, Ap = 2 dB, As = 40 dB, and sampling frequency S = 20 kHz.

The specifications describe a highpass filter. The digital frequencies are Fp = fp/S = 0.2 and Fs =
fs/S = 0.1. The transition width is FT = 0.2− 0.1 = 0.1.

With As = 40 dB, possible choices for a window (see Table 8.4) are Hamming and Blackman. Using
FT ≈ FWS = C/N , the approximate filter lengths for these windows are

Hamming:N ≈ 3.47
0.1 ≈ 35 Blackman:N ≈ 5.71

0.1 ≈ 58

We can now design the highpass filter in one of two ways:

1. Choose the cutoff frequency of the lowpass filter as FC = 0.5(Fp + Fs) = 0.15. The impulse
response hN [n] then equals

hN [n] = 2FC sinc(2nFC) = 0.3 sinc(0.3n)

The windowed response is thus hW [n] = 0.3w[n]sinc(0.3n).

The impulse of the required highpass filter is then

hHP[n] = δ[n]− hW [n] = δ[n]− 0.3w[n]sinc(0.3n)

2. Choose the cutoff frequency of the lowpass filter as FC = 0.5− 0.5(Fp + Fs) = 0.35.

Then, the impulse response equals hN [n] = 2FC sinc(2nFC) = 0.7 sinc(0.7n).

The windowed response is thus hW [n] = 0.7w[n]sinc(0.7n).

The impulse of the required highpass filter is then

hHP[n] = (−1)nhW [n] = 0.7(−1)nw[n]sinc(0.7n)

The two methods yield identical results. As Figure E8.2B(a) shows, the design specifications are indeed
met by each window, but the lengths are actually overestimated.
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Figure E8.2B Highpass FIR filters for Example 8.2(c and d)

(d) (Minimum-Length Design) By trial and error, the cutoff frequency, and the smallest length that
just meet specifications, turn out to be FC = 0.3293, N = 22, for the Hamming window, and FC =
0.3277, N = 29, for the Blackman window. Figure E8.2B(b) shows the response of the minimum-length
filters. The passband and stopband attenuation are [1.94, 40.01] dB for the Hamming window, and
[1.99, 40.18] dB for the Blackman window. Each filter meets the design specifications, even though the
filter lengths are much smaller than the values computed from the design relations.

(e) Design an FIR filter to meet the following specifications:

Ap = 3 dB, As = 45 dB, passband: [4, 8] kHz, stopband: [2, 12] kHz, and S = 25 kHz.

The specifications describe a bandpass filter. If we assume a fixed passband, the center frequency lies
at the center of the passband and is given by f0 = 0.5(4 + 8) = 6 kHz.

The specifications do not show arithmetic symmetry. The smaller transition width is 2 kHz. For
arithmetic symmetry, we therefore choose the band edges as [2, 4, 8, 10] kHz.

The digital frequencies are: passband [0.16, 0.32], stopband [0.08, 0.4], and F0 = 0.24.

The lowpass band edges become Fp = 0.5(Fp2 − Fp1) = 0.08 and Fs = 0.5(Fs2 − Fs1) = 0.16.

With As = 45 dB, one of the windows we can use (from Table 8.4) is the Hamming window.

For this window, we estimate FWS ≈ (Fs − Fp) = C/N to obtain N = 3.47/0.08 = 44.

We choose the cutoff frequency as FC = 0.5(Fp + Fs) = 0.12.

The lowpass impulse response is hN [n] = 2FC sinc(2nFC) = 0.24 sinc(0.24n), −21.5 ≤ n ≤ 21.5.

Windowing this gives hW [n] = hN [n]w[n], and the LP2BP transformation gives

hBP[n] = 2 cos(2πnF0)hW [n] = 2 cos(0.48πn)hW [n]

Its frequency response is shown in Figure E8.2C(a) and confirms that the specifications are met.
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Figure E8.2C Bandpass FIR filters for Example 8.2(e)

The cutoff frequency and smallest filter length that meets specifications turn out to be smaller. By
decreasing N and FC , we find that the specifications are just met with N = 27 and FC = 0.0956. For
these values, the lowpass filter is hN [n] = 2FC sinc(2nFC) = 0.1912 sinc(0.1912n), −13 ≤ n ≤ 13.

Windowing and bandpass transformation yields the filter whose spectrum is shown in Figure E8.2C(b).
The attenuation is 3.01 dB at 4 kHz and 8 kHz, 45.01 dB at 2 kHz, and 73.47 dB at 12 kHz.

8.4 Half-Band FIR Filters
A half-band FIR filter has an odd-length impulse response h[n] whose alternate samples are zero. The main
advantage of half-band filters is that their realization requires only about half the number of multipliers.
The impulse response of an ideal lowpass filter is h[n] = 2FC sinc(2nFC). If we choose FC = 0.25, we obtain

h[n] = 2FC sinc(2nFC) = 0.5 sinc(0.5n), |n| ≤ 0.5(N − 1) (8.23)

Thus, h[n] = 0 for even n, and the filter length N is always odd. Being a type 1 sequence, its transfer
function H(F ) displays even symmetry about F = 0. It is also antisymmetric about F = 0.25, with

H(F ) = 1−H(0.5− F ) (8.24)

A highpass half-band filter also requires FC = 0.25. If we choose FC = 0.5(Fp +Fs), the sampling frequency
S must equal 2(fp + fs) to ensure FC = 0.25, and cannot be selected arbitrarily. Examples of lowpass
and highpass half-band filters are shown in Figure 8.15. Note that the peak passband ripple and the peak
stopband ripple are of equal magnitude, with δp = δs = δ (as they are for any symmetric window).

Since the impulse response of bandstop and bandpass filters contains the term 2 cos(2nπF0)hLP[n], a
choice of F0 = 0.25 (for the center frequency) ensures that the odd-indexed terms vanish. Once again, the
sampling frequency S cannot be arbitrarily chosen, and must equal 4f0 to ensure F0 = 0.25. Even though
the choice of sampling rate may cause aliasing, the aliasing will be restricted primarily to the transition band
between fp and fs, where its effects are not critical.

Except for the restrictions in the choice of sampling rate S (which dictates the choice of FC for lowpass
and highpass filters, or F0 for bandpass and bandstop filters) and an odd length sequence, the design of
half-band filters follows the same steps as window-based design.
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Figure 8.15 Characteristics of lowpass and highpass half-band filters

REVIEW PANEL 8.6
Recipe for Design of Half-Band FIR Filters
Fix S = 2(fp + fs) (for LPF and HPF) or S = 4f0 (for BPF and BSF).
Find Fp and Fs for the lowpass prototype and pick FC = 0.5(Fp + Fs).
Choose an odd filter length N .
Compute the prototype impulse response h[n] = 2FC sinc[2nFC ], |n| ≤ 0.5(N − 1).
Window the impulse response and apply spectral transformations to convert to required filter.
If the specifications are exceeded, decrease N (in steps of 2) until specifications are just met.

EXAMPLE 8.3 (Half-Band FIR Filter Design)

(a) Design a lowpass half-band filter to meet the following specifications:

Passband edge: 8 kHz, stopband edge: 16 kHz, Ap = 1 dB, and As = 50 dB.

We choose S = 2(fp + fs) = 48 kHz. The digital band edges are Fp = 1
6 , Fs = 1

3 , and FC = 0.25.
The impulse response of the filter is h[n] = 2FC sinc(2nFC) = 0.5 sinc(0.5n).

1. If we use the Kaiser window, we compute the filter length N and the Kaiser parameter β as
follows:

δp =
10Ap/20 − 1
10Ap/20 + 1

= 0.0575 δs = 10−As/20 = 0.00316 δ = 0.00316 As0 = −20 log δ = 50

N =
As0 − 7.95

14.36(Fs − Fp)
+ 1 = 18.57 ≈ 19 β = 0.0351(As0 − 8.7) = 1.4431

The impulse response is therefore hN [n] = 0.5 sinc(0.5n), −9 ≤ n ≤ 9.
Windowing hN [n] gives the required impulse response hW [n].
Figure E8.3A(a) shows that this filter does meet specifications with an attenuation of 0.045 dB at
8 kHz and 52.06 dB at 16 kHz.
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Figure E8.3A Lowpass half-band filters for Example 8.3(a)

2. If we choose a Hamming window, we use Table 8.4 to approximate the odd filter length as

FWS = Fs − Fp =
C

N
N =

C

Fs − Fp
=

3.47
1/6

≈ 21

This value of N meets specifications and also turns out to be the smallest length that does. Its
response is plotted in Figure E8.3A(b). This filter shows an attenuation of 0.033 dB at 8 kHz and
an attenuation of 53.9 dB at 16 kHz.

(b) Design a bandstop half-band filter to meet the following specifications:

stopband edges: [2, 3] kHz, passband edges: [1, 4] kHz, Ap = 1 dB, and As = 50 dB.

Since both the passband and the stopband are symmetric, we have f0 = 0.5(2 + 3) = 2.5 kHz.
We then choose the sampling frequency as S = 4f0 = 10 kHz. The digital frequencies are

stopband edges = [0.2, 0.3], passband edges = [0.1, 0.4], F0 = 0.25.

The specifications for the lowpass prototype are

Fp = 0.5(Fs2 − Fs1) = 0.05, Fs = 0.5(Fp2 − Fp1) = 0.15, FC = 0.5(Fp + Fs) = 0.1

The impulse response of the prototype is h[n] = 2FC sinc(2nFC) = 0.2 sinc(0.2n).

1. If we use the Kaiser window, we must compute the filter length N and the Kaiser parameter β
as follows:

δp =
10Ap/20 − 1
10Ap/20 + 1

= 0.0575 δs = 10−As/20 = 0.00316 δ = 0.00316 As0 = −20 log δ = 50

N =
As0 − 7.95

14.36(Fs − Fp)
+ 1 = 30.28 ≈ 31 β = 0.0351(As0 − 8.7) = 1.4431

The prototype impulse response is hN [n] = 0.2 sinc(0.2n), −15 ≤ n ≤ 15. Windowing hN [n]
gives hW [n]. We transform hW [n] to the bandstop form hBS[n], using F0 = 0.25, to give

hBS[n] = δ[n]− 2 cos(2πnF0)hW [n] = δ[n]− 2 cos(0.5πn)hW [n]

Figure E8.3B(a) shows that this filter does meet specifications, with an attenuation of 0.046 dB
at 2 kHz and 3 kHz, and 53.02 dB at 1 kHz and 4 kHz.
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Figure E8.3B Bandstop half-band filters for Example 8.3(b)

2. For a Hamming window, we use Table 8.4 to approximate the odd filter length as

FWS = Fs − Fp =
C

N
N =

C

Fs − Fp
=

3.47
0.1

≈ 35

This is also the smallest filter length that meets specifications. The magnitude response is shown
in Figure E8.3B(b). We see an attenuation of 0.033 dB at [2, 3] kHz and 69.22 dB at [1, 4] kHz.

8.5 FIR Filter Design by Frequency Sampling
In window-based design, we start with the impulse response h[n] of an ideal filter, and use truncation and
windowing to obtain an acceptable frequency response H(F ). The design of FIR filters by frequency sampling
starts with the required form for H(F ), and uses interpolation and the DFT to obtain h[n]. In this sense, it
is more versatile, since arbitrary frequency response forms can be handled with ease.

Recall that a continuous (but band-limited) signal h(t) can be perfectly reconstructed from its samples
(taken above the Nyquist rate), using a sinc interpolating function (that equals zero at the sampling instants).
If h(t) is not band-limited, we get a perfect match only at the sampling instants.

By analogy, the continuous (but periodic) spectrum H(F ) can also be recovered from its frequency
samples, using a periodic extension of the sinc interpolating function (that equals zero at the sampling
points). The reconstructed spectrum HN (F ) will show an exact match to a desired H(F ) at the sampling
instants, even though HN (F ) could vary wildly at other frequencies. This is the basis for FIR filter design
by frequency sampling. Given the desired form for H(F ), we sample it at N frequencies, and find the IDFT
of the N -point sequence H[k], k = 0, 1, . . . , N − 1. The following design guidelines stem both from design
aspects as well as computational aspects of the IDFT itself.

1. The N samples of H(F ) must correspond to the digital frequency range 0 ≤ F < 1, with

H[k] = H(F )
∣∣
F=k/N

, k = 0, 1, 2, . . . , N − 1 (8.25)

The reason is that most DFT and IDFT algorithms require samples in the range 0 ≤ k ≤ N − 1.

2. Since h[n] must be real, its DFT H[k] must possess conjugate symmetry about k = 0.5N (this is a
DFT requirement). Note that conjugate symmetry will always leave H[0] unpaired. It can be set to
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any real value, in keeping with the required filter type (this is a design requirement). For example, we
must choose H[0] = 0 for bandpass or highpass filters.

3. For even length N , the computed end-samples of h[n] may not turn out to be symmetric. To ensure
symmetry, we must force h[0] to equal h[N ] (setting both to 0.5h[0], for example).

4. For h[n] to be causal, we must delay it (this is a design requirement). This translates to a linear
phase shift to produce the sequence |H[k]|ejφ[k]. In keeping with conjugate symmetry about the index
k = 0.5N , the phase for the first N/2 samples of H[k] will be given by

φ[k] =
−πk(N − 1)

N
, k = 0, 1, 2, . . . , 0.5(N − 1) (8.26)

Note that for type 3 and type 4 (antisymmetric) sequences, we must also add a constant phase of 0.5π
to φ[k] (up to k = 0.5N). The remaining samples of H[k] are found by conjugate symmetry.

5. To minimize the Gibbs effect near discontinuities in H(F ), we may allow the sample values to vary
gradually between jumps (this is a design guideline). This is equivalent to introducing a finite transition
width. The choice of the sample values in the transition band can affect the response dramatically.

EXAMPLE 8.4 (FIR Filter Design by Frequency Sampling)

(a) Consider the design of a lowpass filter shown in Figure E8.4(a). Let us sample the ideal H(F ) (shown
dark) over 0 ≤ F < 1, with N = 10 samples. The magnitude of the sampled sequence H[k] is

|H[k]| = {1, 1, 1, 0, 0, 0,︸︷︷︸
k=5

0, 0, 1, 1}

The actual (phase-shifted) sequence is H[k] = |H[k]|ejφ[k], where

φ[k] =
−πk(N − 1)

N
= −0.9πk, k ≤ 5

Note that H[k] must be conjugate symmetric about k = 0.5N = 5, with H[k] = H∗[N − k].
Now, H[k] = 0, k = 4, 5, 6, 7, and the remaining samples are H[0] = 1ej0 = 1 and

H[1] = 1ejφ[1] = e−j0.9π H[9] = H∗[1] = ej0.9π H[2] = 1ejφ[3] = e−j1.8π H[8] = H∗[2] = ej1.8π

The inverse DFT of H[k] yields the symmetric real impulse response sequence h1[n], with

h1[n] = {0.0716, −0.0794, 0.1, 0.1558, 0.452, 0.452, 0.1558, 0.1, −0.0794, 0.0716}

Its DTFT magnitude H1(F ), shown light in Figure E8.4(a), reveals a perfect match at the sampling
points but has a large overshoot near the cutoff frequency. To reduce the overshoot, let us pick

H[2] = 0.5ejφ[2] = 0.5e−1.8π H[8] = H∗[2] = 0.5e1.8π

The inverse DFT of this new set of samples yields the new impulse response sequence h2[n]:

h2[n] = {−0.0093, −0.0485, 0, 0.1867, 0.3711, 0.3711, 0.1867, 0, −0.0485, −0.0093}

Its frequency response H2(F ), in Figure E8.4(a), not only shows a perfect match at the sampling points
but also a reduced overshoot, which we obtain at the expense of a broader transition width.
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Figure E8.4 Lowpass and highpass filters for Example 8.4 (a and b)

(b) Consider the design of a highpass filter shown in Figure E8.4(b). Let us sample the ideal H(F ) (shown
dark) over 0 ≤ F < 1, with N = 10 samples. The magnitude of the sampled sequence H[k] is

|H[k]| = {0, 0, 0, 1, 1, 1,︸︷︷︸
k=5

1, 1, 0, 0}

The actual (phase-shifted) sequence is H[k] = |H[k]|ejφ[k]. Since the impulse response h[n] must be
antisymmetric (for a highpass filter), φ[k] includes an additional phase of 0.5π and is given by

φ[k] =
−πk(N − 1)

N
+ 0.5π = 0.5π − 0.9πk, k ≤ 5

Note that H[k] is conjugate symmetric about k = 0.5N = 5, with H[k] = H∗[N − k].
Now, H[k] = 0, k = 0, 1, 2, 8, 9, and H[5] = 1ejφ[5] = 1. The remaining samples are

H[3] = 1ejφ[3] = e−j2.2π H[7] = H∗[3] = ej2.2π H[4] = 1ejφ[4] = e−j3.1π H[6] = H∗[4] = ej3.1π

The inverse DFT of H[k] yields the antisymmetric real impulse response sequence h1[n], with

h1[n] = {0.0716, 0.0794, −0.1, −0.1558, 0.452, −0.452, 0.1558, 0.1, −0.0794, −0.0716}

Its DTFT magnitude H1(F ), shown light in Figure E8.4(b), reveals a perfect match at the sampling
points but a large overshoot near the cutoff frequency. To reduce the overshoot, let us choose

H[2] = 0.5ejφ[2] = 0.5e−1.3π H[8] = 0.5e1.3π

The inverse DFT of this new set of samples yields the new impulse response sequence h2[n]:

h2[n] = {0.0128, −0.0157, −0.1, −0.0606, 0.5108, −0.5108, 0.0606, 0.1, 0.0157, −0.0128}

Its frequency response H2(F ), in Figure E8.4(b), not only shows a perfect match at the sampling points
but also a reduced overshoot, which we obtain at the expense of a broader transition width.
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8.5.1 Frequency Sampling and Windowing

The frequency-sampling method can be used to design filters with arbitrary frequency-response shapes.
We can even combine this versatility with the advantages of window-based design. Given the response
specification H(F ), we sample it at a large number of points M and find the IDFT to obtain the M -point
impulse response h[n]. The choice M = 512 is not unusual. Since h[n] is unacceptably long, we truncate it
to a smaller length N by windowing h[n]. The choice of window is based on the same considerations that
apply to window-based design. If the design does not meet specifications, we can change N and/or adjust
the sample values in the transition band and repeat the process. Naturally, this design is best carried out
on a computer. The sample values around the transitions are adjusted to minimize the approximation error.
This idea forms a special case of the more general optimization method called linear programming. But
when it comes right down to choosing between the various computer-aided optimization methods, by far the
most widely used is the equiripple optimal approximation method, which we describe in the next section.

8.5.2 Implementing Frequency-Sampling FIR Filters

We can readily implement frequency-sampling FIR filters by a nonrecursive structure, once we know the
impulse response h[n]. We can even implement a recursive realization without the need for finding h[n], as
follows. Suppose the frequency samples HN [k] of H(F ) are approximated by an N -point DFT of the filter
impulse response hN [n]. We may then write

HN [k] =
N−1∑

k=0

hN [n]e−j2πnk/N (8.27)

Its impulse response hN [n] may be found using the inverse DFT as

hN [n] =
1
N

N−1∑

k=0

HN [k]ej2πnk/N (8.28)

The filter transfer function H(z) is the z-transform of hN [n]:

H(z) =
N−1∑
n=0

hN [n]z−n =
N−1∑
n=0

z−n

[
1
N

N−1∑

k=0

HN [k]ej2πnk/N

]
(8.29)

Interchanging summations, setting z−nej2πnk/N = [z−1ej2πk/N ]n, and using the closed form for the finite
geometric sum, we obtain

H(z) =
1
N

N−1∑

k=0

HN [k]
[

1− z−N

1− z−1ej2πk/N

]
(8.30)

The frequency response corresponding to H(z) is

H(F ) =
1
N

N−1∑

k=0

HN [k]
1− e−j2πFN

1− e−j2π(F−k/N)
(8.31)

If we factor out exp(−jπFN) from the numerator, exp[−jπ(F−k/N)] from the denominator, and use Euler’s
relation, we can simplify this result to

H(F ) =
N−1∑

k=0

HN [k]
sinc[N(F − k

N )]
sinc[(F − k

N )]
e−jπ(N−1)(F−k/N) =

N−1∑

k=0

HN [k]W [F − k
N ] (8.32)
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Here, W [F − k
N ] describes a sinc interpolating function, defined by

W [F − k
N ] =

sinc[N(F − k
N )]

sinc[(F − k
N )]

e−jπ(N−1)(F−k/N) (8.33)

and reconstructs H(F ) from its samples HN [k] taken at intervals 1/N . It equals 1 when F = k/N , and zero
otherwise. As a result, HN (F ) equals the desired H(F ) at the sampling instants, even though HN (F ) could
vary wildly at other frequencies. This is the concept behind frequency sampling.

The transfer function H(z) may also be written as the product of two transfer functions:

H(z) = H1(z)H2(z) =
[
1− z−N

N

] N−1∑

k=0

[
HN [k]

1− z−1ej2πk/N

]
(8.34)

This form of H(z) suggests a method of recursive implementation of FIR filters. We cascade a comb filter,
described by H1(z), with a parallel combination of N first-order resonators, described by H2(z). Note that
each resonator has a complex pole on the unit circle and the resonator poles actually lie at the same locations
as the zeros of the comb filter. Each pair of terms corresponding to complex conjugate poles may be combined
to form a second-order system with real coefficients for easier implementation.

Why implement FIR filters recursively? There are several reasons. In some cases, this may reduce the
number of arithmetic operations. In other cases, it may reduce the number of delay elements required. Since
the pole and zero locations depend only on N , such filters can be used for all FIR filters of length L by
changing only the multiplicative coefficients.

Even with these advantages, things can go wrong. In theory, the poles and zeros balance each other.
In practice, quantization errors may move some poles outside the unit circle and lead to system instability.
One remedy is to multiply the poles and zeros by a real number ρ slightly smaller than unity to relocate the
poles and zeros. The transfer function then becomes

H(z) =
1− (ρz)−N

N

N−1∑

k=0

[
HN [k]

1− (ρz)−1ej2πk/N

]
(8.35)

With ρ = 1 − ε, typically used values for ε range from 2−12 to 2−27 (roughly 10−4 to 10−9) and have been
shown to improve stability with little change in the frequency response.

8.6 Design of Optimal Linear-Phase FIR Filters
Quite like analog filters, the design of optimal linear-phase FIR filters requires that we minimize the maximum
error in the approximation. Optimal design of FIR filters is also based on a Chebyshev approximation. We
should therefore expect such a design to yield the smallest filter length, and a response that is equiripple in
both the passband and the stopband. A typical spectrum is shown in Figure 8.16.

There are three important concepts relevant to optimal design:

1. The error between the approximation H(F ) and the desired response D(F ) must be equiripple. The
error curve must show equal maxima and minima with alternating zero crossings. The more the number
of points where the error goes to zero (the zero crossings), the higher is the order of the approximating
polynomial and the longer is the filter length.
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Figure 8.16 An optimal filter has ripples of equal magnitude in the passband and stopband

2. The frequency response H(F ) of a filter whose impulse response h[n] is a symmetric sequence can
always be put in the form

H(F ) = Q(F )
M∑

n=0

αn cos(2πnF ) = Q(F )P (F ) (8.36)

Here, Q(F ) equals 1 (type 1), cos(πF ) (type 2), sin(2πF ) (type 3), or sin(πF ) (type 4); M is related
to the filter length N with M = int(N−1

2 ) (types 1, 2, 4) or M = int(N−3
2 ) (type 3); and the αn are

related to the impulse response coefficients h[n]. The quantity P (F ) may also be expressed as as a
power series in cos(2πF ) (or as a sum of Chebyshev polynomials). If we can select the αn to best meet
optimal constraints, we can design H(F ) as an optimal approximation to D(F ).

3. The alternation theorem offers the clue to selecting the αn.

8.6.1 The Alternation Theorem

We start by approximating D(F ) by the Chebyshev polynomial form for H(F ) and define the weighted
approximation error ε(F ) as

ε(F ) = W (F )[D(F )−H(F )] (8.37)

Here, W (F ) represents a set of weight factors that can be used to select different error bounds in the passband
and stopband. The nature of D(F ) and W (F ) depends on the type of the filter required. The idea is to select
the αk (in the expression for H(F )) so as to minimize the maximum absolute error |ε|max. The alternation
theorem points the way (though it does not tells us how). In essence, it says that we must be able to find at
least M + 2 frequencies Fk, k = 1, 2, . . . , M + 2, called the extremal frequencies or alternations where

1. The error alternates between two equal maxima and minima (extrema):

ε(Fk) = −ε(Fk+1), k = 1, 2, . . . , M + 1 (8.38)

2. The error at the frequencies Fk equals the maximum absolute error:

|ε(Fk)| = |ε(F )|max, k = 1, 2, . . . , M + 2 (8.39)

In other words, we require M + 2 extrema (including the band edges) where the error attains its maximum
absolute value. These frequencies yield the smallest filter length (number of coefficients αk) for optimal
design. In some instances, we may get M + 3 extremal frequencies leading to so called extra ripple filters.
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The design strategy to find the extremal frequencies invariably requires iterative methods. The most
popular is the algorithm of Parks and McClellan, which in turn relies on the so-called Remez exchange
algorithm.

The Parks-McClellan algorithm requires the band edge frequencies Fp and Fs, the ratio K = δp/δs of the
passband and stopband ripple, and the filter length N . It returns the coefficients αk and the actual design
values of δp and δs for the given filter length N . If these values of δp and δs are not acceptable (or do not
meet requirements), we can increase N (or change the ratio K), and repeat the design.

A good starting estimate for the filter length N is given by a relation similar to the Kaiser relation for
half-band filters, and reads

N = 1 +
−10 log(δpδs)− 13

14.6FT
δp =

10Ap/20 − 1
10Ap/20 + 1

δs = 10−As/20 (8.40)

Here, FT is the digital transition width. More accurate (but more involved) design relations are also available.
To explain the algorithm, consider a lowpass filter design. To approximate an ideal lowpass filter, we

choose D(F ) and W (F ) as

D(F ) =

{
1, 0 ≤ F ≤ Fp

0, Fs ≤ F ≤ 0.5
W (F ) =

{
1, 0 ≤ F ≤ Fp

K = δp/δs, Fs ≤ F ≤ 0.5 (8.41)

To find the αk in H(F ), we use the Remez exchange algorithm. Here is how it works. We start with
a trial set of M + 2 frequencies Fk, k = 1, 2, . . . ,M + 2. To force the alternation condition, we must satisfy
ε(Fk) = −ε(Fk+1), k = 1, 2, . . . , M + 1. Since the maximum error is yet unknown, we let ρ = ε(Fk) =
−ε(Fk+1). We now have M + 1 unknown coefficients αk and the unknown ρ, a total of M + 2. We solve for
these by using the M + 2 frequencies, to generate the M + 2 equations:

− (−1)kρ = W (Fk)[D(Fk)−H(Fk)], k = 1, 2, . . . , M + 2 (8.42)

Here, the quantity (−1)k brings out the alternating nature of the error.
Once the αk are found, the right-hand side of this equation is known in its entirety and is used to

compute the extremal frequencies. The problem is that these frequencies may no longer satisfy the alternation
condition. So we must go back and evaluate a new set of αk and ρ, using the computed frequencies. We
continue this process until the computed frequencies also turn out to be the actual extremal frequencies (to
within a given tolerance, of course).

Do you see why it is called the exchange algorithm? First, we exchange an old set of frequencies Fk for
a new one. Then we exchange an old set of αk for a new one. Since the αk and Fk actually describe the
impulse response and frequency response of the filter, we are in essence going back and forth between the
two domains until the coefficients αk yield a spectrum with the desired optimal characteristics.

Many time-saving steps have been suggested to speed the computation of the extremal frequencies, and
the αk, at each iteration. The Parks-McClellan algorithm is arguably one of the most popular methods
of filter design in the industry, and many of the better commercial software packages on signal processing
include it in their stock list of programs. Having said that, we must also point out two disadvantages of
this method. First, the filter length must still be estimated by empirical means. And second, we have no
control over the actual ripple that the design yields. The only remedy, if this ripple is unacceptable, is to
start afresh with a different set of weight functions or with a different filter length.

8.6.2 Optimal Half-Band Filters

Since about half the coefficients of a half-band filter are zero, the computational burden can be reduced by
developing a filter that contains only the nonzero coefficients followed by zero interpolation. To design a
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half-band lowpass filter hHB[n] with band edges Fp and Fs, and ripple δ, an estimate of the filter length
N = 4k− 1 is first found from the given design specifications. Next, we design a lowpass prototype hP [n] of
even length 0.5(N + 1), with band edges of 2Fp and 0.5 (in effect, with no stopband). This filter describes
a type 2 sequence whose response is zero at F = 0.5 and whose ripple is twice the design ripple. Finally,
we insert zeros between adjacent samples of 0.5hP [n] and set the (zero-valued) center coefficient to 0.5 to
obtain the required half-band filter hHB[n] with the required ripple.

EXAMPLE 8.5 (Optimal FIR Filter Design)

(a) We design an optimal bandstop filter with stopband edges of [2, 3] kHz, passband edges of [1, 4] kHz,
Ap = 1 dB, As = 50 dB, and a sampling frequency of S = 10 kHz

We find the digital passband edges as [0.2, 0.3] and the stopband edges as [0.1, 0.4].
The transition width is FT = 0.1. We find the approximate filter length N , as follows:

δp =
10Ap/20 − 1
10Ap/20 + 1

= 0.0575 δs = 10−As/20 = 0.00316 N = 1 +
−10 log(δpδs)− 13

14.6FT
≈ 17.7

Choosing the next odd length gives N = 19. The bandstop specifications are actually met by a filter
with N = 21. The response of the designed filter is shown in Figure E8.5(a).
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Figure E8.5 Optimal filters for Example 8.5 (a and b)

(b) (Optimal Half-Band Filter Design) We design an optimal half-band filter to meet the following
specifications:

Passband edge: 8 kHz, stopband edge: 16 kHz, Ap = 1 dB, and As = 50 dB.

We choose S = 2(fp + fs) = 48 kHz. The digital band edges are Fp = 1
6 , Fs = 1

3 , and FC = 0.25.

Next, we find the minimum ripple δ and the approximate filter length N as

δp =
10Ap/20 − 1
10Ap/20 + 1

= 0.0575 δs = 10−As/20 = 0.00316 δ = 0.00316

N = 1 +
−10 log δ2 − 13
14.6(Fs − Fp)

= 1 +
−20 log(0.00316)− 13

14.6(1/6)
≈ 16.2 ⇒ N = 19
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The choice N = 19 is based on the form N = 4k − 1. Next, we design the lowpass prototype hP [n] of
even length M = 0.5(N + 1) = 10 and band edges at 2Fp = 2(1/6) = 1/3 and Fs = 0.5. The result is

hP [n] = {0.0074, −0.0267, 0.0708, −0.173, 0.6226, 0.6226, −0.173, 0.0708, −0.0267, 0.0074}
Finally, we zero-interpolate 0.5hP [n] and choose the center coefficient as 0.5 to obtain HHB[n]:

{0.0037, 0,−0.0133, 0, 0.0354, 0,−0.0865, 0, 0.3113, 0, 0.5, 0.3113, 0,−0.0865, 0, 0.0354, 0,−0.0133, 0, 0.0037}
Its length is N = 19, as required. Figure E8.5(b) shows that this filter does meet specifications, with
an attenuation of 0.02 dB at 8 kHz and 59.5 dB at 16 kHz.

8.7 Application: Multistage Interpolation and Decimation
Recall that a sampling rate increase, or interpolation, by N involves up-sampling (inserting N − 1 zeros
between samples), followed by lowpass filtering with a gain of N . If the interpolation factor N is large,
it is much more economical to carry out the interpolation in stages because it results in a smaller overall
filter length or order. For example, if N can be factored as N = I1I2I3, then interpolation by N can be
accomplished in three stages with individual interpolation factors of I1, I2, and I3. At a typical Ith stage,
the output sampling rate is given by Sout = ISin, as shown in Figure 8.17.

Sout Sin= ISin Sout

Sout=Sfs Sin fp= −
Gain = I

I

Digital lowpass filterUp-sample

Figure 8.17 One stage of a typical multistage interpolating filter

The filter serves to remove the spectral replications due to the zero interpolation by the up-sampler. These
replicas occur at multiples of the input sampling rate. As a result, the filter stopband edge is computed
from the input sampling rate Sin as fs = Sin − fp, while the filter passband edge remains fixed (by the
given specifications). The filter sampling rate corresponds to the output sampling rate Sout and the filter
gain equals the interpolation factor Ik. At each successive stage (except the first), the spectral images occur
at higher and higher frequencies, and their removal requires filters whose transition bands get wider with
each stage, leading to less complex filters with smaller filter lengths. Although it is not easy to establish the
optimum values for the interpolating factors and their order for the smallest overall filter length, it turns
out that interpolating factors in increasing order generally yield smaller overall lengths, and any multistage
design results in a substantial reduction in the filter length as compared to a single-stage design.

EXAMPLE 8.6 (The Concept of Multistage Interpolation)
(a) Consider a signal band-limited to 1.8 kHz and sampled at 4 kHz. It is required to raise the sampling

rate to 48 kHz. This requires interpolation by 12. The value of the passband edge is fp = 1.8 kHz for
either a single-stage design or multistage design.

For a single-stage interpolator, the output sampling rate is Sout = 48 kHz, and we thus require a filter
with a stopband edge of fs = Sin− fp = 4− 1.8 = 2.2 kHz, a sampling rate of S = Sout = 48 kHz, and
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a gain of 12. If we use a crude approximation for the filter length as L ≈ 4/FT , where FT = (fs−fp)/S
is the digital transition width, we obtain L = 4(48/0.4) = 480.

(b) If we choose two-stage interpolation with I1 = 3 and I2 = 4, at each stage we compute the important
parameters as follows:

Sin Interpolation Sout = S fp fs = Sin − fp Filter Length
Stage (kHz) Factor (kHz) (kHz) (kHz) L ≈ 4S/(fs − fp)

1 4 I1 = 3 12 1.8 2.2 48/0.4 = 120
2 12 I2 = 4 48 1.8 10.2 192/8.4 = 23

The total filter length is thus 143.

(c) If we choose three-stage interpolation with I1 = 2, I2 = 3, and I3 = 2, at each stage we compute the
important parameters, as follows:

Sin Interpolation Sout = S fp fs = Sin − fp Filter Length
Stage (kHz) Factor (kHz) (kHz) (kHz) L ≈ 4S/(fs − fp)

1 4 I1 = 2 8 1.8 2.2 32/0.4 = 80
2 8 I2 = 3 24 1.8 6.2 96/4.4 = 22
3 24 I2 = 2 48 1.8 22.2 192/20.4 = 10

The total filter length is thus 112.

(d) If we choose three-stage interpolation but with the different order I1 = 3, I2 = 2, and I3 = 2, at each
stage we compute the important parameters, as follows:

Sin Interpolation Sout = S fp fs = Sin − fp Filter Length
Stage (kHz) Factor (kHz) (kHz) (kHz) L ≈ 4S/(fs − fp)

1 4 I1 = 3 12 1.8 2.2 48/0.4 = 120
2 12 I2 = 2 24 1.8 10.2 96/8.4 = 12
3 24 I2 = 2 48 1.8 22.2 192/20.4 = 10

The total filter length is thus 142.

Any multistage design results in a substantial reduction in the filter length as compared to a single-stage
design, and a smaller interpolation factor in the first stage of a multistage design does seem to yield smaller
overall lengths. Also remember that the filter lengths are only a crude approximation to illustrate the relative
merits of each design and the actual filter lengths will depend on the attenuation specifications.

For multistage operations, the actual filter lengths depend not only on the order of the interpolating
factors, but also on the given attenuation specifications Ap and As. Since attenuations in decibels add in
a cascaded system, the passband attenuation Ap is usually distributed among the various stages to ensure
an overall attenuation that matches specifications. The stopband specification needs no such adjustment.
Since the signal is attenuated even further at each stage, the overall stopband attenuation always exceeds
specifications. For interpolation, we require a filter whose gain is scaled (multiplied) by the interpolation
factor of the stage.
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EXAMPLE 8.7 (Design of Interpolating Filters)

(a) Consider a signal band-limited to 1.8 kHz and sampled at 4 kHz. It is required to raise the sampling
rate to 48 kHz. The passband attenuation should not exceed 0.6 dB, and the minimum stopband
attenuation should be 50 dB. Design an interpolation filter using a single-stage interpolator.

The single stage requires interpolation by 12. The value of the passband edge is fp = 1.8 kHz.
The output sampling rate is Sout = 48 kHz, and we thus require a filter with a stopband edge of
fs = Sin− fp = 4− 1.8 = 2.2 kHz and a sampling rate of S = Sout = 48 kHz. We ignore the filter gain
of 12 in the following computations. To compute the filter length, we first find the ripple parameters

δp =
10Ap/20 − 1
10Ap/20 + 1

=
100.6/20 − 1
100.6/20 + 1

= 0.0345 δs = 10−As/20 = 10−50/20 = 0.00316

and then approximate the length N by

N ≈ −10 log(δpδs)− 13
14.6(Fs − Fp)

+ 1 =
S[−10 log(δpδs)− 13]

14.6(fs − fp)
+ 1 = 230

The actual filter length of the optimal filter turns out to be N = 233, and the filter shows a passband
attenuation of 0.597 dB and a stopband attenuation of 50.05 dB.

(b) Repeat the design using a three-stage interpolator with I1 = 2, I2 = 3, and I3 = 2. How do the results
compare with those of the single-stage design?

We distribute the passband attenuation (in decibels) equally among the three stages. Thus, Ap = 0.2 dB
for each stage, and the ripple parameters for each stage are

δp =
100.2/20 − 1
100.2/20 + 1

= 0.0115 δs = 10−50/20 = 0.00316

For each stage, the important parameters and the filter length are listed in the following table:

Sin Interpolation Sout = S fp fs = Sin − fp Filter Length
Stage (kHz) Factor (kHz) (kHz) (kHz) L

1 4 I1 = 2 8 1.8 2.2 44
2 8 I2 = 3 24 1.8 6.2 13
3 24 I2 = 2 48 1.8 22.2 7

In this table, for example, we compute the filter length for the first stage as

L ≈ −10 log(δpδs)− 13
14.6(Fs − Fp)

+ 1 =
S[−10 log(δpδs)− 13]

14.6(fs − fp)
+ 1 = 44

The actual filter lengths of the optimal filters turn out to be 47 (with design attenuations of 0.19 dB
and 50.31 dB), 13 (with design attenuations of 0.18 dB and 51.09 dB), and 4 (with design attenuations
of 0.18 dB and 50.91 dB). The overall filter length is only 64. This is about four times less than the
filter length for single-stage design.
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8.7.1 Multistage Decimation

Decimation by M involves lowpass filtering (with a gain of unity), followed by down-sampling (discarding
M − 1 samples and retaining every Mth sample). The process is essentially the inverse of interpolation.
If the decimation factor M is large, decimation in stages results in a smaller overall filter length or order.
If M can be factored as M = D1D2D3, then decimation by M can be accomplished in three stages with
individual decimation factors of D1, D2, and D3. At a typical stage, the output sampling rate is given by
Sout = Sin/D, where D is the decimation factor for that stage. This is illustrated in Figure 8.18.

Sin

fs Sout fp= − Sin=S
D

Sin Sout

SinGain = 1

Digital lowpass filter Down-sample

=
D

Figure 8.18 One stage of a typical multistage decimating filter

The decimation filter has a gain of unity and operates at the input sampling rate Sin, and its stopband
edge is computed from the output sampling rate as fs = Sout − fp. At each successive stage (except the
first), the transition bands get narrower with each stage.

The overall filter length does depend on the order in which the decimating factors are used. Although it
is not easy to establish the optimum values for the decimation factors and their order for the smallest overall
filter length, it turns out that decimation factors in decreasing order generally yield smaller overall lengths,
and any multistage design results in a substantial reduction in the filter length as compared to a single-stage
design.

The actual filter lengths also depend on the given attenuation specifications. Since attenuations in
decibels add in a cascaded system, the passband attenuation Ap is usually distributed among the various
stages to ensure an overall value that matches specifications.

EXAMPLE 8.8 (The Concept of Multistage Decimation)
(a) Consider a signal band-limited to 1.8 kHz and sampled at 48 kHz. It is required to reduce the sampling

rate to 4 kHz. This requires decimation by 12. The passband edge is fp = 1.8 kHz and remains
unchanged for a single stage-design or multistage design.

For a single-stage decimator, the output sampling rate is Sout = 4 kHz, and we thus require a filter with
a stopband edge of fs = Sout−fp = 4−1.8 = 2.2 kHz, a sampling rate of S = Sin = 48 kHz, and a gain
of unity. If we use a crude approximation for the filter length as L ≈ 4/FT , where FT = (fs − fp)/S
is the digital transition width, we obtain L = 48/0.4 = 120.

(b) If we choose two-stage decimation with D1 = 4 and D2 = 3, at each stage we compute the important
parameters, as follows:

Sin = S Decimation Sout fp fs = Sout − fp Filter Length
Stage (kHz) Factor (kHz) (kHz) (kHz) L ≈ 4S/(fs − fp)

1 48 D1 = 4 12 1.8 10.2 192/8.4 = 23
2 12 D2 = 3 4 1.8 2.2 48/0.4 = 120

c©Ashok Ambardar, September 1, 2003



8.8 Maximally Flat FIR Filters 347

The total filter length is thus 143.

(c) If we choose three-stage decimation with D1 = 2, D2 = 3, and D3 = 2, at each stage we compute the
important parameters, as follows:

Sin = S Decimation Sout fp fs = Sout − fp Filter Length
Stage (kHz) Factor (kHz) (kHz) (kHz) L ≈ 4S/(fs − fp)

1 48 D1 = 2 24 1.8 22.2 192/20.4 =10
2 24 D2 = 3 8 1.8 6.2 96/4.4 = 22
3 8 D3 = 2 4 1.8 2.2 32/0.4 = 80

The total filter length is thus 112.

(d) If we choose three-stage decimation but with the different order D1 = 2, D2 = 2, and D3 = 3, at each
stage we compute the important parameters, as follows:

Sin = S Decimation Sout fp fs = Sout − fp Filter Length
Stage (kHz) Factor (kHz) (kHz) (kHz) L ≈ 4S/(fs − fp)

1 48 D1 = 2 24 1.8 22.2 192/20.4 = 10
2 24 D2 = 2 12 1.8 10.2 96/8.4 = 12
3 12 D3 = 3 4 1.8 2.2 48/0.4 = 120

The total filter length is thus 142.

Note how decimation uses the same filter frequency specifications as does interpolation for a given split,
except in reversed order. Any multistage design results in a substantial reduction in the filter length as
compared to a single-stage design. Also remember that the filter lengths chosen here are only a crude
approximation (in order to illustrate the relative merits of each design), and the actual filter lengths will
depend on the attenuation specifications.

8.8 Maximally Flat FIR Filters
Linear-phase FIR filters can also be designed with maximally flat frequency response. Such filters are
usually used in situations where accurate filtering is needed at low frequencies (near dc). The design of
lowpass maximally flat filters uses a closed form for the transfer function H(F ) given by

H(F ) = cos2K(πF )
L−1∑
n=0

dn sin2n(πF ) dn =
(K + n− 1)!
(K − 1)! n!

= CK+n−1
n (8.43)

Here, the dn have the form of binomial coefficients as indicated. Note that 2L − 1 derivatives of |H(F )|2
are zero at F = 0 and 2K − 1 derivatives are zero at F = 0.5. This is the basis for the maximally flat
response of the filter. The filter length equals N = 2(K + L) − 1, and is thus odd. The integers K and L
are determined from the passband and stopband frequencies Fp and Fs that correspond to gains of 0.95 and
0.05 (or attenuations of about 0.5 dB and 26 dB), respectively. Here is an empirical design method:
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1. Define the cutoff frequency as FC = 0.5(Fp + Fs) and let FT = Fs − Fp.

2. Obtain a first estimate of the odd filter length as N0 = 1 + 0.5/F 2
T .

3. Define the parameter α as α = cos2(πFC).

4. Find the best rational approximation α ≈ K/Mmin, with 0.5(N0 − 1) ≤ Mmin ≤ (N0 − 1).

5. Evaluate L and the true filter length N from L = Mmin −K and N = 2Mmin − 1.

6. Find h[n] as the N -point inverse DFT of H(F ), F = 0, 1/N, . . . , (N − 1)/N .

EXAMPLE 8.9 (Maximally Flat FIR Filter Design)
Consider the design of a maximally flat lowpass FIR filter with normalized frequencies Fp = 0.2 and Fs = 0.4.

We have FC = 0.3 and FT = 0.2. We compute N0 = 1 + 0.5/F 2
T = 13.5 ≈ 15, and α = cos2(πFC) = 0.3455.

The best rational approximation to α works out to be α ≈ 5/14 = K/Mmin.
With K = 5 and Mmin = 14, we get L = Mmin −K = 9, and the filter length N = 2Mmin − 1 = 27.

Figure E8.9 shows the impulse response and |H(F )| of the designed filter. The response is maximally flat,
with no ripples in the passband.
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Figure E8.9 Features of the maximally flat lowpass filter for Example 8.9

8.9 FIR Differentiators and Hilbert Transformers
An ideal digital differentiator is described by H(F ) = j2πF, |F | ≤ 0.5. In practical situations, we seldom
require filters that differentiate for the full frequency range up to |F | = 0.5. If we require differentiation only
up to a cutoff frequency of FC , then

H(F ) = j2πF, |F | ≤ FC (8.44)

The magnitude and phase spectrum of such a differentiator are shown in Figure 8.19. Since H(F ) is odd,
h[0] = 0. To find h[n], n 6= 0 we use the inverse DTFT to obtain

h[n] = j

∫ FC

−FC

2πFej2nπF dF (8.45)
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Figure 8.19 Magnitude and phase spectrum of an ideal differentiator

Invoking Euler’s relation and symmetry, this simplifies to

h[n] = −4π

∫ FC

0

F sin(2nπF ) dF =
2nπFC cos(2nπFC)− sin(2nπFC)

πn2
(8.46)

For FC = 0.5 , this yields h[0] = 0 and h[n] =
cos(nπ)

n
, n 6= 0.

8.9.1 Hilbert Transformers

A Hilbert transformer is used to shift the phase of a signal by −π
2 (or −90◦) over the frequency range

|F | ≤ 0.5. In practice, we seldom require filters that shift the phase for the full frequency range up to
|F | = 0.5. If we require phase shifting only up to a cutoff frequency of FC , the Hilbert transformer may be
described by

H(F ) = −j sgn(F ), |F | ≤ FC (8.47)

Its magnitude and phase spectrum are shown in Figure 8.20.
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Figure 8.20 Magnitude and phase spectrum of an ideal Hilbert transformer

With h[0] = 0, we use the inverse DTFT to find its impulse response h[n], n 6= 0, as

h[n] =
∫ FC

−FC

−j sgn(F )ej2nπF dF = 2
∫ FC

0

sin(2nπF ) dF =
1− cos(2nπFC)

nπ
(8.48)

For FC = 0.5, this reduces to h[n] =
1− cos(nπ)

nπ
, n 6= 0.

8.9.2 Design of FIR Differentiators and Hilbert Transformers

To design an FIR differentiator, we must truncate h[n] to hN [n] and choose a type 3 or type 4 sequence, since
H(F ) is purely imaginary. To ensure odd symmetry, the filter coefficients may be computed only for n > 0,
and the same values (in reversed order) are used for n < 0. If N is odd, we must also include the sample
h[0]. We may window hN [n] to minimize the overshoot and ripple in the spectrum HN (F ). And, finally,
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to ensure causality, we must introduce a delay of (N − 1)/2 samples. Figure 8.21(a) shows the magnitude
response of Hamming-windowed FIR differentiators for both even and odd lengths N . Note that H(0) is
always zero, but H(0.5) = 0 only for type 3 (odd-length) sequences.
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Figure 8.21 Magnitude spectra of ideal differentiators and Hilbert transformers

The design of Hilbert transformers closely parallels the design of FIR differentiators. The sequence h[n]
is truncated to hN [n]. The chosen filter must correspond to a type 3 or type 4 sequence, since H(F ) is
imaginary. To ensure odd symmetry, the filter coefficients may be computed only for n > 0, with the same
values (in reversed order) used for n < 0. If N is odd, we must also include the sample h[0]. We may window
hN [n] to minimize the ripples (due to the Gibbs effect) in the spectrum HN (F ). The Hamming window is a
common choice, but others may also be used. To make the filter causal, we introduce a delay of (N − 1)/2
samples. The magnitude spectrum of a Hilbert transformer becomes flatter with increasing filter length N .
Figure 8.21(b) shows the magnitude response of Hilbert transformers for both even and odd lengths N . Note
that H(0) is always zero, but H(0.5) = 0 only for type 3 (odd-length) sequences.

8.10 Least Squares and Adaptive Signal Processing
The concept of least squares can be formulated as the solution to a set of algebraic equations expressed in
matrix form as

Xb = Y (8.49)
If the number of unknowns equals the number of equations, and the matrix X is non-singular such that its
inverse X−1 exists (the unique case), the solution is simply b = X−1Y. However, if the number of equations
exceeds the number of unknowns (the over-determined case), no solution is possible, and only an approximate
result may be obtained using, for example, least squares minimization. If the number of unknowns exceeds
the number of equations (the under-determined case), many possible solutions exist, including the one where
the mean square error is minimized.

In many practical situations, the set of equations is over-determined and thus amenable to a least-squares
solution. To solve for b, we simply premultiply both sides by XT to obtain

XT Xb = XT Y (8.50)

If the inverse of XT X exists, the solution is given by

b = (XT X)−1XT Y (8.51)
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The matrix XT X is called the covariance matrix.

8.10.1 Adaptive Filtering

The idea of least squares finds widespread application in adaptive signal processing, a field that includes
adaptive filtering, deconvolution, and system identification, and encompasses many disciplines. Typically,
the goal is to devise a digital filter whose coefficients b[k] can be adjusted to optimize its performance (in
the face of changing signal characteristics or to combat the effects of noise, for example). A representative
system for adaptive filtering is shown in Figure 8.22. The measured signal x[n] (which may be contaminated
by noise) is fed to an FIR filter whose output ŷ[n] is compared with the desired signal y[n] to generate
the error signal e[n]. The error signal is used to update the filter coefficients b[k] through an adaptation
algorithm in a way that minimizes the error e[n], and thus provides an optimal estimate of the desired signal
y[n].

[n]x

[n]y [n]e

Adaptive
FIR filter

Adaptation
algorithm

+
−
Σ

Figure 8.22 The structure of a typical adaptive filtering system

In convolution form, the output Ŷ of the (M + 1)-point adaptive FIR filter is described by the model

ŷ[n] =
M∑

k=0

b[k]x[n− k], n = 0, 1, . . . , M + N + 1 (8.52)

This set of M + N + 1 equations may be cast in matrix form as




ŷ[0]
...
ŷ[N ]


 =




x[0] 0 · · · · · · · · ·
x[1] x[0] 0 · · · · · ·
x[2] x[1] x[0] 0 · · ·
...

...
...

. . .
...

x[N ] x[N − 1] x[N − 2] · · · x[N −M ]
0 · · · · · · · · · · · ·
0 0 · · · · · · · · ·
0 0 0 · · · · · ·







b[0]
...
b[M ]


 (8.53)

In vector notation, it has the form Ŷ = Xb, where b is an (M +1)×1 column matrix of the filter coefficients
b[0] through b[M ], Ŷ is an (M +N +1)×1 matrix of the output samples, and X is an (M +N +1)× (M +1)
Toeplitz (constant diagonal) matrix whose columns are successively shifted replicas of the input sequence.
The (M +1) filter coefficients in b are chosen to ensure that the output Ŷ of the model provides an optimal
estimate of the desired output Y. Clearly, this problem is amenable to a least squares solution.

Since the data is being acquired continuously in many practical situations, the least squares solution
is implemented on-line or in real time using iterative or recursive numerical algorithms. Two common ap-
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proaches are the recursive least squares (RLS) algorithm and the least mean squares (LMS) algorithm.
Both start with an assumed set of filter coefficients and update this set as each new input sample arrives.

The RLS algorithm: In the RLS algorithm, the filter coefficients are updated by weighting the input
samples (typically in an exponential manner) so as to emphasize more recent inputs.

The LMS algorithm: The LMS algorithm, though not directly related to least squares, uses the so-called
method of steepest descent to generate updates that converge about the least squares solution. Although it
may not converge as rapidly as the RLS algorithm, it is far more popular due to its ease of implementation.
In fact, the updating equation (for the nth update) has the simple form

bn[k] = bn−1[k] + 2µ(y[n]− ŷ[n])x[n− k] = bn−1[k] + 2µe[n]x[n− k], 0 ≤ k ≤ M (8.54)

The parameter µ governs both the rate of convergence and the stability of the algorithm. Larger values
result in faster convergence, but the filter coefficients tend to oscillate about the optimum values. Typically,
µ is restricted to the range 0 < µ < 1

σx
, where σx, the variance of x[n], provides a measure of the power in

the input signal x[n].

8.10.2 Applications of Adaptive Filtering

Adaptive filtering forms the basis for many signal-processing applications including system identification,
noise cancellation, and channel equalization. We conclude with a brief introduction.

System Identification

In system identification, the goal is to identify the transfer function (or impulse response) of an unknown
system. Both the adaptive filter and the unknown system are excited by the same input, and the signal y[n]
represents the output of the unknown system. Minimizing e[n] implies that the output of the unknown system
and the adaptive filter are very close, and the adaptive filter coefficients describe an FIR approximation to
the unknown system.

Noise Cancellation

In adaptive noise-cancellation systems, the goal is to improve the quality of a desired signal y[n] that may
be contaminated by noise. The signal x[n] is a noise signal, and the adaptive filter minimizes the power in
e[n]. Since the noise power and signal power add (if they are uncorrelated), the signal e[n] (with its power
minimized) also represents a cleaner estimate of the desired signal y[n].

Channel Equalization

In adaptive channel equalization, the goal is to allow a modem to adapt to different telephone lines (so as to
prevent distortion and inter-symbol interference). A known training signal y[n] is transmitted at the start
of each call, and x[n] is the output of the telephone channel. The error signal e[n] is used to generate an
FIR filter (an inverse system) that cancels out the effects of the telephone channel. Once found, the filter
coefficients are fixed, and the modem operates with the fixed filter.
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CHAPTER 8 PROBLEMS

8.1 (Symmetric Sequences) Find H(z) and H(F ) for each sequence and establish the type of FIR filter
it describes by checking values of H(F ) at F = 0 and F = 0.5.

(a) h[n] = {⇓1, 0, 1} (b) h[n] = {⇓1, 2, 2, 1}
(c) h[n] = {⇓1, 0,−1} (d) h[n] = {

⇓
−1, 2,−2, 1}

8.2 (Symmetric Sequences) What types of sequences can we use to design the following filters?

(a) Lowpass (b) Highpass (c) Bandpass (d) Bandstop

8.3 (Linear-Phase Sequences) The first few values of the impulse response sequence of a linear-phase
filter are h[n] = {2, −3, 4, 1, . . .}. Determine the complete sequence, assuming the smallest length for
h[n], if the sequence is to be:

(a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4

[Hints and Suggestions: For part (a), the even symmetry will be about the fourth sample. Part (c)
requires odd length, odd symmetry and a zero-valued sample at the midpoint.]

8.4 (Linear Phase and Symmetry) Assume a finite length impulse response sequence h[n] with real
coefficients and argue for or against the following statements.
(a) If all the zeros lie on the unit circle, h[n] must be linear phase.
(b) If h[n] is linear phase its zeros must always lie on the unit circle.
(c) If h[n] is odd symmetric, there must be an odd number of zeros at z = 1.

[Hints and Suggestions: Use the following facts. Each pair of reciprocal zeros, such as (z − α)
and (z − 1/α), yields an even symmetric impulse response of the form {1, β, 1}. Multiplication in
the z-domain means convolution in the time-domain. The convolution of symmetric sequences is also
symmetric.]

8.5 (Linear Phase and Symmetry) Assume a linear-phase sequence h[n] with real coefficients and
refute the following statements by providing simple examples using zero locations only at z = ±1.
(a) If h[n] has zeros at z = −1 it must be a type 2 sequence.
(b) If h[n] has zeros at z = −1 and z = 1, it must be a type 3 sequence.
(c) If h[n] has zeros at z = 1 it must be a type 4 sequence.

8.6 (Linear Phase and Symmetry) The locations of the zeros at z = ±1 and their number provides
useful clues about the type of a linear-phase sequence. What is the sequence type for the following
zero locations at z = ±1? Other zero locations are in keeping with linear phase and real coefficients.

(a) No zeros at z = ±1
(b) One zero at z = −1, none at z = 1
(c) Two zeros at z = −1, one zero at z = 1
(d) One zero at z = 1, none at z = −1
(e) Two zeros at z = 1, none at z = −1
(f) One zero at z = 1, one zero at z = −1
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(g) Two zeros at z = 1, one zero at z = −1

[Hints and Suggestions: For (a), the length is odd and the symmetry is even (so, type 1). For the
rest, each zero increases the length by one and each zero at z = 1 toggles the symmetry.]

8.7 (Linear-Phase Sequences) What is the smallest length linear-phase sequence with real coefficients
that meets the requirements listed? Identify all the zero locations and the type of linear-phase sequence.

(a) Zero location: z = ej0.25π; even symmetry; odd length
(b) Zero location: z = 0.5ej0.25π; even symmetry; even length
(c) Zero location: z = ej0.25π; odd symmetry; even length
(d) Zero location: z = 0.5ej0.25π; odd symmetry; odd length

[Hints and Suggestions: For (a) and (c), the given zero will be paired with its conjugate. For (b)
and (d), the given zero will be part of a conjugate reciprocal quadruple. For all parts, no additional
zeros give an odd length and even symmetry. Each additional zero at z = 1 or z = −1 will increase
the length by one. Each zero at z = 1 will toggle the symmetry.]

8.8 (Linear-Phase Sequences) Partial details of various filters are listed. Zero locations are in keeping
with linear phase and real coefficients. Assuming the smallest length, identify the sequence type and
find the transfer function of each filter.

(a) Zero location: z = 0.5ej0.25π

(b) Zero location: z = ej0.25π

(c) Zero locations: z = 1, z = ej0.25π

(d) Zero locations: z = 0.5, z = −1; odd symmetry
(e) Zero locations: z = 0.5, z = 1, z = −1; even symmetry

[Hints and Suggestions: Linear phase requires conjugate reciprocal zeros. No zeros at z = 1 yield
even symmetry. Each additional zero at z = 1 toggles the symmetry.]

8.9 (Truncation and Windowing) Consider a windowed lowpass FIR filter with cutoff frequency 5 kHz
and sampling frequency S = 20 kHz. Find the truncated, windowed sequence, the minimum delay (in
samples and in seconds) to make the filter causal, and the transfer function H(z) of the causal filter if

(a) N = 7, and we use a Bartlett window.
(b) N = 8, and we use a von Hann (Hanning) window.
(c) N = 9, and we use a Hamming window.

[Hints and Suggestions: For (a)–(b), find the results after discarding any zero-valued end-samples
of the windowed sequence.]

8.10 (Spectral Transformations) Assuming a sampling frequency of 40 kHz and a fixed passband, find
the specifications for a digital lowpass FIR prototype and the subsequent spectral transformation to
convert to the required filter type for the following filters.

(a) Highpass: passband edge at 10 kHz, stopband edge at 4 kHz
(b) Bandpass: passband edges at 6 kHz and 10 kHz, stopband edges at 2 kHz and 12 kHz
(c) Bandstop: passband edges 8 kHz and 16 kHz, stopband edges 12 kHz and 14 kHz

c©Ashok Ambardar, September 1, 2003



Chapter 8 Problems 355

[Hints and Suggestions: For (b)–(c), ensure arithmetic symmetry by relocating some band edges
(assuming a fixed passband, for example) to maintain the smallest transition width.]

8.11 (Window-Based FIR Filter Design) We wish to design a window-based linear-phase FIR filter.
What is the approximate filter length N required if the filter to be designed is
(a) Lowpass: fp = 1 kHz, fs = 2 kHz, S = 10 kHz, using a von Hann (Hanning) window?
(b) Highpass: fp = 2 kHz, fs = 1 kHz, S = 8 kHz, using a Blackman window?
(c) Bandpass: fp = [4, 8] kHz, fs = [2, 12] kHz, S = 25 kHz, using a Hamming window?
(d) Bandstop: fp = [2, 12] kHz, fs = [4, 8] kHz, S = 25 kHz, using a Hamming window?

[Hints and Suggestions: This requires table lookup and the digital transition width. Round up the
length to the next highest integer (an odd integer for bandstop filters). ]

8.12 (Half-Band FIR Filter Design) A lowpass half-band FIR filter is to be designed using a von Hann
window. Assume a filter length N = 11 and find its windowed, causal impulse response sequence and
the transfer function H(z) of the causal filter.

8.13 (Half-Band FIR Filter Design) Design the following half-band FIR filters, using a Kaiser window.

(a) Lowpass filter: 3-dB frequency 4 kHz, stopband edge 8 kHz, and As = 40 dB.
(b) Highpass filter: 3-dB frequency 6 kHz, stopband edge 3 kHz, and As = 50 dB.
(c) Bandpass filter: passband edges at [2, 3] kHz, stopband edges at [1, 4] kHz, Ap = 1 dB, and

As = 35 dB.
(d) Bandstop filter: stopband edges at [2, 3] kHz, passband edges at [1, 4] kHz, Ap = 1 dB, and

As = 35 dB.

[Hints and Suggestions: For (a)–(b), pick S = 2(fp + fs) and FC = 0.25. For (b), design a Kaiser
lowpass prototype h[n] to get hHP[n] = (−1)nh[n]. For (c)–(d), design a lowpass prototype h[n] with
S = 4f0, FC = 0.5(Fp + Fs). Then, hBP[n] = 2 cos(0.5nπ)h[n] and hBS[n] = δ[n] − 2 cos(0.5nπ)h[n].
You will need to compute the filter length N (an odd integer), the Kaiser parameter β, and values of
the N -sample Kaiser window for each part.]

8.14 (Frequency-Sampling FIR Filter Design) Consider the frequency-sampling design of a lowpass
FIR filter with FC = 0.25.
(a) Sketch the gain of an ideal filter with FC = 0.25. Pick eight samples over the range 0 ≤ F < 1

and set up the sampled frequency response H[k] of the filter assuming a real, causal h[n].
(b) Compute the impulse response h[n] for the filter.
(c) To reduce the overshoot, modify H[3] and recompute h[n].

[Hints and Suggestions: For (a), set |H[k]| = {1, 1, 1, 0, 0, 0, 1, 1} and find H[k] = |H[k]|ejφ[k] where
k = 0, 1, 2, . . . , 7, H[k] = H∗[N − k] and φ[k] = −kπ(N − 1)/N for a real and causal h[n]. For (b),
find h[n] as the IDFT. For (c), pick |H[3]| = 0.5 and H[3] = 0.5ejφ[3] and H[5] = H∗[3].]

8.15 (Maximally Flat FIR Filter Design) Design a maximally flat lowpass FIR filter with normalized
frequencies Fp = 0.1 and Fs = 0.4, and find its frequency response H(F ).

8.16 (FIR Differentiators) Find the impulse response of a digital FIR differentiator with
(a) N = 6, cutoff frequency FC = 0.4, and no window.
(b) N = 6, cutoff frequency FC = 0.4, and a Hamming window.
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(c) N = 5, cutoff frequency FC = 0.5, and a Hamming window.

[Hints and Suggestions: For (a)–(b), N = 6 and so n = −2.5,−1.5,−0.5, 0.5, 1.5, 2.5.]

8.17 (FIR Hilbert Transformers) Find the impulse response of an FIR Hilbert transformer with

(a) N = 6, cutoff frequency FC = 0.4, and no window.
(b) N = 6, cutoff frequency FC = 0.4, and a von Hann window.
(c) N = 7, cutoff frequency FC = 0.5, and a von Hann window.

[Hints and Suggestions: For (a)–(b), N = 6 and so n = −2.5,−1.5,−0.5, 0.5, 1.5, 2.5.]

8.18 (IIR Filters and Linear Phase) Even though IIR filters cannot be designed with linear phase, it
is possible to implement systems containing IIR filters to eliminate phase distortion. A signal x[n] is
folded and passed through a filter H(F ), and the filter output is then folded to obtain the signal y1[n].
The signal x[n] is also passed directly through the filter H(F ) to get the signal y2[n]. The signals y1[n]
and y2[n] are summed to obtain the overall output y[n].

(a) Sketch a block diagram of this system.
(b) How is Y (F ) related to X(F )?
(c) Does the system provide freedom from phase distortion?

[Hints and Suggestions: If h[n] ⇔ H(F ), then h[−n] ⇔ H(−F ). Also, H(F ) + H(−F ) is purely
real.]

8.19 (Filter Specifications) A hi-fi audio signal band-limited to 20 kHz is contaminated by high-frequency
noise between 70 kHz and 110 kHz. We wish to design a digital filter that reduces the noise by a factor
of 100 while causing no appreciable signal loss. One way is to design the filter at a sampling rate that
exceeds the Nyquist rate. However, we can also make do with a smaller sampling rate that avoids
aliasing of the noise spectrum into the signal spectrum. Pick such a sampling rate and develop the
frequency and attenuation specifications for the digital filter.

[Hints and Suggestions: The image of the aliased noise spectrum does not overlap the signal spec-
trum as long as it lies between 20 kHz and 70 kHz.]

8.20 (FIR Filter Specifications) Figure P8.20 shows the magnitude and phase characteristics of a causal
FIR filter designed at a sampling frequency of 10 kHz.
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Figure P8.20 Filter characteristics for Problem 8.20

(a) What are the values of the passband ripple δp and stopband ripple δs?
(b) What are the values of the attenuation As and Ap in decibels?
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(c) What are the frequencies (in Hz) of the passband edge and stopband edge?
(d) Does this filter show linear phase? What is the group delay?
(e) What is the filter length N?
(f) Could this filter have been designed using the window method? Explain.
(g) Could this filter have been designed using the optimal method? Explain.

[Hints and Suggestions: The dB magnitude gives δs and Fs. The linear magnitude gives δp and Fp.
The slope of the phase plot gives the delay as D = − ∆θ

2π∆F (an integer). For part (e), N = 2D + 1.
The size of the stopband and passband ripples provides a clue to parts (f)–(g).]

8.21 (Multistage Interpolation) It is required to design a three-stage interpolator. The interpolating
filters are to be designed with identical passband and stopband attenuation and are required to provide
an overall attenuation of no more than 3 dB in the passband and at least 50 dB in the stopband. Specify
the passband and stopband attenuation of each filter.

COMPUTATION AND DESIGN

8.22 (FIR Filter Design) It is desired to reduce the frequency content of a hi-fi audio signal band-limited
to 20 kHz and sampled at 44.1 kHz for purposes of AM transmission. Only frequencies up to 10 kHz
are of interest. Frequencies past 15 kHz are to be attenuated by at least 55 dB, and the passband loss
is to be less than 10%. Design a digital filter using the Kaiser window that meets these specifications.

8.23 (FIR Filter Design) It is desired to eliminate 60-Hz interference from an ECG signal whose signif-
icant frequencies extend to 35 Hz.

(a) What is the minimum sampling frequency we can use to avoid in-band aliasing?
(b) If the 60-Hz interference is to be suppressed by a factor of at least 100, with no appreciable signal

loss, what should be the filter specifications?
(c) Design the filter using a Hamming window and plot its frequency response.
(d) Test your filter on the signal x(t) = cos(40πt) + cos(70πt) + cos(120πt). Plot and compare the

frequency response of the sampled test signal and the filtered signal to confirm that your design
objectives are met.

8.24 (Digital Filter Design) We wish to design a lowpass filter for processing speech signals. The
specifications call for a passband of 4 kHz and a stopband of 5 kHz. The passband attenuation is to
be less than 1 dB, and the stopband gain is to be less than 0.01. The sampling frequency is 40 kHz.

(a) Design FIR filters, using the window method (with Hamming and Kaiser windows) and using
optimal design. Which of these filters has the minimum length?

(b) Design IIR Butterworth and elliptic filters, using the bilinear transformation, to meet the same
set of specifications. Which of these filters has the minimum order? Which has the best delay
characteristics?

(c) How does the complexity of the IIR filters compare with that of the FIR filters designed with
the same specifications? What are the trade-offs in using an IIR filter over an FIR filter?

8.25 (The Effect of Group Delay) The nonlinear phase of IIR filters is responsible for signal distortion.
Consider a lowpass filter with a 1-dB passband edge at fp = 1 kHz, a 50-dB stopband edge at fp =
2kHz, and a sampling frequency of S = 10 kHz.
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(a) Design a Butterworth filter HB(z), an elliptic filter HE(z), and an optimal FIR filter HO(z) to
meet these specifications. Using the Matlab routine grpdelay (or otherwise), compute and plot
the group delay of each filter. Which filter has the best (most nearly constant) group delay in
the passband? Which filter would cause the least phase distortion in the passband? What are
the group delays NB , NE , and NO (expressed as the number of samples) of the three filters?

(b) Generate the signal x[n] = 3 sin(0.03nπ) + sin(0.09nπ) + 0.6 sin(0.15nπ) over 0 ≤ n ≤ 100. Use
the ADSP routine filter to compute the response yB [n], yE [n], and yO[n] of each filter. Plot the
filter outputs yB [n], yE [n], and yO[n] (delayed by NB , NE , and NO, respectively) and the input
x[n] on the same plot to compare results. Which filter results in the smallest signal distortion?

(c) Are all the frequency components of the input signal in the filter passband? If so, how can you
justify that what you observe as distortion is actually the result of the non-constant group delay
and not the filter attenuation in the passband?

8.26 (Raised Cosine Filters) The impulse response of a raised cosine filter has the form

hR[n] = h[n]
cos(2nπRFC)
1− (4nRFC)2

where the roll-off factor R satisfies 0 < R < 1 and h[n] = 2FC sinc(2nFC) is the impulse response of
an ideal lowpass filter.
(a) Let FC = 0.2. Generate the impulse response of an ideal lowpass filter with length 21 and

the impulse response of the corresponding raised cosine filter with R = 0.2, 0.5, 0.9. Plot the
magnitude spectra of each filter over 0 ≤ F ≤ 1 on the same plot, using linear and decibel scales.
How does the response in the passband and stopband of the raised cosine filter differ from that
of the ideal filter? How does the transition width and peak sidelobe attenuation of the raised
cosine filter compare with that of the ideal filter for different values of R? What is the effect of
increasing R on the frequency response?

(b) Compare the frequency response of hR[n] with that of an ideal lowpass filter with FC = 0.25. Is
the raised cosine filter related to this ideal filter?

8.27 (Interpolation) The signal x[n] = cos(2πF0n) is to be interpolated by 5, using up-sampling followed
by lowpass filtering. Let F0 = 0.4.
(a) Generate and plot 20 samples of x[n] and up-sample by 5.
(b) What must be the cutoff frequency FC and gain A of a lowpass filter that follows the up-sampler

to produce the interpolated output?
(c) Design an FIR filter (using the window method or optimal design) to meet these specifications.
(d) Filter the up-sampled signal through this filter and plot the result.
(e) Is the filter output an interpolated version of the input signal? Do the peak amplitude of the

interpolated signal and original signal match? Should they? Explain.

8.28 (Multistage Interpolation) To relax the design requirements for the analog reconstruction filter,
many compact disc systems employ oversampling during the DSP stages. Assume that audio signals
are band-limited to 20 kHz and sampled at 44.1 kHz. Assume a maximum passband attenuation of 1
dB and a minimum stopband attenuation of 50 dB.

(a) Design a single-stage optimal interpolating filter that increases the sampling rate to 176.4 kHz.
(b) Design multistage optimal interpolating filters that increase the sampling rate to 176.4 kHz.
(c) Which of the two designs would you recommend?
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(d) For each design, explain how you might incorporate compensating filters during the DSP stage
to offset the effects of the sinc distortion caused by the zero-order-hold reconstruction device.

8.29 (Multistage Interpolation) The sampling rate of a speech signal band-limited to 3.4 kHz and
sampled at 8 kHz is to be increased to 48 kHz. Design three different schemes that will achieve this
rate increase and compare their performance. Use optimal FIR filter design where required and assume
a maximum passband attenuation of 1 dB and a minimum stopband attenuation of 45 dB.

8.30 (Multistage Decimation) The sampling rate of a speech signal band-limited to 3.4 kHz and sampled
at 48 kHz is to be decreased to 8 kHz. Design three different schemes that will achieve this rate decrease
and compare their performance. Use optimal FIR filter design where required and assume a maximum
passband attenuation of 1 dB and a minimum stopband attenuation of 45 dB. How do these filters
compare with the filters designed for multistage interpolation in Problem 20.28.

8.31 (Filtering Concepts) This problem deals with time-frequency plots of a combination of sinusoids
and their filtered versions.
(a) Generate 600 samples of the signal x[n] = cos(0.1nπ) + cos(0.4nπ) + cos(0.7nπ) comprising the

sum of three pure cosines at F = 0.05, 0.2, 0.35. Use the Matlab command fft to plot its DFT
magnitude. Use the routine timefreq (from the author’s website) to display its time-frequency
plot. What do the plots reveal? Now design an optimal lowpass filter with a 1-dB passband edge
at F = 0.1 and a 50-dB stopband edge at F = 0.15 and filter x[n] through this filter to obtain
the filtered signal xf [n]. Plot its DFT magnitude and display its time-frequency plot. What do
the plots reveal? Does the filter perform its function? Plot xf [n] over a length that enables you
to identify its period. Does the period of xf [n] match your expectations?

(b) Generate 200 samples each of the three signals y1[n] = cos(0.1nπ), y2[n] = cos(0.4nπ), and
y3[n] = cos(0.7nπ). Concatenate them to form the 600-sample signal y[n] = {y1[n], y2[n], y3[n]}.
Plot its DFT magnitude and display its time-frequency plot. What do the plots reveal? In what
way does the DFT magnitude plot differ from part (a)? In what way does the time-frequency
plot differ from part (a)? Use the optimal lowpass filter designed in part (a) to filter y[n], obtain
the filtered signal yf [n], plot its DFT magnitude, and display its time-frequency plot. What do
the plots reveal? In what way does the DFT magnitude plot differ from part (a)? In what way
does the time-frequency plot differ from part (a)? Does the filter perform its function? Plot
yf [n] over a length that enables you to identify its period. Does the period of yf [n] match your
expectations?

8.32 (Decoding a Mystery Message) During transmission, a message signal gets contaminated by a
low-frequency signal and high-frequency noise. The message can be decoded only by displaying it in
the time domain. The contaminated signal x[n] is provided on the author’s website as mystery1.mat.
Load this signal into Matlab (use the command load mystery1). In an effort to decode the message,
try the following methods and determine what the decoded message says.
(a) Display the contaminated signal. Can you “read” the message? Display the DFT of the signal

to identify the range of the message spectrum.
(b) Design an optimal FIR bandpass filter capable of extracting the message spectrum. Filter the

contaminated signal and display the filtered signal to decode the message. Use both the filter
(linear-phase filtering) and filtfilt (zero-phase filtering) commands.

(c) As an alternative method, first zero out the DFT component corresponding to the low-frequency
contamination and obtain its IDFT y[n]. Next, design an optimal lowpass FIR filter to reject the
high-frequency noise. Filter the signal y[n] and display the filtered signal to decode the message.
Use both the filter and filtfilt commands.
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(d) Which of the two methods allows better visual detection of the message? Which of the two
filtering routines (in each method) allows better visual detection of the message?

8.33 (Filtering of a Chirp Signal) This problem deals with time-frequency plots of a chirp signal and
its filtered versions.

(a) Generate 500 samples of a chirp signal x[n] whose frequency varies from F = 0 to F = 0.12.
Then, compute its DFT and plot the the DFT magnitude. Use the routine timefreq (from the
author’s website) to display its time-frequency plot. What do the plots reveal? Plot x[n] and
confirm that its frequency is increasing with time.

(b) Design an optimal lowpass filter with a 1-dB passband edge at F = 0.04 and a 40-dB stopband
edge at F = 0.1 and use the Matlab command filtfilt to obtain the zero-phase filtered signal
y1[n]. Plot its DFT magnitude and display its time-frequency plot. What do the plots reveal?
Plot y1[n] and x[n] on the same plot and compare. Does the filter perform its function?

(c) Design an optimal highpass filter with a 1-dB passband edge at F = 0.06 and a 40-dB stopband
edge at F = 0.01 and use the Matlab command filtfilt to obtain the zero-phase filtered
signal y2[n]. Plot its DFT magnitude and display its time-frequency plot. What do the plots
reveal? Plot y2[n] and x[n] on the same plot and compare. Does the filter perform its function?

8.34 (Filtering of a Chirp Signal) This problem deals with time-frequency plots of a chirp signal and
a sinusoid and its filtered versions.

(a) Generate 500 samples of a signal x[n] that consists of the sum of cos(0.6nπ) and a chirp whose
frequency varies from F = 0 to F = 0.05. Then, compute its DFT and plot the DFT magnitude.
Use the routine psdwelch (from the author’s website) to display its power spectral density plot.
Use the routine timefreq (from the author’s website) to display its time-frequency plot. What
do the plots reveal?

(b) Design an optimal lowpass filter with a 1 dB passband edge at F = 0.08 and a 40-dB stopband
edge at F = 0.25 and use the Matlab command filtfilt to obtain the zero-phase filtered
signal y1[n]. Plot its DFT magnitude and display its PSD and time-frequency plot. What do the
plots reveal? Plot y1[n]. Does it look like a signal whose frequency is increasing with time? Do
the results confirm that the filter performs its function?

(c) Design an optimal highpass filter with a 1-dB passband edge at F = 0.25 and a 40-dB stopband
edge at F = 0.08 and use the Matlab command filtfilt to obtain the zero-phase filtered
signal y2[n]. Plot its DFT magnitude and display its PSD and time-frequency plot. What do the
plots reveal? Plot y2[n]. Does it look like a sinusoid? Can you identify its period from the plot?
Do the results confirm that the filter performs its function?

8.35 (A Multi-Band Filter) A requirement exists for a multi-band digital FIR filter operating at 140 Hz
with the following specifications:

Passband 1: from dc to 5 Hz
Maximum passband attenuation = 2 dB (from peak)
Minimum attenuation at 10 Hz = 40 dB (from peak)

Passband 2: from 30 Hz to 40 Hz
Maximum passband attenuation = 2 dB (from peak)
Minimum attenuation at 20 Hz and 50 Hz = 40 dB (from peak)

(a) Design the first stage as an odd-length optimal filter, using the routine firpm (from the author’s
website).
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(b) Design the second stage as an odd-length half-band filter, using the routine firhb (from the
author’s website) with a Kaiser window.

(c) Combine the two stages to obtain the impulse response of the overall filter.
(d) Plot the overall response of the filter. Verify that the attenuation specifications are met at each

design frequency.
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Chapter 9

DESIGN OF IIR FILTERS

9.0 Scope and Objectives
This chapter begins with an introduction to IIR filters, and the various mappings that are used to con-
vert analog filters to digital filters. It then describes the design of IIR digital filters based on an analog
lowpass prototype that meets the given specifications, followed by an appropriate mapping and spectral
transformation. The bilinear transformation and its applications are discussed in detail.

9.1 Introduction
Typical magnitude and phase specifications for IIR filters are identical to those for FIR filters. Digital filter
design revolves around two distinctly different approaches. If linear phase is not critical, IIR filters yield a
much smaller filter order for a given application. The design starts with an analog lowpass prototype based
on the given specifications. It is then converted to the required digital filter, using an appropriate mapping
and an appropriate spectral transformation. A causal, stable IIR filter can never display linear phase for
several reasons. The transfer function of a linear-phase filter must correspond to a symmetric sequence and
ensure that H(z) = ±H(−1/z). For every pole inside the unit circle, there is a reciprocal pole outside the
unit circle. This makes the system unstable (if causal) or noncausal (if stable). To make the infinitely long
symmetric impulse response sequence of an IIR filter causal, we need an infinite delay, which is not practical,
and symmetric truncation (to preserve linear phase) simply transforms the IIR filter into an FIR filter.

9.2 IIR Filter Design
There are two related approaches for the design of IIR digital filters. A popular method is based on using
methods of well-established analog filter design, followed by a mapping that converts the analog filter to the
digital filter. An alternative method is based on designing the digital filter directly, using digital equivalents
of analog (or other) approximations. Any transformation of an analog filter to a digital filter should ideally
preserve both the response and stability of the analog filter. In practice, this is seldom possible because of
the effects of sampling.

9.2.1 Equivalence of Analog and Digital Systems

The impulse response h(t) of an analog system may be approximated by

h(t) ≈ h̃a(t) = ts

∞∑
n=−∞

h(t)δ(t− nts) = ts

∞∑
n=−∞

h(nts)δ(t− nts) (9.1)

362 c©Ashok Ambardar, September 1, 2003



9.2 IIR Filter Design 363

Here, ts is the sampling interval corresponding to the sampling rate S = 1/ts. The discrete-time impulse
response hs[n] describes the samples h(nts) of h(t) and may be written as

hs[n] = h(nts) =
∞∑

k=−∞
hs[k]δ[n− k] (9.2)

The Laplace transform Ha(s) of h̃a(t) and the z-transform Hd(z) of hs[n] are

H(s) ≈ Ha(s) = ts

∞∑

k=−∞
h(kts)e−skts Hd(z) =

∞∑

k=−∞
hs[k]z−k (9.3)

Comparison suggests the equivalence Ha(s) = tsHd(z) provided z−k = e−skts , or

z ⇒ ests s ⇒ ln(z)/ts (9.4)

These relations describe a mapping between the variables z and s. Since s = σ + jω, where ω is the
continuous frequency, we can express the complex variable z as

z = e(σ+jω)ts = eσtsejωts = eσtsejΩ (9.5)

Here, Ω = ωts = 2πf/S = 2πF is the digital frequency in radians/sample.
The sampled signal hs[n] has a periodic spectrum given by its DTFT:

Hp(f) = S

∞∑

k=−∞
H(f − kS) (9.6)

If the analog signal h(t) is band-limited to B and sampled above the Nyquist rate (S > 2B), the principal
period (−0.5 ≤ F ≤ 0.5) of Hp(f) equals SH(f), a scaled version of the true spectrum H(f). We may thus
relate the analog and digital systems by

H(f) = tsHp(f) or Ha(s)|s=j2πf ≈ tsHd(z)|z=ej2πf/S , |f | < 0.5S (9.7)

If S < 2B, we have aliasing, and this relationship no longer holds.

9.2.2 The Effects of Aliasing

The relations z ⇒ ests and s ⇒ ln(z)/ts do not describe a one-to-one mapping between the s-plane and the
z-plane. Since ejΩ is periodic with period 2π, all frequencies Ω0 ± 2kπ (corresponding to ω0 ± kωs, where
ωs = 2πS) are mapped to the same point in the z-plane. A one-to-one mapping is thus possible only if
Ω lies in the principal range −π ≤ Ω ≤ π (or 0 ≤ Ω ≤ 2π), corresponding to the analog frequency range
−0.5ωs ≤ ω ≤ 0.5ωs (or 0 ≤ ω ≤ ωs). Figure 9.1 illustrates how the mapping z ⇒ ests translates points in
the s-domain to corresponding points in the z-domain.
The origin: The origin s = 0 is mapped to z = 1, as are all other points corresponding to s = 0± jkωs for
which z = ejkωsts = ejk2π = 1.

The jω-axis: For points on the jω-axis, σ = 0, z = ejΩ, and |z| = 1. As ω increases from ω0 to ω0 + ωs,
the frequency Ω increases from Ω0 to Ω0 + 2π, and segments of the jω-axis of length ωs = 2πS thus map to
the unit circle, over and over.
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ωsStrips of width in the LHP are mapped
to the interior of the unit circle.
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Segments of the 

z = 1.

Figure 9.1 Characteristics of the mapping z ⇒ exp(sts)

The left half-plane: In the left half-plane, σ < 0. Thus, z = eσtsejΩ or |z| = eσts < 1. This describes the
interior of the unit circle in the z-plane. In other words, strips of width ωs in the left half of the s-plane are
mapped to the interior of the unit circle, over and over.

The right half-plane: In the right half-plane, σ > 0, and we see that |z| = eσts > 1. Thus, strips of width
ωs in the right half of the s-plane are repeatedly mapped to the exterior of the unit circle.

REVIEW PANEL 9.1
The Mapping z ⇒ ests Is Not a Unique One-to-One Mapping
Strips of width ωs = 2πS (along the jω-axis) in the left half of the s-plane map to the interior of the unit
circle, over and over.

9.2.3 Practical Mappings

The transcendental nature of the transformation s ⇒ ln(z)/ts does not permit direct conversion of a rational
transfer function H(s) to a rational transfer function H(z). Nor does it permit a one-to-one correspondence
for frequencies higher than 0.5S Hz. A unique representation in the z-plane is possible only for band-limited
signals sampled above the Nyquist rate. Practical mappings are based on one of the following methods:

1. Matching the time response (the response-invariant transformation)

2. Matching terms in a factored H(s) (the matched z-transform)

3. Conversion of system differential equations to difference equations

4. Rational approximations for z ⇒ ests or s ⇒ ln(z)/ts

In general, each method results in different mapping rules, and leads to different forms for the digital
filter H(z) from a given analog filter H(s), and not all methods preserve stability. When comparing the
frequency response, it is helpful to remember that the analog frequency range 0 ≤ f ≤ 0.5S for the frequency
response of H(s) corresponds to the digital frequency range 0 ≤ F ≤ 0.5 for the frequency response of H(z).
The time-domain response can be compared only at the sampling instants t = nts.

9.3 Response Matching
The idea behind response matching is to match the time-domain analog and digital response for a given
input, typically the impulse response or step response. Given the analog filter H(s), and the input x(t)
whose invariance we seek, we first find the analog response y(t) as the inverse transform of H(s)X(s). We
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then sample x(t) and y(t) at intervals ts to obtain their sampled versions x[n] and y[n]. Finally, we compute
H(z) = Y (z)/X(z) to obtain the digital filter. The process is illustrated in Figure 9.2.

[n]y

[n]x

H(z)=
X(z)
Y(z)

Input x(t)

=Y(s) X(s) H(s)

t = nts

t = nts
Y(z)

X(z)

X(s) y(t)

Sample

Sample

Figure 9.2 The concept of response invariance

Response-invariant matching yields a transfer function that is a good match only for the time-domain
response to the input for which it was designed. It may not provide a good match for the response to other
inputs. The quality of the approximation depends on the choice of the sampling interval ts, and a unique
correspondence is possible only if the sampling rate S = 1/ts is above the Nyquist rate (to avoid aliasing).
This mapping is thus useful only for analog systems such as lowpass and bandpass filters, whose frequency
response is essentially band-limited. This also implies that the analog transfer function H(s) must be strictly
proper (with numerator degree less than the denominator degree).

REVIEW PANEL 9.2
Response-Invariant Mappings Match the Time Response of the Analog and Digital Filter
The response y(t) of H(s) matches the response y[n] of H(z) at the sampling instants t = nts.

EXAMPLE 9.1 (Response-Invariant Mappings)

(a) Convert H(s) =
1

s + 1
to a digital filter H(z), using impulse invariance, with ts = 1 s.

For impulse invariance, we select the input as x(t) = δ(t). We then find

X(s) = 1 Y (s) = H(s)X(s) =
1

s + 1
y(t) = e−tu(t)

The sampled versions of the input and output are

x[n] = δ[n] y[n] = e−ntsu[n]

Taking the ratio of their z-transforms and using ts = 1, we obtain

H(z) =
Y (z)
X(z)

= Y (z) =
z

z − e−ts
=

z

z − e−1
=

z

z − 0.3679

The frequency response of H(s) and H(z) is compared in Figure E9.1(a).
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Figure E9.1 Frequency response of H(s) and H(z) for Example 9.1(a)

The dc gain of H(s) (at s = 0) is unity, but that of H(z) (at z = 1) is 1.582. Even if we normalize the
dc gain of H(z) to unity, as in Figure E9.1(b), we see that the frequency response of the analog and
digital filters is different. However, the analog impulse response h(t) = e−t matches h[n] = e−nu[n] at
the sampling instants t = nts = n. A perfect match for the time-domain response, for which the filter
was designed, lies at the heart of response invariant mappings. The time-domain response to any other
inputs will be different. For example, the step response of the analog filter is

S(s) =
1

s(s + 1)
=

1
s
− 1

s + 1
s(t) = (1− e−t)u(t)

To find the step response S(z) of the digital filter whose input is u[n] ⇔ z/(z − 1), we use partial
fractions on S(z)/z to obtain

S(z) =
z2

(z − 1)(z − e−1)
=

ze/(e− 1)
z − 1

+
z/(1− e)
z − e−1

s[n] =
e

e− 1
u[n] +

1
1− e

e−nu[n]

The sampled version of s(t) is quite different from s[n]. Figure E9.1A reveals that, at the sampling
instants t = nts, the impulse response of the two filters shows a perfect match, but the step response
does not, and neither will the time-domain response to any other input.
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Figure E9.1A Impulse response and step response of H(s) and H(z) for Example 9.1(a)

(b) Convert H(s) =
4

(s + 1)(s + 2)
to H(z), using various response-invariant transformations.

1. Impulse invariance: We choose x(t) = δ(t). Then, X(s) = 1, and

Y (s) = H(s)X(s) =
4

(s + 1)(s + 2)
=

4
s + 1

− 4
s + 2

y(t) = 4e−tu(t)− 4e−2tu(t)
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The sampled input and output are then

x[n] = δ[n] y[n] = 4e−ntsu[n]− 4e−2ntsu[n]

The ratio of their z-transforms yields the transfer function of the digital filter as

HI(z) =
Y (z)
X(z)

= Y (z) =
4z

z − e−ts
− 4z

z − e−2ts

2. Step invariance: We choose x(t) = u(t). Then, X(s) = 1/s, and

Y (s) = H(s)X(s) =
4

s(s + 1)(s + 2)
=

2
s
− 4

s + 1
+

2
s + 2

y(t) = (2− 4e−t + 2e−2t)u(t)

The sampled input and output are then

x[n] = u[n] y[n] = (2− 4e−nts + 2e−2nts)u[n]

Their z-transforms give

X(z) =
z

z − 1
Y (z) =

2z

z − 1
− 4z

z − e−ts
+

2z

z − e−2ts

The ratio of their z-transforms yields the transfer function of the digital filter as

HS(z) =
Y (z)
X(z)

= 2− 4(z − 1)
z − e−ts

+
2(z − 1)
z − e−2ts

3. Ramp invariance: We choose x(t) = r(t) = tu(t). Then, X(s) = 1/s2, and

Y (s) =
4

s2(s + 1)(s + 2)
=
−3
s

+
2
s2

+
4

s + 1
− 1

s + 2
y(t) = (−3 + 2t + 4e−t − e−2t)u(t)

The sampled input and output are then

x[n] = ntsu[n] y[n] = (−3 + 2nts + 4e−nts − e−2nts)u[n]

Their z-transforms give

X(z) =
zts

(z − 1)2
Y (z) =

−3z

z − 1
+

2zts
(z − 1)2

+
4z

z − e−ts
− z

z − e−2ts

The ratio of their z-transforms yields the transfer function of the digital filter as

HR(z) =
−3(z − 1)

ts
+ 2 +

4(z − 1)2

ts(z − e−ts)
− (z − 1)2

ts(z − e−2ts)
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9.3.1 The Impulse-Invariant Transformation

The impulse-invariant mapping yields some useful design relations. We start with a first-order analog filter
described by H(s) = 1/(s + p). The impulse response h(t), and its sampled version h[n], are

h(t) = e−ptu(t) h[n] = e−pntsu[n] =
(
e−pts

)n
u[n] (9.8)

The z-transform of h[n] (which has the form αnu[n], where α = e−pts), yields the transfer function H(z) of
the digital filter as

H(z) =
z

z − e−pts
, |z| > e−pts (9.9)

This relation suggests that we can go directly from H(s) to H(z), using the mapping

1
s + p

=⇒ z

z − e−pts
(9.10)

We can now extend this result to filters of higher order. If H(s) is in partial fraction form, we can obtain
simple expressions for impulse-invariant mapping. If H(s) has no repeated roots, it can be described as a sum
of first-order terms, using partial fraction expansion, and each term can be converted by the impulse-invariant
mapping to give

H(s) =
N∑

k=1

Ak

s + pk
H(z) =

N∑

k=1

zAk

z − e−pkts
, ROC: |z| > e−|p|maxts (9.11)

Here, the region of convergence of H(z) is in terms of the largest pole magnitude |p|max of H(s).

REVIEW PANEL 9.3
Impulse-Invariant Design Requires H(s) in Partial Fraction Form

1
s + pk

=⇒ z

z − e−pkts
(for each term in the partial fraction expansion)

If the denominator of H(s) also contains repeated roots, we start with a typical kth term Hk(s) with a
root of multiplicity M , and find

Hk(s) =
Ak

(s + pk)M
hk(t) =

Ak

(M − 1)!
tM−1e−pktu(t) (9.12)

The sampled version hk[n], and its z-transform, can then be found by the times-n property of the z-transform.
Similarly, quadratic terms corresponding to complex conjugate poles in H(s) may also be simplified to obtain
a real form. These results are listed in Table 9.1. Note that impulse-invariant design requires H(s) in partial
fraction form and yields a digital filter H(z) in the same form. It must be reassembled if we need a composite
rational function form. The left half-plane poles of H(s) (corresponding to pk > 0) map into poles of H(z)
that lie inside the unit circle (corresponding to z = e−pkts < 1). Thus, a stable analog filter H(s) is
transformed into a stable digital filter H(z).

REVIEW PANEL 9.4
Impulse-Invariant Mappings Are Prone to Aliasing but Preserve Stability
The analog impulse response h(t) matches h[n] at the sampling instants.
Impulse-invariant mappings are not suitable for highpass or bandstop filter design.
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Table 9.1 Impulse-Invariant Transformations

Term Form of H(s) H(z) (with α = e−pts)

Distinct A

(s + p)
Az

(z − α)

Complex conjugate AejΩ

s + p + jq
+

Ae−jΩ

s + p− jq

2z2A cos(Ω)− 2Aαz cos(Ω + qts)
z2 − 2αz cos(qts) + α2

Repeated twice A

(s + p)2
Ats

αz

(z − α)2

Repeated thrice A

(s + p)3
0.5At2s

αz(z + α)
(z − α)3

EXAMPLE 9.2 (Impulse-Invariant Mappings)

(a) Convert H(s) =
4s + 7

s2 + 5s + 4
to H(z), using impulse invariance at S = 2 Hz.

First, by partial fractions, we obtain

H(s) =
4s + 7

s2 + 5s + 4
=

4s + 7
(s + 1)(s + 4)

=
3

s + 4
+

1
s + 1

The impulse-invariant transformation, with ts = 1/S = 0.5 s, gives

H(z) =
3z

z − e−4ts
+

z

z − e−ts
=

3z

z − e−2
+

z

z − e−0.5
=

4z2 − 1.9549z

z2 − 0.7419z + 0.0821

(b) Convert H(s) =
4

(s + 1)(s2 + 4s + 5)
to H(z), using impulse invariance, with ts = 0.5 s.

The partial fraction form for H(s) is

H(s) =
2

s + 1
+

−1− j

s + 2 + j
+

−1 + j

s + 2− j

For the second term, we write K = (−1 − j) =
√

2e−j3π/4 = AejΩ. Thus, A =
√

2 and Ω = −3π/4.
We also have p = 2, q = 1, and α = e−pts = 1/e. With these values, Table 9.1 gives

H(z) =
2z

z − 1/
√

e
+

2
√

2z2 cos(− 3π
4 )− 2

√
2(z/e)cos(0.5− 3π

4 )
z2 − 2(z/e)cos(0.5) + e−2

This result simplifies to

H(z) =
0.2146z2 + 0.0930z

z3 − 1.2522z2 + 0.5270z − 0.0821
Comment: The first step involved partial fractions. Note that we cannot compute H(z) as the cascade

of the impulse-invariant digital filters for H1(s) =
4

s + 1
and H2(s) =

1
s2 + 4s + 5

.

c©Ashok Ambardar, September 1, 2003



370 Chapter 9 Design of IIR Filters

9.3.2 Modifications to Impulse-Invariant Design

Gain Matching

The mapping H(s) = 1/(s + pk) ⇒ H(z) = z/(z − e−pkts) reveals that the dc gain of the analog term H(s)
(with s = 0) equals 1/pk but the dc gain of the digital term H(z) (with z = 1) is 1/(1 − e−pkts). If the
sampling interval ts is small enough such that pkts ¿ 1, we can use the approximation e−pkts ≈ 1 − pkts
to give the dc gain of H(z) as 1/pkts. This suggests that the transfer function H(z) must be multiplied by
ts in order for its dc gain to closely match the dc gain of the analog filter H(s). This scaling is not needed
if we normalize (divide) the analog frequency specifications by the sampling frequency S before designing
the digital filter, because normalization is equivalent to choosing ts = 1 during the mapping. In practice,
regardless of normalization, it is customary to scale H(z) to KH(z), where the constant K is chosen to
match the gain of H(s) and KH(z) at a convenient frequency (typically, dc). Since the scale factor also
changes the impulse response of the digital filter from h[n] to Kh[n], the design is now no longer strictly
impulse invariant.

REVIEW PANEL 9.5
Gain Matching at dc in Impulse-Invariant Design
Design H(z) from H(s), compute K = H(s)|s=0/H(z)z=1 and multiply H(z) by K.

Accounting for Sampling Errors

The impulse-invariant method suffers from errors in sampling h(t) if it shows a jump at t = 0. If h(0) is
not zero, the sampled value at the origin should be chosen as 0.5h(0). As a result, the impulse response
of the digital filter must be modified to hM [n] = h[n] − 0.5h(0)δ[n]. This leads to the modified transfer
function HM (z) = H(z) − 0.5h(0). The simplest way to find h(0) is to use the initial value theorem
h(0) = lims→∞ sH(s). Since h(0) is nonzero only if the degree N of the denominator of H(s) exceeds the
degree M of its numerator by 1, we need this modification only if N −M = 1.

EXAMPLE 9.3 (Modified Impulse-Invariant Design)

(a) (Impulse-Invariant Design)

Convert the analog filter H(s) =
1

s + 1
, with a cutoff frequency of 1 rad/s, to a digital filter with a

cutoff frequency of fc = 10 Hz and S = 60 Hz, using impulse invariance and gain matching.

There are actually two ways to do this:

1. We normalize by the sampling frequency S, which allows us to use ts = 1 in all subsequent
computations. Normalization gives ΩC = 2πfC/S = π

3 . We denormalize H(s) to ΩC to get

H1(s) = H
( s

ΩC

)
=

π
3

s + π
3

Finally, with ts = 1, impulse invariance gives

H1(z) =
π
3 z

z − e−π/3
=

1.0472z

z − 0.3509
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2. We first denormalize H(s) to fC to get

H2(s) = H
( s

2πfC

)
=

20π

s + 20π

We use impulse invariance and multiply the resulting digital filter transfer function by ts to get

H2(z) = ts
20πz

z − e−20πts
=

z π
3

z − e−π/3
=

1.0472z

z − 0.3509

Comment: Both approaches yield identical results. The first method automatically accounts for the
gain matching. For a perfect gain match at dc, we should multiply H(z) by the gain factor

K =
1

H(1)
=

1− 0.3509
1.0472

= 0.6198

(b) (Modified Impulse-Invariant Design)

Convert H(s) =
1

s + 1
to a digital filter, with ts = 1 s, using modified impulse invariance to account

for sampling errors and gain matching at dc.

Using impulse invariance, the transfer function of the digital filter is

H(z) =
z

z − e−1
=

z

z − 0.3679

Since h(t) = e−tu(t), h(t) has a jump of 1 unit at t = 0, and thus h(0) = 1. The modified impulse-
invariant mapping thus gives

HM (z) = H(z)− 0.5h(0) =
z

z − e−1
− 0.5 =

0.5(z + e−1)
z − e−1

=
0.5(z + 0.3679)

z − 0.3679

The dc gain of H(s) is unity. We compute the dc gain of H(z) and HM (z) (with z = 1) as

H(z)|z=1 =
1

1− e−1
= 1.582 HM (z)|z=1 = 0.5

1 + e−1

1− e−1
= 1.082

For unit dc gain, the transfer functions of the original and modified digital filter become

H1(z) =
z

1.582(z − e−1)
=

0.6321z

z − 0.3679
HM1(z) =

0.5(z + e−1)
1.082(z − e−1)

=
0.4621(z + 0.3679)

z − 0.3679

Figure E9.3B compares the response of H(s), H(z), H1(z), HM (z), and HM1(z). It clearly reveals
the improvement due to each modification.
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Figure E9.3B Response of the various filters for Example 9.3(b)

(c) (Modified Impulse-Invariant Design)

Convert the analog filter H(s) =
4s + 7

s2 + 5s + 4
to a digital filter, with ts = 0.5 s, using modified impulse

invariance to account for sampling errors.

Since the numerator degree is M = 1 and the denominator degree is N = 2, we have N −M = 1, and
a modification is needed. The initial value theorem gives

h(0) = lim
s→∞

sH(s) = lim
s→∞

4s2 + 7s

s2 + 5s + 4
=

4 + 7/s

1 + 5/s + 4/s2
= 4

The transfer function of the digital filter using impulse-invariant mapping was found in part (a) as

H(z) =
3z

z − e−2
+

z

z − e−0.5

The modified transfer function is thus

HM (z) = H(z)− 0.5h(0) =
3z

z − e−2
+

z

z − e−0.5
− 2 =

2z2 − 0.4712z − 0.1642
z2 − 0.7419z + 0.0821

(d) (Modified Impulse-Invariant Design)

Convert H(s) =
4

(s + 1)(s2 + 4s + 5)
to a digital filter, with ts = 0.5 s, using modified impulse invari-

ance (if required) to account for sampling errors.

Since the numerator degree is M = 0 and the denominator degree is N = 3, we have N−M = 3. Since
this does not equal 1, the initial value is zero, and no modification is required. The transfer function
of the digital filter using impulse-invariant mapping is thus

H(z) =
0.2146z2 + 0.0930z

z3 − 1.2522z2 + 0.5270z − 0.0821
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9.4 The Matched z-Transform for Factored Forms
The impulse-invariant mapping may be expressed as

1
s + α

=⇒ z

z − e−αts
s + α =⇒ z − e−αts

z
(9.13)

The matched z-transform uses this mapping to convert each numerator and denominator term of a factored
H(s) to yield the digital filter H(z), also in factored form, as

H(s) = C

M∏

i=1

(s− zi)

N∏

k=1

(s− pk)

H(z) = (KzP )

M∏

i=1

(z − ezits)

N∏

k=1

(z − epkts)

(9.14)

The power P of zP in H(z) is P = N −M , the difference in the degree of the denominator and numerator
polynomials of H(s). The constant K is chosen to match the gains of H(s) and H(z) at some convenient
frequency (typically, dc).

For complex roots, we can replace each conjugate pair using the mapping

(s + p− jq)(s + p + jq) =⇒ z2 − 2ze−pts cos(qts) + e−2pts

z2
(9.15)

Since poles in the left half of the s-plane are mapped inside the unit circle in the z-plane, the matched z-
transform preserves stability. It converts an all-pole analog system to an all-pole digital system but may not
preserve the frequency response of the analog system. As with the impulse-invariant mapping, the matched
z-transform also suffers from aliasing errors.

REVIEW PANEL 9.6
The Matched z-Transform Requires H(s) in Factored Form

(s + pk) =⇒ z − e−pkts

z
(for each factor of H(s) in factored form)

The matched z-transform is not suitable for highpass or bandpass filter design.

9.4.1 Modifications to Matched z-Transform Design

The matched z-transform maps the zeros of H(s) at s = ∞ (corresponding to the highest analog frequency
f = ∞) to z = 0. This yields the term zP in the design relation. In the modified matched z-transform, some
or all of these zeros are mapped to z = −1 (corresponding to the highest digital frequency F = 0.5 or the
analog frequency f = 0.5S). Two modifications to H(z) are in common use:

1. Move all zeros from z = 0 to z = −1 (or replace zP by (z + 1)P ) in H(z).

2. Move all but one of the zeros at z = 0 to z = −1 (or replace zP by z(z + 1)P−1 in H(z)).

These modifications allow us to use the matched z-transform even for highpass and bandstop filters.

REVIEW PANEL 9.7
Two Modifications to Matched z-Transform Design
1. Move all zeros from z = 0 to z = −1. 2. Move all but one of the zeros at z = 0 to z = −1.
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EXAMPLE 9.4 (The Matched z-Transform)

Convert H(s) =
4

(s + 1)(s + 2)
to H(z) by the matched z-transform and its modifications, with ts = 0.5 s.

(a) No modification: The matched z-transform yields

H(z) =
Kz2

(z − e−ts)(z − e−2ts)
=

Kz2

(z − e−0.5)(z − e−1)
=

Kz2

z2 − 0.9744z + 0.2231

(b) First modification: Replace both zeros in H(z) (the term z2) by (z + 1)2:

H1(z) =
K1(z + 1)2

(z − e−ts)(z − e−2ts)
=

K1(z + 1)2

(z − e−0.5)(z − e−1)
=

K1(z + 1)2

z2 − 0.9744z + 0.2231

(c) Second modification: Replace only one zero in H(z) (the term z2) by z + 1:

H2(z) =
K2z(z + 1)

(z − e−ts)(z − e−2ts)
=

K2z(z + 1)
(z − e−0.5)(z − e−1)

=
K2z(z + 1)

z2 − 0.9744z + 0.2231

Comment: The constants K, K1, and K2 may be chosen for a desired gain.

9.5 Mappings from Discrete Algorithms
Discrete-time algorithms are often used to develop mappings to convert analog filters to digital filters. In
the discrete domain, the operations of integration and differentiation are replaced by numerical integration
and numerical differences, respectively. The mappings are derived by equating the transfer function H(s) of
the ideal analog operation with the transfer function H(z) of the corresponding discrete operation.

9.5.1 Mappings from Difference Algorithms

Numerical differences are often used to convert differential equations to difference equations. Three such
difference algorithms are listed in Table 9.2.

Table 9.2 Numerical Difference Algorithms

Difference Numerical Algorithm Mapping for s

Backward y[n] =
x[n]− x[n− 1]

ts
s =

z − 1
zts

Forward y[n] =
x[n + 1]− x[n]

ts
s =

z − 1
ts

Central y[n] =
x[n + 1]− x[n− 1]

2ts
s =

z2 − 1
2zts
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ts

−1n

−1]n[x
[n]x

[n]y = [n]x −1]n[x
ts

ts

+1n

[n]x

+1]n[x
[n]y = +1]n[x [n]x

ts

Backward Euler algorithm Forward Euler algorithm

n

−

n

−

Figure 9.3 Backward-difference and forward-difference algorithms

Numerical differences approximate the slope (derivative) at a point, as illustrated for the backward-
difference and forward-difference algorithms in Figure 9.3.

The mappings that result from the operations (also listed in Table 9.2) are based on comparing the ideal
derivative operator H(s) = s with the transfer function H(z) of each difference algorithm, as follows:

Backward difference: y[n] =
x[n]− x[n− 1]

ts

Y (z) =
X(z)− z−1X(z)

ts
H(z) =

Y (z)
X(z)

=
z − 1
zts

s =
z − 1
zts

(9.16)

Forward difference: y[n] =
x[n + 1]− x[n]

ts

Y (z) =
zX(z)−X(z)

ts
H(z) =

Y (z)
X(z)

=
z − 1

ts
s =

z − 1
ts

(9.17)

Central difference: y[n] =
x[n + 1]− x[n− 1]

2ts

Y (z) =
zX(z)− z−1X(z)

2ts
H(z) =

Y (z)
X(z)

=
z2 − 1
2zts

s =
z2 − 1
2zts

(9.18)

9.5.2 Stability Properties of the Backward-Difference Algorithm

The backward-difference mapping s → (z − 1)/zts results in

z = 0.5 + 0.5
1 + sts
1− sts

z − 0.5 = 0.5
1 + sts
1− sts

(9.19)

To find where the jω-axis maps, we set σ = 0 to obtain

z − 0.5 = 0.5
1 + jωts
1− jωts

|z − 0.5| = 0.5 (9.20)

Thus, the jω-axis is mapped into a circle of radius 0.5, centered at z = 0.5, as shown in Figure 9.4.
Since this region is within the unit circle, the mapping preserves stability. It does, however, restrict the

pole locations of the digital filter. Since the frequencies are mapped into a smaller circle, this mapping is a
good approximation only in the vicinity of z = 1 or Ω ≈ 0 (where it approximates the unit circle), which
implies high sampling rates.
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jω

of radius 0.5 and centered at z = 0.5

Im[ z ]

Re[ z ]

-planes

-planez

-planesσ
1/2

Unit circle

The left half of the 
is mapped to the interior of a circle

The backward-difference mapping

Figure 9.4 Mapping region for the mapping based on the backward difference

9.5.3 The Forward-Difference Algorithm

The mapping for the forward-difference is s → (z − 1)/ts. With z = u + jv, we obtain

z = u + jv = 1 + ts(σ + jω) (9.21)

If σ = 0, then u = 1, and the jω-axis maps to z = 1. If σ > 0, then u > 1, and the right half of the s-plane
maps to the right of z = 1. If σ < 0, then u < 1, and the left half of the s-plane maps to the left of z = 1,
as shown in Figure 9.5. This region (in the z-plane) includes not only the unit circle but also a vast region
outside it. Thus, a stable analog filter with poles in the left half of the s-plane may result in an unstable
digital filter H(z) with poles anywhere to the left of z = 1 (but not inside the unit circle) in the z-plane !

is mapped to a region to the left of 1= 1z

The forward-difference mapping

Re[

]

z

z-plane

]
The left half of the 

Im[s

-planez

-plane

ω

s
σ

Unit circle

j

Figure 9.5 Mapping region for the mapping based on the forward difference

REVIEW PANEL 9.8
Mappings Based on the Backward Difference and Forward Difference

Backward difference: s =
z − 1
zts

(stable) Forward difference: s =
z − 1

ts
(not always stable)

EXAMPLE 9.5 (Mappings from Difference Algorithms)

(a) We convert the stable analog filter H(s) =
1

s + α
, α > 0, to a digital filter, using the backward-

difference mapping s = (z − 1)/zts to obtain

H(z) =
1

α + (z − 1)/zts
=

zts
(1 + αts)z − 1
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The digital filter has a pole at z = 1/(1 + αts). Since this is always less than unity if α > 0 (for a
stable H(s)) and ts > 0, we have a stable H(z).

(b) We convert the stable analog filter H(s) =
1

s + α
, α > 0, to a digital filter, using the forward-difference

mapping s = (z − 1)/ts to obtain

H(z) =
1

α + (z − 1)/ts
=

ts
z − (1− αts)

The digital filter has a pole at z = 1 − αts and is thus stable only if 0 < αts < 2 (to ensure |z| < 1).
Since α > 0 and ts > 0, we are assured a stable system only if α < 2/ts. This implies that the sampling
rate S must be chosen to ensure that S > 0.5α.

(c) We convert the stable analog filter H(s) =
1

s + α
, α > 0, to a digital filter, using the central-difference

mapping s = (z2 − 1)/2zts to obtain

H(z) =
1

α + (z2 − 1)/2zts
=

2zts
z2 + 2αtsz − 1

The digital filter has a pair of poles at z = −αts ±
√

(αts)2 + 1. The magnitude of one of the poles is
always greater than unity, and the digital filter is thus unstable for any α > 0.

Comment: Clearly, from a stability viewpoint, only the mapping based on the backward difference is useful
for the filter H(s) = 1/(s + α). In fact, this mapping preserves stability for any stable analog filter.

9.5.4 Mappings from Integration Algorithms

Two commonly used algorithms for numerical integration are based on the rectangular rule and trapezoidal
rule. These integration algorithms, listed in Table 9.3, estimate the “area” y[n] from y[n− 1] by using step
interpolation (for the rectangular rule) or linear interpolation (for the trapezoidal rule) between the samples
of x[n], as illustrated in Figure 9.6.

Table 9.3 Numerical Integration Algorithms

Rule Numerical Algorithm Mapping for s

Rectangular y[n] = y[n− 1] + tsx[n] s = 1
ts

(z − 1
z

)

Trapezoidal y[n] = y[n− 1] + 0.5ts (x[n] + x[n− 1]) s = 2
ts

(z − 1
z + 1

)

The mappings resulting from these operators are also listed in Table 9.3 and are based on comparing
the transfer function H(s) = 1/s of the ideal integrator with the transfer function H(z) of each integration
algorithm, as follows:
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[n]x

−1n

ts

[n]y = −1]n[y ts [n]x+

−1n

−1]n[x
[n]x

ts

ts[n]y = −1]n[y + 0.5 [n]x −1]n[x+{ }

Rectangular rule Trapezoidal rule

n n

Figure 9.6 Illustrating numerical integration algorithms

Rectangular rule: y[n] = y[n− 1] + tsx[n]

Y (z) = z−1Y (z) + tsX(z) H(z) =
Y (z)
X(z)

=
zts

z − 1
s =

z − 1
zts

(9.22)

We remark that the rectangular algorithm for integration and the backward difference for the derivative
generate identical mappings.

Trapezoidal rule: y[n] = y[n− 1] + 0.5ts(x[n] + x[n− 1])

Y (z) = z−1Y (z) + 0.5ts[X(z) + z−1X(z) H(z) =
Y (z)
X(z)

=
0.5ts(z + 1)

z − 1
s =

2
ts

[
z − 1
z + 1

]
(9.23)

The mapping based on the trapezoidal rule is also called Tustin’s rule.

9.5.5 Stability Properties of Integration-Algorithm Mappings

Mappings based on the rectangular and trapezoidal algorithms always yield a stable H(z) for any stable
H(s), and any choice of ts. The rectangular rule is equivalent to the backward-difference algorithm. It thus
maps the left half of the s-plane to the interior of a circle of radius 0.5 in the z-plane, centered at z = 0.5,
and is always stable. For the trapezoidal rule, we express z in terms of s = σ + jω to get

z =
2 + sts
2− sts

=
2 + σts + jωts
2− σts − jωts

(9.24)

If σ = 0, we get |z| = 1, and for σ < 0, |z| < 1. Thus, the jω-axis is mapped to the unit circle, and the left
half of the s-plane is mapped into the interior of the unit circle, as shown in Figure 9.7. This means that a
stable analog system will always yield a stable digital system using this transformation. If ω = 0, we have
z = 1, and the dc gain of both the analog and digital filters is identical.

Discrete difference and integration algorithms are good approximations only for small digital frequencies
(F < 0.1, say) or high sampling rates S (small ts) that may be well in excess of the Nyquist rate. This is
why the sampling rate is a critical factor in the frequency-domain performance of these algorithms. Another
factor is stability. For example, the mapping based on the central-difference algorithm is not very useful
because it always produces an unstable digital filter. Algorithms based on trapezoidal integration and the
backward difference are popular because they always produce stable digital filters.
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is mapped to the interior of the unit circle

The bilinear transform

Im[ z ]

Re[ z

ω

]

s

s plane

-plane
-plane

z

σ

j

Unit circle

The left half of the

Figure 9.7 Mapping region for the trapezoidal integration algorithm

REVIEW PANEL 9.9
Mappings Based on Numerical Integration Algorithms

Rectangular rule: s =
z − 1
zts

(always stable)

Trapezoidal rule: s =
2
ts

[
z − 1
z + 1

]
(always stable)

EXAMPLE 9.6 (Mappings from Integration Algorithms)

(a) Convert H(s) =
1

s + α
, α > 0, to a digital filter H(z), using the trapezoidal numerical integration

algorithm, and comment on the stability of H(z).

Using the the mapping based on the trapezoidal rule, we obtain

H(z) = H(s)
∣∣∣∣
s=

2(z−1)
ts(z+1)

=
ts(z + 1)

(2 + αts)z − (2− αts)

The pole location of H(z) is z = (2−αts)/(2 + αts). Since this is always less than unity (if α > 0 and
ts > 0), we have a stable H(z).

(b) Simpson’s algorithm for numerical integration finds y[n] over two time steps from y[n− 2] and is given
by

y[n] = y[n− 2] + ts

3 (x[n] + 4x[n− 1] + x[n− 2])

Derive a mapping based on Simpson’s rule, use it to convert H(s) =
1

s + α
, α > 0, to a digital filter

H(z), and comment on the stability of H(z).

The transfer function HS(z) of this algorithm is found as follows:

Y (z) = z−2Y (z) + ts

3 (1 + 4z−1 + z−2)X(z) HS(z) = ts
z2 + 4z + 1
3(z2 − 1)

Comparison with the transfer function of the ideal integrator H(s) = 1/s gives

s =
3
ts

[
z2 − 1

z2 + 4z + 1

]

c©Ashok Ambardar, September 1, 2003



380 Chapter 9 Design of IIR Filters

If we convert H(s) = 1/(s + α), using this mapping, we obtain

H(z) =
ts(z2 + 4z + 1)

(3 + αts)z2 + 4αtsz − (3− αts)

The poles of H(z) are the roots of (3 + αts)z2 + 4αtsz − (3−αts) = 0. The magnitude of one of these
roots is always greater than unity (if α > 0 and ts > 0), and H(z) is thus an unstable filter.

9.5.6 Frequency Response of Discrete Algorithms

The frequency response of an ideal integrator is HI(F ) = 1/j2πF . For an ideal differentiator, HD(F ) =
j2πF . In the discrete domain, the operations of integration and differentiation are replaced by numerical
integration and numerical differences. Table 9.4 lists some of the algorithms and their frequency response
H(F ).

Table 9.4 Discrete Algorithms and their Frequency Response

Algorithm Difference Equation Frequency Response

Numerical Differences

Backward y[n] = x[n]− x[n− 1] HB(F ) = 1− e−j2πF

Central y[n] = 1
2 (x[n + 1]− x[n− 1]) HC(F ) = j sin(2πF )

Forward y[n] = x[n + 1]− x[n] HF (F ) = ej2πF − 1

Numerical Integration

Rectangular y[n− 1] + x[n] HR(F ) =
1

1− e−j2πF

Trapezoidal y[n− 1] + 1
2 (x[n] + x[n− 1]) HT (F ) =

1 + e−j2πF

2(1− e−j2πF )

Simpson’s y[n− 2] + 1
3 (x[n] + 4x[n− 1] + x[n− 2]) HS(F ) =

1 + 4e−j2πF + e−j4πF

3(1− e−j4πF )

Numerical differences approximate the slope (derivative) at a point and numerical integration algorithms
estimate the area y[n] from y[n − 1] by using step, linear, or quadratic interpolation. Only Simpson’s rule
finds y[n] over two time steps from y[n−2]. Discrete algorithms are good approximations only at low digital
frequencies (F < 0.1, say). Even when we satisfy the sampling theorem, low digital frequencies mean high
sampling rates, well in excess of the Nyquist rate. This is why the sampling rate is a critical factor in the
frequency-domain performance of these operators. Another factor is stability. For example, if Simpson’s
rule is used to convert analog systems to discrete systems, it results in an unstable system. The trapezoidal
integration algorithm and the backward difference are two popular choices.
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EXAMPLE 9.7 (DTFT of Numerical Algorithms)
(a) For the trapezoidal numerical integration operator, the DTFT yields

Yp(F ) = Yp(F )e−j2πF + 0.5[Xp(F ) + e−j2πF Xp(F )]

A simple rearrangement leads to

HT (F ) =
Yp(F )
Xp(F )

= 0.5
[
1 + e−j2πF

1− e−j2πF

]
=

1
j2 tan(πF )

Normalizing this by HI(F ) = 1/j2πF and expanding the result, we obtain

HT (F )
HI(F )

=
j2πF

j2 tan(πF )
=

πF

tan(πF )
≈ 1− (πF )2

3
− (πF )4

45
− · · ·

Figure E9.7 shows the magnitude and phase error by plotting the ratio HT (F )/HI(F ). For an
ideal algorithm, this ratio should equal unity at all frequencies. At low frequencies (F ¿ 1), we
have tan(πF ) ≈ πF , and HT (F )/HI(F ) ≈ 1, and the trapezoidal rule is a valid approximation to
integration. The phase response matches the ideal phase at all frequencies.
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Figure E9.7 Frequency response of the numerical algorithms for Example 9.7

(b) Simpson’s numerical integration algorithm yields the following normalized result:

HS(F )
HI(F )

= 2πF

(
2 + cos 2πF

3 sin 2πF

)

It displays a perfect phase match for all frequencies, but has an overshoot in its magnitude response
past F = 0.25 and thus amplifies high frequencies. Note that Simpson’s algorithm yields a mapping
rule that results in an unstable filter.
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(c) For the forward difference operator, the DTFT yields

Yp(F ) = Xp(F )ej2πF −Xp(F ) = Xp(F )[ej2πF − 1] HF (F ) =
Yp(F )
Xp(F )

= ej2πF − 1

The ratio HF (F )/HD(F ) may be expanded as

HF (F )
HD(F )

= 1 + j
1
2!

(2πF )− 1
3!

(2πF )2 + · · ·

Again, we observe correspondence only at low digital frequencies (or high sampling rates). The high
frequencies are amplified, making the algorithm susceptible to high-frequency noise. The phase response
also deviates from the true phase, especially at high frequencies.

(d) For the central difference algorithm, we find HC(F )/HD(F ) as

HC(F )
HD(F )

=
sin(2πF )

2πF
= 1− 1

3!
(2πF )2 +

1
5!

(2πF )4 + · · ·

We see a perfect match only for the phase at all frequencies.

9.5.7 Mappings from Rational Approximations

Some of the mappings that we have derived from numerical algorithms may also be viewed as rational
approximations of the transformations z → ests and s → ln(z)/ts. The forward-difference mapping is based
on a first-order approximation for z = ests and yields

z = ests ≈ 1 + sts, sts ¿ 1 s ≈ z − 1
ts

(9.25)

The backward-difference mapping is based on a first-order approximation for z−1 = e−sts and yields

1
z

= e−sts ≈ 1− sts, sts ¿ 1 s ≈ z − 1
zts

(9.26)

The trapezoidal mapping is based on a first-order rational function approximation of s = ln(z)/ts, with ln(z)
described by a power series, and yields

s =
ln(z)
ts

=
2
ts

[
z − 1
z + 1

]
+

2
3ts

[
z − 1
z + 1

]2

+
2

5ts

[
z − 1
z + 1

]2

+ · · · ≈ 2
ts

[
z − 1
z + 1

]
(9.27)

9.6 The Bilinear Transformation
If we generalize the mapping based on the trapezoidal rule by letting C = 2/ts, we obtain the bilinear
transformation, defined by

s = C
z − 1
z + 1

z =
C + s

C − s
(9.28)
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If we let σ = 0, we obtain the complex variable z in the form

z =
C + jω

C − jω
= ej2 tan−1(ω/C) (9.29)

Since z = ejΩ, where Ω = 2πF is the digital frequency, we find

Ω = 2 tan−1(ω/C) ω = C tan(0.5Ω) (9.30)

This is a nonlinear relation between the analog frequency ω and the digital frequency Ω. When ω = 0, Ω = 0,
and as ω → ∞, Ω → π. It is thus a one-to-one mapping that nonlinearly compresses the analog frequency
range −∞ < f < ∞ to the digital frequency range −π < Ω < π. It avoids the effects of aliasing at the
expense of distorting, compressing, or warping the analog frequencies, as shown in Figure 9.8.

The higher the frequency, the more severe is the warping. We can compensate for this warping (but
not eliminate it) if we prewarp the frequency specifications before designing the analog system H(s) or
applying the bilinear transformation. Prewarping of the frequencies prior to analog design is just a scaling
(stretching) operation based on the inverse of the warping relation, and is given by

ω = C tan(0.5Ω) (9.31)

Figure 9.9 shows a plot of ω versus Ω for various values of C, compared with the linear relation ω = Ω.
The analog and digital frequencies always show a match at the origin (ω = Ω = 0), and at one other value
dictated by the choice of C.

We point out that the nonlinear stretching effect of the prewarping often results in a filter of lower order,
especially if the sampling frequency is not high enough. For high sampling rates, it turns out that the
prewarping has little effect and may even be redundant.

ω = C tan (Ω/2)

ω (analog)

Ω (digital)

Nonlinear compression (warping)

Equal-width intervals

Figure 9.8 The warping effect of the bilinear transformation

The popularity of the bilinear transformation stems from its simple, stable, one-to-one mapping. It avoids
problems caused by aliasing and can thus be used even for highpass and bandstop filters. Though it does
suffer from warping effects, it can also compensate for these effects, using a simple relation.

REVIEW PANEL 9.10
The Bilinear Transformation Avoids Aliasing at the Expense of Nonlinear Warping

Bilinear transformation: s = C
z − 1
z + 1

Warping relation: ω = C tan(0.5Ω)
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For all values of C, we see a match at the origin.

For some values of C, we see a match at one more point.

ω (analog)

C =1

ω = C tan (Ω/2)

= 2C

Ω (digital)= 0.5C
π

π
ω = Ω

Figure 9.9 The warping relation ω = C tan(0.5Ω) for various choices of C

9.6.1 Using the Bilinear Transformation

Given an analog transfer function H(s) whose response at the analog frequency ωA is to be matched to H(z)
at the digital frequency ΩD, we may design H(z) in one of two ways:

1. We pick C by matching ωA and the prewarped frequency ΩD, and obtain H(z) from H(s), using the

transformation s = C
z − 1
z + 1

. This process may be summarized as follows:

ωA = C tan(0.5ΩD) C =
ωA

tan(0.5ΩD)
H(z) = H(s)

∣∣
s=C(z−1)/(z+1)

(9.32)

2. We pick a convenient value for C (say, C = 1). This actually matches the response at an arbitrary
prewarped frequency ωx given by

ωx = tan(0.5ΩD) (9.33)

Next, we frequency scale H(s) to H1(s) = H(sωA/ωx), and obtain H(z) from H1(s), using the trans-

formation s =
z − 1
z + 1

(with C = 1). This process may be summarized as follows (for C = 1):

ωx = tan(0.5ΩD) H1(s) = H(s)
∣∣
s=sωA/ωx

H(z) = H1(s)
∣∣
s=(z−1)/(z+1)

(9.34)

The two methods yield an identical digital filter H(z). The first method does away with the scaling of H(s),
and the second method allows a convenient choice for C.

REVIEW PANEL 9.11
The Bilinear Transformation Allows Gain Matching by Appropriate Choice of C

Choose C =
ωA

tan(0.5ΩD)
to match the gain of H(s) at ωA to the gain of H(z) at ΩD.

EXAMPLE 9.8 (Using the Bilinear Transformation)

(a) Consider a Bessel filter described by H(s) =
3

s2 + 3s + 3
. Design a digital filter whose magnitude at

f0 = 3 kHz equals the magnitude of H(s) at ωA = 4 rad/s if the sampling rate S = 12 kHz.

The digital frequency is Ω = 2πf0/S = 0.5π. We can now proceed in one of two ways:

c©Ashok Ambardar, September 1, 2003



9.6 The Bilinear Transformation 385

1. Method 1: We select C by choosing the prewarped frequency to equal ωA = 4:

ωA = 4 = C tan(0.5Ω) or C =
4

tan(0.5Ω)
= 4

We transform H(s) to H(z), using s = C
z − 1
z + 1

=
4(z − 1)
z + 1

, to obtain

H(z) = H(s)
∣∣
s=4(z−1)/(z+1)

=
3(z + 1)2

31z2 − 26z + 7

2. Method 2: We choose C = 1, say, and evaluate ωx = tan(0.5Ω) = tan(0.25π) = 1.
Next, we frequency scale H(s) to

H1(s) = H(sωA/ωx) = H(4s) =
3

16s2 + 12s + 3

Finally, we transform H1(s) to H(z), using s =
z − 1
z + 1

, to obtain

H(z) = H(s)
∣∣
s=(z−1)/(z+1)

=
3(z + 1)2

31z2 − 26z + 7

The magnitude |H(s)| at s = jω = j4 matches the magnitude of |H(z)| at z = ejΩ = ejπ/2 = j.
We find that

|H(s)|s=j4 =
∣∣∣∣

3
−13 + j12

∣∣∣∣ = 0.1696 |H(z)|z = j =
∣∣∣∣

3(j + 1)2

−24− j26

∣∣∣∣ = 0.1696

Figure E9.8(a) compares the magnitude of H(s) and H(z). The linear phase of the Bessel filter is not
preserved during the transformation (unless the sampling frequency is very high).

0 1 2 3 4 5 6
0

0.5

1

Analog frequency   f   [kHz]

M
ag

ni
tu

de

(a)  Bessel filter  H(s)  and digital filter  H(z)

H(z)

H(s)

0 20 40 60 80 100 120
0

0.5

1
(b)  Notch filter  H(s)  and digital filter  H(z)

H(z)

H(s)

Analog frequency   f   [Hz]

M
ag

ni
tu

de

Figure E9.8 Magnitude of the analog and digital filters for Example 9.8(a and b)

(b) The twin-T notch filter H(s) =
s2 + 1

s2 + 4s + 1
has a notch frequency ω0 = 1 rad/s. Design a digital notch

filter with S = 240 Hz and a notch frequency f = 60 Hz.

The digital notch frequency is Ω = 2πf/S = 0.5π. We pick C by matching the analog notch frequency
ω0 and the prewarped digital notch frequency Ω to get

ω0 = C tan(0.5Ω) 1 = C tan(0.25π) C = 1
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Finally, we convert H(s) to H(z), using s = C
z − 1
z + 1

=
z − 1
z + 1

, to get

H(z) = H(s)
∣∣
s=(z−1)/(z+1)

=
(z − 1)2 + (z + 1)2

(z − 1)2 + 4(z2 − 1) + (z + 1)2
=

z2 + 1
3z2 − 1

We confirm that H(s) = 0 at s = jω0 = j and H(z) = 0 at z = ejΩ = ejπ/2 = j. Figure E9.8(b) shows
the magnitude of the two filters and the perfect match at f = 60 Hz (or F = 0.25).

9.7 Spectral Transformations for IIR Filters
The design of IIR filters usually starts with an analog lowpass prototype, which is converted to a digital
lowpass prototype by an appropriate mapping and transformed to the required filter type by an appropriate
spectral transformation. For the bilinear mapping, we may even perform the mapping and the spectral
transformation (in a single step) on the analog prototype itself.

9.7.1 Digital-to-Digital Transformations

If a digital lowpass prototype has been designed, the digital-to-digital (D2D) transformations of Table 9.5
can be used to convert it to the required filter type. These transformations preserve stability by mapping
the unit circle (and all points within it) into itself.

As with analog transformations, the lowpass-to-bandpass (LP2BP) and lowpass-to-bandstop (LP2BS)
transformations yield a digital filter with twice the order of the lowpass prototype. The lowpass-to-lowpass
(LP2LP) transformation is actually a special case of the more general allpass transformation:

z ⇒ ± z − α

1− αz
, |α| < 1 (and α real) (9.35)

EXAMPLE 9.9 (Using D2D Transformations)

A lowpass filter H(z) =
3(z + 1)2

31z2 − 26z + 7
operates at S = 8 kHz, and its cutoff frequency is fC = 2 kHz.

(a) Use H(z) to design a highpass filter with a cutoff frequency of 1 kHz.

We find ΩD = 2πfC/S = 0.5π and ΩC = 0.25π. The LP2HP transformation (Table 9.5) requires

α = −cos[0.5(ΩD + ΩC)]
cos[0.5(ΩD − ΩC)]

= −cos(3π/8)
cos(π/8)

= −0.4142

The LP2HP spectral transformation is thus z → −(z + α)
1 + αz

=
−(z − 0.4142)
1− 0.4142z

and yields

HHP(z) =
0.28(z − 1)2

z2 − 0.0476z + 0.0723

(b) Use H(z) to design a bandpass filter with band edges of 1 kHz and 3 kHz.

The various digital frequencies are Ω1 = 0.25π, Ω2 = 0.75π, Ω2 − Ω1 = 0.5π, and Ω2 + Ω1 = π.
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Table 9.5 Digital-to-Digital (D2D) Frequency Transformations

Note: The digital lowpass prototype cutoff frequency is ΩD.
All digital frequencies are normalized to Ω = 2πf/S.

Form Band Edge(s) Mapping z → Mapping Parameters

LP2LP ΩC
z − α

1− αz
α = sin[0.5(ΩD − ΩC)]/sin[0.5(ΩD + ΩC)]

LP2HP ΩC
−(z + α)
1 + αz

α = − cos[0.5(ΩD + ΩC)]/cos[0.5(ΩD − ΩC)]

LP2BP [Ω1, Ω2]
−(z2 + A1z + A2)
A2z2 + A1z + 1

K = tan(0.5ΩD)/tan[0.5(Ω2 − Ω1)]

α = − cos[0.5(Ω2 + Ω1)]/cos[0.5(Ω2 − Ω1)]

A1 = 2αK/(K + 1) A2 = (K − 1)/(K + 1)

LP2BS [Ω1, Ω2]
(z2 + A1z + A2)
A2z2 + A1z + 1

K = tan(0.5ΩD)tan[0.5(Ω2 − Ω1)]

α = − cos[0.5(Ω2 + Ω1)]/cos[0.5(Ω2 − Ω1)]

A1 = 2α/(K + 1) A2 = −(K − 1)/(K + 1)

From Table 9.5, the parameters needed for the LP2BP transformation are

K =
tan(π/4)
tan(π/4)

= 1 α = −cos(π/2)
cos(π/4)

= 0 A1 = 0 A2 = 0

The LP2BP transformation is thus z → −z2 and yields

HBP(z) =
3(z2 − 1)2

31z4 + 26z2 + 7

(c) Use H(z) to design a bandstop filter with band edges of 1.5 kHz and 2.5 kHz.

Once again, we need Ω1 = 3π/8, Ω2 = 5π/8, Ω2 − Ω1 = π/4, and Ω2 + Ω1 = π.

From Table 9.5, the LP2BS transformation requires the parameters

K =
tan(π/8)
tan(π/4)

= 0.4142 α = −cos(π/2)
cos(π/8)

= 0 A1 = 0 A2 = 0.4142

The LP2BS transformation is thus z → z2 + 0.4142
0.4142z2 + 1

and yields

HBS(z) =
0.28(z2 + 1)2

z4 + 0.0476z2 + 0.0723

Figure E9.9 compares the magnitudes of each filter designed in this example.
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Figure E9.9 The digital filters for Example 9.9

9.7.2 Direct (A2D) Transformations for Bilinear Design

All stable transformations that are also free of aliasing introduce warping effects. Only the bilinear mapping
offers a simple relation to compensate for the warping. Combining the bilinear mapping with the D2D
transformations yields the analog-to-digital (A2D) transformations of Table 9.6 for bilinear design. These
can be used to convert a prewarped analog lowpass prototype (with a cutoff frequency of 1 rad/s) directly
to the required digital filter.

Table 9.6 Direct Analog-to-Digital (A2D) Transformations for Bilinear Design

Note: The analog lowpass prototype prewarped cutoff frequency is 1 rad/s.
The digital frequencies are normalized (Ω = 2πf/S) but are not prewarped.

Form Band Edge(s) Mapping s → Mapping Parameters

LP2LP ΩC
z − 1

C(z + 1)
C = tan(0.5ΩC)

LP2HP ΩC
C(z + 1)

z − 1
C = tan(0.5ΩC)

LP2BP Ω1 < Ω0 < Ω2
z2 − 2βz + 1
C(z2 − 1)

C = tan[0.5(Ω2 − Ω1)], β = cos Ω0 or

β = cos[0.5(Ω2 + Ω1)]/cos[0.5(Ω2 − Ω1)]

LP2BS Ω1 < Ω0 < Ω2
C(z2 − 1)

z2 − 2βz + 1
C = tan[0.5(Ω2 − Ω1)], β = cos Ω0 or

β = cos[0.5(Ω2 + Ω1)]/cos[0.5(Ω2 − Ω1)]

9.7.3 Bilinear Transformation for Peaking and Notch Filters

If we wish to use the bilinear transformation to design a second-order digital peaking (bandpass) filter
with a 3-dB bandwidth of ∆Ω and a center frequency of Ω0, we start with the lowpass analog prototype
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H(s) = 1/(s + 1) (whose cutoff frequency is 1 rad/s), and apply the A2D LP2BP transformation, to obtain

HBP(z) =
C

1 + C

(
z2 − 1

z2 − 2β
1+C z + 1−C

1+C

)
β = cosΩ0 C = tan(0.5∆Ω) (9.36)

Similarly, if we wish to use the bilinear transformation to design a second-order digital notch (bandstop)
filter with a 3-dB notch bandwidth of ∆Ω and a notch frequency of Ω0, we once again start with the lowpass
analog prototype H(s) = 1/(s + 1), and apply the A2D LP2BS transformation, to obtain

HBS(z) =
1

1 + C

(
z2 − 2βz + 1

z2 − 2β
1+C z + 1−C

1+C

)
β = cos Ω0 C = tan(0.5∆Ω) (9.37)

If either design calls for an A-dB bandwidth of ∆Ω, the constant C is replaced by KC, where

K =
(

1
100.1A − 1

)1/2

(A in dB) (9.38)

This is equivalent to denormailzing the lowpass prototype such that its gain corresponds to an attenuation
of A decibels at unit radian frequency. For a 3-dB bandwidth, we obtain K = 1 as expected. These design
relations prove quite helpful in the quick design of notch and peaking filters.

The center frequency Ω0 is used to determine the parameter β = cosΩ0. If only the band edges Ω1

and Ω2 are specified, but the center frequency Ω0 is not, β may also be found from the alternative relation
of Table 9.6 in terms of Ω1 and Ω2. The center frequency of the designed filter will then be based on the
geometric symmetry of the prewarped frequencies and can be computed from

tan(0.5Ω0) =
√

tan(0.5Ω1)tan(0.5Ω2) (9.39)

In fact, the digital band edges Ω1 and Ω2 do not show geometric symmetry with respect to the center
frequency Ω0. We can find Ω1 and Ω2 in terms of ∆Ω and Ω0 by equating the two expressions for finding β
(in Table 9.6) to obtain

β = cos Ω0 =
cos[0.5(Ω2 + Ω1)]
cos[0.5(Ω2 − Ω1)]

(9.40)

With ∆Ω = Ω2 − Ω1, we get

Ω2 = 0.5∆Ω + cos−1[cosΩ0 cos(0.5∆Ω)] Ω1 = Ω2 −∆Ω (9.41)

EXAMPLE 9.10 (Bilinear Design of Second-Order Filters)
(a) Let us design a peaking filter with a 3-dB bandwidth of 5 kHz and a center frequency of 6 kHz. The

sampling frequency is 25 kHz.

The digital frequencies are ∆Ω = 2π(5/25) = 0.4π and Ω0 = 2π(6/25) = 0.48π.

We compute C = tan(0.5∆Ω) = 0.7265 and β = cosΩ0 = 0.0628. Substituting these into the form for
the required filter, we obtain

H(z) =
0.4208(z2 − 1)

z2 − 0.0727z + 0.1584
Figure E9.10(a) shows the magnitude spectrum. The center frequency is 6 kHz, as expected. The band
edges Ω1 and Ω2 may be computed from

Ω2 = 0.5∆Ω + cos−1[cosΩ0 cos(0.5∆Ω)] = 2.1483 Ω1 = Ω2 −∆Ω = 0.8917
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These correspond to the frequencies f1 = SΩ1
2π = 3.55 kHz and f2 = SΩ2

2π = 8.55 kHz.
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Figure E9.10 Response of bandpass filters for Example 9.10 (a and b)

(b) Let us design a peaking (bandpass) filter with a 3-dB band edges of 4 kHz and 9 kHz. The sampling
frequency is 25 kHz.

The digital frequencies are Ω1 = 2π(4/25) = 0.32π, Ω2 = 2π(6/25) = 0.72π, and ∆Ω = 0.4π.

We find C = tan(0.5∆Ω) = 0.7265 and β = cos[0.5(Ω2+Ω1)]/cos[0.5(Ω2−Ω1)] = −0.0776. Substituting
these into the form for the required filter, we obtain

H(z) =
0.4208(z2 − 1)

z2 + 0.0899z + 0.1584

Figure E9.10(b) shows the magnitude spectrum. The band edges are at 4 kHz and 9 kHz as expected.
The center frequency, however, is at 6.56 kHz. This is because the digital center frequency Ω0 must be
computed from β = cosΩ0 = −0.0776. This gives Ω0 = cos−1(−0.0776) = 1.6485. This corresponds
to f0 = SΩ0/(2π) = 6.5591 kHz.

Comment: We could also have computed Ω0 from

tan(0.5Ω0) =
√

tan(0.5Ω1) tan(0.5Ω2) = 1.0809

Then, Ω0 = 2 tan−1(1.0809) = 1.6485, as before.

(c) We design a peaking filter with a center frequency of 40 Hz and a 6-dB bandwidth of 2 Hz, operating
at a sampling rate of 200 Hz.

We compute ∆Ω = 2π(2/200) = 0.02π and Ω0 = 2π(40/200) = 0.4π and β = cosΩ0 = 0.3090.
Since we are given the 6-dB bandwidth, we compute K and C as follows:

K =
(

1
100.1A − 1

)1/2

=
(

1
100.6 − 1

)1/2

= 0.577 C = K tan(0.5∆Ω) = 0.0182

Substituting these into the form for the required filter, we obtain

H(z) =
0.0179(z2 − 1)

z2 − 0.6070z + 0.9642

Figure E9.10C shows the magnitude spectrum. The blowup reveals that the 6-dB bandwidth (where
the gain is 0.5) equals 2 Hz, as required.

c©Ashok Ambardar, September 1, 2003



9.7 Spectral Transformations for IIR Filters 391

0 20 40 60 80 100
0

0.5

1

Analog frequency    f    [Hz]

(a)  Peaking filter   f
0
=40 Hz    ∆f

6dB
=2 Hz

35 39 40 41 45
0

0.5

1

Analog frequency    f    [Hz]

(b)  Blowup of response (35 Hz to 45 Hz)

Figure E9.10C Response of peaking filter for Example 9.10(c)

EXAMPLE 9.11 (Interference Rejection)
We wish to design a filter to remove 60-Hz interference in an ECG signal sampled at 300 Hz. A 2-s recording
of the noisy signal is shown in Figure E9.11A.
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Figure E9.11A Simulated ECG signal with 60-Hz interference for Example 9.11

If we design a high-Q notch filter with Q = 50 and a notch at f0 = 60 Hz, we have a notch bandwidth of
∆f = f0/Q = 1.2 Hz. The digital notch frequency is Ω0 = 2πf0/S = 2π(60/300) = 0.4π, and the digital
bandwidth is ∆Ω = 2π∆f/S = 2π(1.2/300) = 0.008π.

We find C = tan(0.5∆Ω) = 0.0126 and β = cos Ω0 = 0.3090. Substituting these into the form for the
notch filter, we obtain

H1(z) =
0.9876(z2 − 0.6180z + 1)
z2 − 0.6104z + 0.9752

A low-Q design with Q = 5 gives ∆f = f0/Q = 12 Hz, and ∆Ω = 2π(12/300) = 0.08π.
We find C = tan(0.5∆Ω) = 0.1263 and, with β = cos Ω0 = 0.3090 as before, we obtain

H2(z) =
0.8878(z2 − 0.6180z + 1)
z2 − 0.5487z + 0.7757

Figure E9.11B shows the magnitude spectrum of the two filters. Naturally, the filter H1(z) (with the
higher Q) exhibits the sharper notch.
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Figure E9.11B Response of the notch filters for Example 9.11

The filtered ECG signal corresponding to these two notch filters is shown in Figure E9.11C. Although
both filters are effective in removing the 60-Hz noise, the filter H2(z) (with the lower Q) shows a much
shorter start-up transient (because the highly oscillatory transient response of the high-Q filter H1(z) takes
much longer to reach steady state).
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Figure E9.11C Output of the notch filters for Example 9.11

9.8 Design Recipe for IIR Filters
There are several approaches to the design of IIR filters, using the mappings and spectral transformations
described in this chapter. The first approach, illustrated in Figure 9.10, is based on developing the analog
filter H(s) followed by the required mapping to convert H(s) to H(z).
A major disadvantage of this approach is that it cannot be used for mappings that suffer from aliasing
problems (such as the impulse-invariant mapping) to design highpass or bandpass filters.

The second, indirect approach, illustrated in Figure 9.11, tries to overcome this problem by designing
only the lowpass prototype HP (s) in the analog domain. This is followed by the required mapping to obtain
a digital lowpass prototype HP (z). The final step is the spectral (D2D) transformation of HP (z) to the
required digital filter H(z).
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Figure 9.10 Converting an analog filter to a digital filter
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Figure 9.11 Indirect conversion of an analog filter to a digital filter

This approach allows us to use any mappings, including those (such as response invariance) that may
otherwise lead to excessive aliasing for highpass and bandstop filters. Designing HP (z) also allows us to
match its dc magnitude with HP (s) for subsequent comparison.

A third approach that applies only to the bilinear transformation is illustrated in Figure 9.12. We
prewarp the frequencies, design an analog lowpass prototype (from prewarped specifications), and apply
A2D transformations to obtain the required digital filter H(z).

ωC 1= rad/s
HP (s)

Lowpass A2D

H(z)

transformation Digital filteranalog prototype

Figure 9.12 Conversion of analog lowpass prototype directly to a digital filter

A Step-by-Step Approach

Given the passband and stopband edges, the passband and stopband attenuation, and the sampling frequency
S, a standard recipe for the design of IIR filters is as follows:

1. Normalize (divide) the design band edges by S. This allows us to use a sampling interval ts = 1 in
subsequent design. For bilinear design, we also prewarp the normalized band edges.

2. Use the normalized band edges and attenuation specifications to design an analog lowpass prototype
HP (s) whose cutoff frequency is ωC = 1 rad/s.

3. Apply the chosen mapping (with ts = 1) to convert HP (s) to a digital lowpass prototype filter HP (z)
with ΩD = 1.

4. Use D2D transformations (with ΩD = 1) to convert HP (z) to H(z).

5. For bilinear design, we can also convert HP (s) to H(z) directly (using A2D transformations).
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REVIEW PANEL 9.12
Design Recipe for IIR Digital Filters
Normalize (divide) band edges by S (and prewarp if using bilinear design).
Use the normalized band edges to design analog lowpass prototype HP (s) with ωC = 1 rad/s.
Apply the chosen mapping (with ts = 1) to convert HP (s) to HP (z) with ΩD = 1.
Use D2D transformations to convert HP (z) to H(z).
For bilinear design, convert HP (s) to H(z) (using A2D transformations).

EXAMPLE 9.12 (IIR Filter Design)
Design a Chebyshev IIR filter to meet the following specifications:
Passband edges at [1.8, 3.2] kHz, stopband edges at [1.6, 4.8] kHz, Ap = 2 dB, As = 20 dB, and sampling
frequency S = 12 kHz.

(a) (Indirect Bilinear Design)

The normalized band edges [Ω1, Ω2, Ω3, Ω4], in increasing order, are

[Ω1, Ω2, Ω3, Ω4] = 2π[1.6, 1.8, 3.2, 4.8]/12 = [0.84, 0.94, 1.68, 2.51]

The passband edges are [Ω1,Ω2] = [0.94, 1.68]. We choose C = 2 and prewarp each band-edge frequency
using ω = 2 tan(0.5Ω) to give the prewarped values [0.89, 1.019, 2.221, 6.155].
The prewarped passband edges are [Ωp1, Ωp2] = [1.019, 2.221].

We design an analog filter meeting the prewarped specifications (as described in the appendix). This
yields the lowpass prototype and actual transfer function as

HP (s) =
0.1634

s4 + 0.7162s3 + 1.2565s2 + 0.5168s + 0.2058

HBP(s) =
0.34s4

s8 + 0.86s7 + 10.87s6 + 6.75s5 + 39.39s4 + 15.27s3 + 55.69s2 + 9.99s + 26.25

Finally, we transform the bandpass filter HBP(s) to H(z), using s → 2(z − 1)/(z + 1), to obtain

H(z) =
0.0026z8 − 0.0095z6 + 0.0142z4 − 0.0095z2 + 0.0026

z8 − 1.94z7 + 4.44z6 − 5.08z5 + 6.24z4 − 4.47z3 + 3.44z2 − 1.305z + 0.59

Figure E9.12A compares the response of the digital filter H(z) with the analog filter HBP(s), and with
a digital filter designed from the unwarped frequencies.
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Figure E9.12A Bandpass filter for Example 9.12 designed by the bilinear transformation

(b) (Direct A2D Design)

For bilinear design, we can also convert HP (s) directly.

We use the A2D LP2BP transformation with the unwarped passband edges [Ω1, Ω2] = [0.94, 1.68].

The constants C and β (from Table 9.6) are found as

C = tan[0.5(Ω2 − Ω1)] = 0.3839 β =
cos[0.5(Ω2 + Ω1)]
cos[0.5(Ω2 − Ω1)]

= 0.277

We transform the prototype analog filter HP (s) to obtain

H(z) =
0.0026z8 − 0.0095z6 + 0.0142z4 − 0.0095z2 + 0.0026

z8 − 1.94z7 + 4.44z6 − 5.08z5 + 6.24z4 − 4.47z3 + 3.44z2 − 1.305z + 0.59

This expression is identical to the transfer function H(z) of part (a).

(c) (Design Using Other Mappings)

We can also design the digital filter based on other mappings by using the following steps:

1. Use the normalized (but unwarped) band edges [0.89, 0.94, 1.68, 2.51] to design an analog lowpass
prototype HP (s) with ωC = 1 rad/s (fortunately, the unwarped and prewarped specifications yield
the same HP (s) for the specifications of this problem).

2. Convert HP (s) to HP (z) with ΩD = 1, using the chosen mapping, with ts = 1. For the backward-
difference, for example, we would use s = (z − 1)/zts = (z − 1)/z. To use the impulse-invariant
mapping, we would have to first convert HP (s) to partial fraction form.

3. Convert HP (z) to H(z), using the D2D LP2BP transformation with ΩD = 1, and the unwarped
passband edges [Ω1, Ω2] = [0.94, 1.68].

Figure E9.12C compares the response of two such designs, using the impulse-invariant mapping and
the backward-difference mapping (both with gain matching at dc). The design based on the backward-
difference mapping shows a poor match to the analog filter.
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Figure E9.12C Bandpass filter for Example 9.12 designed by impulse invariance and backward difference

9.8.1 Finite-Word-Length Effects

The effects of quantization must be considered in the design and implementation of both IIR and FIR filters.
Quantization implies that we choose a finite number of bits and this less than ideal representation leads to
problems collectively referred to as finite-word-length effects.

Quantization noise: Quantization noise limits the signal-to-noise ratio. One way to improve the SNR is
to increase the number of bits. Another is to use oversampling (as discussed earlier).
Coefficient quantization: This refers to representation of the filter coefficients by a limited number of
bits. Its effects can produce benign effects such as a slight change in the frequency response of the resulting
filter (typically, a larger passband ripple and/or a smaller stopband attenuation) or disastrous effects (for
IIR filters) that can lead to instability.
Roundoff errors: When lower-order bits are discarded before storing results (of a multiplication, say),
there is roundoff error. The amount of error depends on the type of arithmetic used and the filter structure.
The effects of roundoff errors are similar to the effects of quantization noise and lead to a reduction in the
signal-to-noise ratio.
Overflow errors: Overflow errors occur when the filter output or the result of arithmetic operations (such
as the sum of two large numbers with the same sign) exceeds the permissible wordlength. Such errors are
avoided in practice by scaling the filter coefficients and/or the input in a manner that the output remains
within the permissible word length.

9.8.2 Effects of Coefficient Quantization

For IIR filters, the effects of rounding or truncating the filter coefficients can range from minor changes in
the frequency response to serious problems, including instability. Consider the stable analog filter:

H(s) =
(s + 0.5)(s + 1.5)

(s + 1)(s + 2)(s + 4.5)(s + 8)(s + 12)
(9.42)

Bilinear transformation of H(s) with ts = 0.01 s yields the digital transfer function H(z) = B(z)/A(z) whose
denominator coefficients to double precision (Ak) and truncated to seven significant digits (At

k) are given by
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Filter Coefficients Ak Truncated At
k

1.144168420199997e+0 1.144168e+0
−5.418904483999996e+0 −5.418904e+0

1.026166736200000e+1 1.026166e+1
−9.712186808000000e+0 −9.712186e+0

4.594164261000004e+0 4.594164e+0
−8.689086648000011e−1 −8.689086e−1

The poles of H(z) all lie within the unit circle, and the designed filter is thus stable. However, if we use the
truncated coefficients At

k to compute the roots, the filter becomes unstable because one pole moves out of
the unit circle! The bottom line is that stability is an important issue in the design of IIR digital filters.

9.8.3 Concluding Remarks

IIR filters are well suited to applications requiring frequency-selective filters with sharp cutoffs or where linear
phase is relatively unimportant. Examples include graphic equalizers for digital audio, tone generators for
digital touch-tone receivers, and filters for digital telephones. The main advantages are standardized easy
design, and low filter order. On the other hand, IIR filters cannot exhibit linear phase and are quite
susceptible to the effects of coefficient quantization. If linear phase is important as in biomedical signal
processing, or stability is paramount as in many adaptive filtering schemes, it is best to use FIR filters.
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CHAPTER 9 PROBLEMS

9.1 (Response Invariance) Consider the analog filter H(s) =
1

s + 2
.

(a) Convert H(s) to a digital filter H(z), using impulse invariance. Assume that the sampling
frequency is S = 2 Hz.

(b) Will the impulse response h[n] match the impulse response h(t) of the analog filter at the sampling
instants? Should it? Explain.

(c) Will the step response s[n] match the step response s(t) of the analog filter at the sampling
instants? Should it? Explain.

[Hints and Suggestions: For part (a), find h(t), sample it (t → nts) to get h[n] and find its z-
transform to obtain H(z).]

9.2 (Response Invariance) Consider the analog filter H(s) =
1

s + 2
.

(a) Convert H(s) to a digital filter H(z), using step invariance at a sampling frequency of S = 2Hz.
(b) Will the impulse response h[n] match the impulse response h(t) of the analog filter at the sampling

instants? Should it? Explain.
(c) Will the step response s[n] match the step response s(t) of the analog filter at the sampling

instants? Should it? Explain.

[Hints and Suggestions: For part (a), find y(t) from Y (s) = H(s)X(s) = H(s)/s, sample it (t → nts)
to get y[n] and find the ratio H(z) = Y (z)/X(z) where x[n] = u[n].]

9.3 (Response Invariance) Consider the analog filter H(s) =
1

s + 2
.

(a) Convert H(s) to a digital filter H(z), using ramp invariance at a sampling frequency of S = 2Hz.
(b) Will the impulse response h[n] match the impulse response h(t) of the analog filter at the sampling

instants? Should it? Explain.
(c) Will the step response s[n] match the step response s(t) of the analog filter at the sampling

instants? Should it? Explain.
(d) Will the response v[n] to a unit ramp match the unit-ramp response v(t) of the analog filter at

the sampling instants? Should it? Explain.

[Hints and Suggestions: For part (c), find y(t) from Y (s) = H(s)X(s) = H(s)/s2, sample it
(t → nts) to get y[n] and find the ratio H(z) = Y (z)/X(z) where x[n] = ntsu[n].]

9.4 (Response Invariance) Consider the analog filter H(s) =
s + 1

(s + 1)2 + π2
.

(a) Convert H(s) to a digital filter H(z), using impulse invariance. Assume that the sampling
frequency is S = 2 Hz.

(b) Convert H(s) to a digital filter H(z), using invariance to the input x(t) = e−tu(t) at a sampling
frequency of S = 2 Hz.

[Hints and Suggestions: For part (c), find y(t) from Y (s) = H(s)X(s) = H(s)/(s + 1), sample it
(t → nts) to get y[n] and find the ratio H(z) = Y (z)/X(z) where x[n] = e−ntsu[n] = (e−ts)n.]
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9.5 (Impulse Invariance) Use the impulse-invariant transformation with ts = 1 s to transform the
following analog filters to digital filters.

(a) H(s) =
1

s + 2
(b) H(s) =

2
s + 1

+
2

s + 2
(c) H(s) =

1
(s + 1)(s + 2)

[Hints and Suggestions: For (c), find the partial fractions for H(s). For all, use the transformation
1

s+α ⇒ z
z−e−αts for each partial fraction term.]

9.6 (Impulse-Invariant Design) We are given the analog lowpass filter H(s) =
1

s + 1
whose cutoff

frequency is known to be 1 rad/s. It is required to use this filter as the basis for designing a digital
filter by the impulse-invariant transformation. The digital filter is to have a cutoff frequency of 50 Hz
and operate at a sampling frequency of 200 Hz.

(a) What is the transfer function H(z) of the digital filter if no gain matching is used?
(b) What is the transfer function H(z) of the digital filter if the gain of the analog filter and dig-

ital filter are matched at dc? Does the gain of the two filters match at their respective cutoff
frequencies?

(c) What is the transfer function H(z) of the digital filter if the gain of the analog filter at its cutoff
frequency (1 rad/s) is matched to the gain of the digital filter at its cutoff frequency (50 Hz)?
Does the gain of the two filters match at dc?

[Hints and Suggestions: For (a), pick ΩC = 2πfC/S, obtain HA(s) = H(s/ΩC) and convert to H(z)
using 1

s+α ⇒ z
z−e−αts . For (b), find GA = |H(s)|s=0, GD = |H(z)|z=1 and multiply H(z) by GA/GD.

For (c), find GA = |H(s)|s=j1 and GD = |H(z)| at z = ej2π(50)/S and multiply H(z) by GA/GD.]

9.7 (Impulse Invariance) The impulse-invariant method allows us to take a digital filter described by
H1(z) =

z

z − αt1
at a sampling interval of t1 and convert this to a new digital filter H2(z) =

z

z − αt2
at a different sampling interval t2.

(a) Using the fact that s =
ln(αt1)

t1
=

ln(αt2)
t2

, show that αt2 = (αt1)M , where M = t2/t1.

(b) Use the result of part (a) to convert the digital filter H1(z) =
z

z − 0.5
+

z

z − 0.25
, with ts = 1 s,

to a digital filter H2(z), with ts = 0.5 s.

9.8 (Matched z-Transform) Use the matched z-transform s + α =⇒ z − e−αts

z
, with ts = 0.5 s and

gain matching at dc, to transform each analog filter H(z) to a digital filter H(z).

(a) H(s) =
1

s + 2
(b) H(s) =

1
(s + 1)(s + 2)

(c) H(s) =
1

s + 1
+

1
s + 2

(d) H(s) =
s + 1

(s + 1)2 + π2

[Hints and Suggestions: Set up H(s) in factored form and use (s + α) ⇒ z−e−αts

z for each factor to
obtain H(z). Then, find GA = |H(s)|s=0, GD = |H(z)|z=1 and multiply H(z) by GA/GD.]

9.9 (Matched z-Transform) The analog filter H(s) =
4s(s + 1)

(s + 2)(s + 3)
is to be converted to a digital

filter H(z) at a sampling rate of S = 4 Hz.

c©Ashok Ambardar, September 1, 2003



400 Chapter 9 Design of IIR Filters

(a) Convert H(s) to a digital filter, using the matched z-transform s + α =⇒ z − e−αts

z
.

(b) Convert H(s) to a digital filter, using the modified matched z-transform by moving all zeros at
the origin (z = 0) to z = −1.

(c) Convert H(s) to a digital filter, using the modified matched z-transform, by moving all but one
zero at the origin (z = 0) to z = −1.

9.10 (Backward Euler Algorithm) The backward Euler algorithm for numerical integration is given by
y[n] = y[n− 1] + tsx[n].
(a) Derive a mapping rule for converting an analog filter to a digital filter, based on this algorithm.

(b) Apply the mapping to convert the analog filter H(s) =
4

s + 4
to a digital filter H(z), using a

sampling interval of ts = 0.5 s.

[Hints and Suggestions: For (a), find H(z) and compare with H(s) = 1/s (ideal integrator).]

9.11 (Mapping from Difference Algorithms) Consider the analog filter H(s) =
1

s + α
.

(a) For what values of α is this filter stable?
(b) Convert H(s) to a digital filter H(z), using the mapping based on the forward difference at a

sampling rate S. Is H(z) always stable if H(s) is stable?
(c) Convert H(s) to a digital filter H(z), using the mapping based on the backward difference at a

sampling rate S. Is H(z) always stable if H(s) is stable?

[Hints and Suggestions: For (b)–(c), find H(z) from the difference equations for the forward and
backward difference respectively and compare with H(s) = s (ideal differentiator).]

9.12 (Simpson’s Algorithm) Simpson’s numerical integration algorithm is described by

y[n] = y[n− 2] + ts

3 (x[n] + 4x[n− 1] + x[n− 2])

(a) Derive a mapping rule to convert an analog filter H(s) to a digital filter H(z), based on this
algorithm.

(b) Let H(s) =
1

s + 1
. Convert H(s) to H(z), using the mapping derived in part (a).

(c) Is the filter H(z) designed in part (b) stable for any choice of ts > 0?

9.13 (Response of Numerical Algorithms) Simpson’s and Tick’s rules for numerical integration find
y[k] (the approximation to the area) over two time steps from y[k − 2] and are described by

Simpson’s rule: y[n] = y[n− 2] +
x[n] + 4x[n− 1] + x[n− 2]

3
Tick’s rule: y[n] = y[n− 2] + 0.3584x[n] + 1.2832x[n− 1] + 0.3584x[n− 2]

(a) Find the transfer function H(F ) corresponding to each rule.
(b) For each rule, sketch |H(F )| over 0 ≤ F ≤ 0.5 and compare with the spectrum of an ideal

integrator.
(c) It is claimed that the coefficients in Tick’s rule optimize H(F ) in the range 0 < F < 0.25. Does

your comparison support this claim?

9.14 (Bilinear Transformation) Consider the lowpass analog Bessel filter H(s) =
3

s2 + 3s + 3
.
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(a) Use the bilinear transformation to convert this analog filter H(s) to a digital filter H(z) at a
sampling rate of S = 2 Hz.

(b) Use H(s) and the bilinear transformation to design a digital lowpass filter H(z) whose gain at
f0 = 20 kHz matches the gain of H(s) at ωa = 3 rad/s. The sampling frequency is S = 80 kHz.

[Hints and Suggestions: For (b), use s ⇒ C z−1
z+1 with C tan(2πf0/S) = ωa.]

9.15 (Bilinear Transformation) Consider the analog filter H(s) =
s

s2 + s + 1
.

(a) What type of filter does H(s) describe?
(b) Use H(s) and the bilinear transformation to design a digital filter H(z) operating at S = 1 kHz

such that its gain at f0 = 250 Hz matches the gain of H(s) at ωa = 1 rad/s. What type of filter
does H(z) describe?

(c) Use H(s) and the bilinear transformation to design a digital filter H(z) operating at S = 10 Hz
such that gains of H(z) and H(s) match at fm = 1 Hz. What type of filter does H(z) describe?

[Hints and Suggestions: For (a), use s ⇒ C z−1
z+1 with C tan(2πf0/S) = ωa. For (b), use s ⇒ C z−1

z+1
with C tan(2πfm/S) = 2πφm.]

9.16 (Bilinear Transformation) A second-order Butterworth lowpass analog filter with a half-power
frequency of 1 rad/s is converted to a digital filter H(z), using the bilinear transformation at a sampling
rate of S = 1 Hz.

(a) What is the transfer function H(s) of the analog filter?
(b) What is the transfer function H(z) of the digital filter?
(c) Are the dc gains of H(z) and H(s) identical? Should they be? Explain.
(d) Are the gains of H(z) and H(s) at their respective half-power frequencies identical? Explain.

9.17 (IIR Filter Design) Lead-lag systems are often used in control systems and have the generic form

H(s) =
1 + sτ1

1 + sτ2
. Use a sampling frequency of S = 10 Hz and the bilinear transformation to design IIR

filters from this lead-lag compensator if

(a) τ1 = 1 s, τ2 = 10 s. (b) τ1 = 10 s, τ2 = 1 s.

9.18 (Spectral Transformation of Digital Filters) The digital lowpass filter H(z) =
z + 1

z2 − z + 0.2
has

a cutoff frequency f = 0.5 kHz and operates at a sampling frequency S = 10 kHz. Use this filter to
design the following:

(a) A lowpass digital filter with a cutoff frequency of 2 kHz
(b) A highpass digital filter with a cutoff frequency of 1 kHz
(c) A bandpass digital filter with band edges of 1 kHz and 3 kHz
(d) A bandstop digital filter with band edges of 1.5 kHz and 3.5 kHz

[Hints and Suggestions: Use the tables for digital-to-digital (D2D) transformations.]

9.19 (Spectral Transformation of Analog Prototypes) The analog lowpass filter H(s) =
2

s2 + 2s + 2
has a cutoff frequency of 1 rad/s. Use this prototype to design the following digital filters.

(a) A lowpass filter with a passband edge of 100 Hz and S = 1 kHz
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(b) A highpass filter with a cutoff frequency of 500 Hz and S = 2 kHz
(c) A bandpass filter with band edges at 400 Hz and 800 Hz, and S = 3 kHz
(d) A bandstop filter with band edges at 1 kHz and 1200 Hz, and S = 4 kHz

[Hints and Suggestions: Use the tables for analog-to-digital (A2D) transformations.]

9.20 (Notch Filters) A notch filter is required to remove 50-Hz interference. Assuming a bandwidth of
4 Hz and a sampling rate of 300 Hz, design the simplest such filter using the bilinear transformation.
Compute the filter gain at 40 Hz, 50 Hz, and 60 Hz.

[Hints and Suggestions: Use the standard form of the second-order notch filter.]

9.21 (Peaking Filters) A peaking filter is required to isolate a 100-Hz signal with unit gain. Assuming
a bandwidth of 5 Hz and a sampling rate of 500 Hz, design the simplest such filter using the bilinear
transformation. Compute the filter gain at 90 Hz, 100 Hz, and 110 Hz.

[Hints and Suggestions: Use the standard form of the second-order peaking (bandpass) filter.]

9.22 (IIR Filter Design) A fourth-order digital filter operating at a sampling frequency of 40 kHz is
required to have a passband between 8 kHz and 12 kHz and a maximum passband ripple that equals
5% of the peak magnitude. Design the digital filter using the bilinear transformation.

[Hints and Suggestions: You need a Chebyshev bandpass filter of order 4. So, start with a Chebyshev
analog lowpass prototype of order 2 (not 4) and apply A2D transformations.]

9.23 (IIR Filter Design) Design IIR filters that meet each of the following sets of specifications. Assume
a passband attenuation of Ap = 2 dB and a stopband attenuation of As = 30 dB.

(a) A Butterworth lowpass filter with passband edge at 1 kHz, stopband edge at 3 kHz, and S =
10 kHz, using the backward Euler transformation.

(b) A Butterworth highpass filter with passband edge at 400 Hz, stopband edge at 100 Hz, and
S = 2 kHz, using the impulse-invariant transformation.

(c) A Chebyshev bandpass filter with passband edges at 800 Hz and 1600 Hz, stopband edges at
400Hz and 2 kHz, and S = 5 kHz, using the bilinear transformation.

(d) An inverse Chebyshev bandstop filter with passband edges at 200 Hz and 1.2 kHz, stopband
edges at 500 Hz and 700 Hz, and S = 4 kHz, using the bilinear transformation.

[Hints and Suggestions: Normalize all frequencies. For (a)–(b), design an analog lowpass prototype
at ωC = 1 rad/s, convert to a digital prototype at S = 1 Hz, and use digital-to-digital (D2D) transfor-
mations with ΩC = 1. For (c)–(d), design the analog lowpass prototype using prewarped frequencies.
Then, apply A2D transformations using unwarped digital band edges.]

9.24 (Digital-to-Analog Mappings) In addition to the bilinear transformation, the backward Euler
method also allows a linear mapping to transform a digital filter H(z) to an analog equivalent H(s).

(a) Develop such a mapping based on the backward Euler algorithm.

(b) Use this mapping to convert a digital filter H(z) =
z

z − 0.5
operating at S = 2 Hz to its analog

equivalent H(s).

9.25 (Digital-to-Analog Mappings) The forward Euler method also allows a linear mapping to transform
a digital filter H(z) to an analog equivalent H(s).

(a) Develop such a mapping based on the forward Euler algorithm.
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(b) Use this mapping to convert a digital filter H(z) =
z

z − 0.5
operating at S = 2 Hz to its analog

equivalent H(s).

9.26 (Digital-to-Analog Mappings) Two other methods that allow us to convert a digital filter H(z) to

an analog equivalent H(z) are impulse invariance and the matched z-transform s + α =⇒ z − e−αts

z
.

Let H(z) =
z(z + 1)

(z − 0.25)(z − 0.5)
. Find the analog filter H(s) from which H(z) was developed, assuming

a sampling frequency of S = 2 Hz and

(a) Impulse invariance. (b) Matched z-transform. (c) Bilinear transformation.

9.27 (Digital-to-Analog Mappings) The bilinear transformation allows us to use a linear mapping to
transform a digital filter H(z) to an analog equivalent H(s).

(a) Develop such a mapping based on the bilinear transformation.

(b) Use this mapping to convert a digital filter H(z) =
z

z − 0.5
operating at S = 2 Hz to its analog

equivalent H(s).

9.28 (Group Delay) A digital filter H(z) is designed from an analog filter H(s), using the bilinear
transformation ωA = C tan(ΩD/2).

(a) Show that the group delays Tg(ωA) and Tg(ΩD) of H(s) and H(z) respectively are related by

Tg(ΩD) = 0.5C(1 + ω2
A)Tg(ωA)

(b) Design a digital filter H(z) from the analog filter H(s) =
5

s + 5
at a sampling frequency of

S = 4 Hz such that the gain of H(s) at ω = 2 rad/s matches the gain of H(z) at 1 Hz.
(c) What is the group delay Tg(ωA) of the analog filter H(s)?
(d) Use the results to find the group delay Tg(ΩD) of the digital filter H(z) designed in part (b).

9.29 (Pade Approximations) A delay of ts may be approximated by e−sts ≈ 1− sts +
(sts)2

2!
− · · · . An

nth-order Pade approximation is based on a rational function of order n that minimizes the truncation
error of this approximation. The first-order and second-order Pade approximations are

P1(s) =
1− 1

2sts

1 + 1
2sts

P2(s) =
1− 1

2sts + 1
12 (sts)2

1 + 1
2sts + 1

12 (sts)2

Since e−sts describes a delay of one sample (or z−1), Pade approximations can be used to generate
inverse mappings for converting a digital filter H(z) to an analog filter H(s).

(a) Generate mappings for converting a digital filter H(z) to an analog filter H(s) based on the
first-order and second-order Pade approximations.

(b) Use each mapping to convert H(z) =
z

z − 0.5
to H(s), assuming ts = 0.5 s.

(c) Show that the first-order mapping is bilinear. Is this mapping related in any way to the bilinear
transformation?
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COMPUTATION AND DESIGN

9.30 (IIR Filter Design) It is required to design a lowpass digital filter H(z) from the analog filter
H(s) = 1

s+1 . The sampling rate is S = 1 kHz. The half-power frequency of H(z) is to be ΩC = π/4.
(a) Use impulse invariance to design H(z) such that gain of the two filters matches at dc. Compare

the frequency response of both filters (after appropriate frequency scaling). Which filter would
you expect to yield better performance? To confirm your expectations, define the (in-band) signal
to (out-of-band) noise ratio (SNR) in dB as

SNR = 20 log
(

signal level
noise level

)
dB

(b) What is the SNR at the input and output of each filter if the input is
x(t) = cos(0.2ωCt) + cos(1.2ωCt) for H(s) and x[n] = cos(0.2nΩC) + cos(1.2nΩC) for H(z)?

(c) What is the SNR at the input and output of each filter if the input is
x(t) = cos(0.2ωCt) + cos(3ωCt) for H(s) and x[n] = cos(0.2nΩC) + cos(3nΩC) for H(z)?

(d) Use the bilinear transformation to design another filter H1(z) such that gain of the two filters
matches at dc. Repeat the computations of parts (a) and (b) for this filter. Of the two digital
filters H(z) and H1(z), which one would you recommend using, and why?

9.31 (IIR Filter Design) A digital filter is required to have a monotonic response in the passband and
stopband. The half-power frequency is to be 4 kHz, and the attenuation past 5 kHz is to exceed 20
dB. Design the digital filter, using impulse invariance and a sampling frequency of 15 kHz.

9.32 (The Effect of Group Delay) The nonlinear phase of IIR filters is responsible for signal distortion.
Consider a lowpass filter with a 1-dB passband edge at f = 1 kHz, a 50-dB stopband edge at f = 2 kHz,
and a sampling frequency of S = 10 kHz.
(a) Design a Butterworth filter HB(z) and an elliptic filter HE(z) to meet these specifications. Using

the Matlab routine grpdelay (or otherwise), compute and plot the group delay of each filter.
Which filter has the lower order? Which filter has a more nearly constant group delay in the
passband? Which filter would cause the least phase distortion in the passband? What are the
group delays NB and NE (expressed as the number of samples) of the two filters?

(b) Generate the signal x[n] = 3 sin(0.03nπ) + sin(0.09nπ) + 0.6 sin(0.15nπ) over 0 ≤ n ≤ 100. Use
the ADSP routine filter to compute the response yB [n] and yE [n] of each filter. Plot the filter
outputs yB [n] and yE [n] (delayed by NB and NE , respectively) and the input x[n] on the same
plot to compare results. Does the filter with the more nearly constant group delay also result in
smaller signal distortion?

(c) Are all the frequency components of the input signal in the filter passband? If so, how can
you justify that the distortion is caused by the nonconstant group delay and not by the filter
attenuation in the passband?

9.33 (LORAN) A LORAN (long-range radio and navigation) system for establishing positions of marine
craft uses three transmitters that send out short bursts (10 cycles) of 100-kHz signals in a precise phase
relationship. Using phase comparison, a receiver (on the craft) can establish the position (latitude and
longitude) of the craft to within a few hundred meters. Suppose the LORAN signal is to be digitally
processed by first sampling it at 500 kHz and filtering the sampled signal using a second order peaking
filter with a half-power bandwidth of 100 Hz. Use the bilinear transformation to design the filter from
an analog filter with unit half-power frequency. Compare your design with the digital filter designed
in Problem 18.34 (to meet the same specifications).
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9.34 (Decoding a Mystery Message) During transmission, a message signal gets contaminated by a
low-frequency signal and high-frequency noise. The message can be decoded only by displaying it in
the time domain. The contaminated signal x[n] is provided on the author’s website as mystery1.mat.
Load this signal into Matlab (use the command load mystery1). In an effort to decode the message,
try the following methods and determine what the decoded message says.

(a) Display the contaminated signal. Can you “read” the message? Display the DFT of the signal
to identify the range of the message spectrum.

(b) Use the bilinear transformation to design a second-order IIR bandpass filter capable of extracting
the message spectrum. Filter the contaminated signal and display the filtered signal to decode
the message. Use both the filter (filtering) and filifilt (zero-phase filtering) commands.

(c) As an alternative method, first zero out the DFT component corresponding to the low-frequency
contamination and obtain the IDFT y[n]. Next, design a lowpass IIR filter (using impulse invari-
ance) to reject the high-frequency noise. Filter the signal y[n] and display the filtered signal to
decode the message. Use both the filter and filtfilt commands.

(d) Which of the two methods allows better visual detection of the message? Which of the two
filtering routines (in each method) allows better visual detection of the message?

9.35 (Interpolation) The signal x[n] = cos(2πF0n) is to be interpolated by 5 using up-sampling followed
by lowpass filtering. Let F0 = 0.4.

(a) Generate and plot 20 samples of x[n] and up-sample by 5.
(b) What must be the cutoff frequency FC and gain A of a lowpass filter that follows the up-sampler

to produce the interpolated output?
(c) Design a fifth-order digital Butterworth filter (using the bilinear transformation) whose half-power

frequency equals FC and whose peak gain equals A.
(d) Filter the up-sampled signal through this filter and plot the result. Is the result an interpolated

version of the input signal? Do the peak amplitudes of the interpolated signal and original signal
match? Should they? Explain.

9.36 (Coefficient Quantization) Consider the analog filter described by

H(s) =
(s + 0.5)(s + 1.5)

(s + 1)(s + 2)(s + 4.5)(s + 8)(s + 12)

(a) Is this filter stable? Why?
(b) Use the bilinear transformation with S = 100 Hz to convert this to a digital filter H(z).
(c) Truncate the filter coefficients to seven significant digits to generate the filter H2(z).
(d) Compare the frequency response of H(z) and H2(z). Are there any significant differences?
(e) Is the filter H2(z) stable? Should it be? Explain.
(f) Suppose the coefficients are to be quantized to B bits by rounding. What is the smallest number

of bits B required in order to preserve the stability of the quantized filter?

9.37 (Numerical Integration Algorithms) It is claimed that mapping rules to convert an analog filter to
a digital filter, based on numerical integration algorithms that approximate the area y[n] from y[n− 2]
or y[n − 3] (two or more time steps away), do not usually preserve stability. Consider the following
integration algorithms.

(1) y[n] = y[n− 1] + ts

12 (5x[n] + 8x[n− 1]− x[n− 2]) (Adams-Moulton rule)

(2) y[n] = y[n− 2] + ts

3 (x[n] + 4x[n− 1] + x[n− 2]) (Simpson’s rule)
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(3) y[n] = y[n− 3] + 3ts

8 (x[n] + 3x[n− 1] + 3x[n− 2] + x[n− 3]) (Simpson’s three-eighths rule)

Derive mapping rules for each algorithm, convert the analog filter H(s) =
1

s + 1
to a digital filter

using each mapping with S = 5 Hz, and use Matlab to compare their frequency response. Which of
these mappings (if any) allow us to convert a stable analog filter to a stable digital filter? Is the claim
justified?

9.38 (RIAA Equalization) Audio signals usually undergo a high-frequency boost (and low-frequency
cut) before being used to make the master for commercial production of phonograph records. During
playback, the signal from the phono cartridge is fed to a preamplifier (equalizer) that restores the
original signal. The frequency response of the preamplifier is based on the RIAA (Recording Industry
Association of America) equalization curve whose Bode plot is shown in Figure P9.38, with break
frequencies at 50, 500, and 2122 Hz.

dBH

f Hz(log)

-20 dB/dec

RIAA  equalization curve

500 212250

20

Figure P9.38 Figure for Problem 9.38

(a) What is the transfer function H(s) of the RIAA equalizer?
(b) It is required to implement RIAA equalization using a digital filter. Assume that the signal from

the cartridge is band-limited to 15 kHz. Design an IIR filter HI(z), using impulse invariance,
that implements the equalization characteristic.

(c) Use the bilinear transformation to design an IIR filter HB(z) that implements the equalization
characteristic. Assume that the gain of H(s) and HB(z) are to match at 1 kHz.

(d) Compare the performance of H(s) with HB(z) and HI(z) and comment on the results. Which
IIR design method results in better implementation?

9.39 (Audio Equalizers) Many hi-fi systems are equipped with graphic equalizers to tailor the frequency
response. Consider the design of a four-band graphic equalizer. The first section is to be a lowpass filter
with a passband edge of 300 Hz. The next two sections are bandpass filters with passband edges of
[300, 1000] Hz and [1000, 3000] Hz, respectively. The fourth section is a highpass filter with a passband
edge at 3 kHz. The sampling rate is to be 20 kHz. Implement this equalizer, using FIR filters based on
window design. Repeat the design, using an optimal FIR filter. Repeat the design, using an IIR filter
based on the bilinear transformation. For each design, superimpose plots of the frequency response of
each section and their parallel combination. What are the differences between IIR and FIR design?
Which design would you recommend?
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Chapter 10

THE DISCRETE FOURIER
TRANSFORM AND ITS

APPLICATIONS

10.0 Scope and Objectives
This chapter introduces the discrete Fourier transform (DFT) as a means of examining sampled signals in
the frequency domain. It describes the DFT, its properties and its relationship to other frequency domain
transforms. It discusses efficient algorithms for implementing the DFT that go by the generic name of fast
Fourier transforms (FFTs). It concludes with applications of the DFT and FFT to digital signal processing.

10.1 Introduction
The processing of analog signals using digital methods continues to gain widespread popularity. The Fourier
series of analog periodic signals and the DTFT of discrete-time signals are duals of each other and are similar
in many respects. In theory, both offer great insight into the spectral description of signals. In practice, both
suffer from (similar) problems in their implementation. The finite memory limitations and finite precision of
digital computers constrain us to work with a finite set of quantized numbers for describing signals in both
time and frequency. This brings out two major problems inherent in the Fourier series and the DTFT as
tools for digital signal processing. Both typically require an infinite number of samples (the Fourier series
for its spectrum and the DTFT for its time signal). Both deal with one continuous variable (time t or digital
frequency F ). A numerical approximation that can be implemented using digital computers requires that
we replace the continuous variable with a discrete one and limit the number of samples to a finite value in
both domains.

10.1.1 Connections Between Frequency-Domain Transforms

Sampling and duality provide the basis for the connection between the various frequency-domain transforms
and the concepts are worth repeating. Sampling in one domain induces a periodic extension in the other.
The sample spacing in one domain is the reciprocal of the period in the other. Periodic analog signals have
discrete spectra, and discrete-time signals have continuous periodic spectra. A consequence of these concepts
is that a sequence that is both discrete and periodic in one domain is also discrete and periodic in the other.
This leads to the development of the discrete Fourier transform (DFT) and discrete Fourier series
(DFS), allowing us a practical means of arriving at the sampled spectrum of sampled signals using digital
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computers. The connections are illustrated in Figure 10.1 and summarized in Table 10.1.

f0T
t f

DTFT

n
1

F
1

DFT

n
1

k
1

Nonperiodic analog signal

Discrete spectrumPeriodic signal

Discrete signal

Discrete and periodicDiscrete and periodic

Fourier transform

Fourier series

Periodic spectrum

Nonperiodic spectrum

t f

Figure 10.1 Features of the various transforms

Table 10.1 Connections Between Various Transforms

Operation in the Time Domain Result in the Frequency Domain Transform
Aperiodic, continuous x(t) Aperiodic, continuous X(f) FT

Periodic extension of x(t) ⇒ xp(t) Sampling of X(f) ⇒ X[k] FS
Period = T Sampling interval = 1/T = f0

Sampling of xp(t) ⇒ xp[n] Periodic extension of X[k] ⇒ XDFS[k] DFS
Sampling interval = ts Period = S = 1/ts

Sampling of x(t) ⇒ x[n] Periodic extension of X(f) ⇒ X(F ) DTFT
Sampling interval = 1 Period = 1

Periodic extension of x[n] ⇒ xp[n] Sampling of X(F ) ⇒ XDFT[k] DFT
Period = N Sampling interval = 1/N

Since sampling in one domain leads to a periodic extension in the other, a sampled representation in
both domains also forces periodicity in both domains. This leads to two slightly different but functionally
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equivalent sets of relations, depending on the order in which we sample time and frequency, as listed in
Table 10.2. If we first sample an analog signal x(t), the sampled signal has a periodic spectrum X(F ) (the
DTFT), and sampling of X(F ) leads to the DFT representation. If we first sample the Fourier transform
X(f) in the frequency domain, the samples represent the Fourier series coefficients of a periodic time signal
xp(t), and sampling of xp(t) leads to the discrete Fourier series (DFS) as the periodic extension of the
frequency-domain samples. The DFS differs from the DFT only by a constant scale factor.

Table 10.2 Relating Frequency-Domain Transforms

Fourier Transform
↙ ↘

Aperiodic/continuous signal: Aperiodic/continuous spectrum:

x(t) =
∫ ∞

−∞
X(f)ej2πft df X(f) =

∫ ∞

−∞
x(t)e−j2πft dt

⇓ ⇓
Sampling x(t) (DTFT) Sampling X(f) (Fourier series)

Sampled time signal: Sampled spectrum:

x[n] =
∫

1

X(F )ej2πnF dF X[k] =
1
T

∫

T

xp(t)e−j2πkf0t dt

Periodic spectrum (period = 1): Periodic time signal (period = T ):

X(F ) =
∞∑

n=−∞
x[n]e−j2πnF xp(t) =

∞∑

k=−∞
X[k]ej2πkf0t

⇓ ⇓
Sampling Xp(F ) (DFT) Sampling xp(t) (DFS)

Sampled/periodic spectrum: Sampled/periodic time signal:

XDFT[k] =
N−1∑
n=0

x[n]e−j2πnk/N x[n] =
N−1∑

k=0

XDFS[k]ej2πnk/N

Sampled/periodic time signal: Sampled/periodic spectrum:

x[n] =
1
N

N−1∑

k=0

XDFT[k]ej2πnk/N XDFS[k] =
1
N

N−1∑
n=0

x[n]e−j2πnk/N

10.2 The DFT
The N -point discrete Fourier transform (DFT) XDFT[k] of an N -sample signal x[n] and the inverse
discrete Fourier transform (IDFT), which transforms XDFT[k] to x[n], are defined by

XDFT[k] =
N−1∑
n=0

x[n]e−j2πnk/N , k = 0, 1, 2, . . . , N − 1 (10.1)

x[n] =
1
N

N−1∑

k=0

XDFT[k]ej2πnk/N , n = 0, 1, 2, . . . , N − 1 (10.2)

c©Ashok Ambardar, September 1, 2003



410 Chapter 10 The Discrete Fourier Transform and its Applications

Each relation is a set of N equations. Each DFT sample is found as a weighted sum of all the samples in x[n].
One of the most important properties of the DFT and its inverse is implied periodicity. The exponential
exp(±j2πnk/N) in the defining relations is periodic in both n and k with period N :

ej2πnk/N = ej2π(n+N)k/N = ej2πn(k+N)/N (10.3)

As a result, the DFT and its inverse are also periodic with period N , and it is sufficient to compute the
results for only one period (0 to N − 1). Both x[n] and XDFT[k] have a starting index of zero.

REVIEW PANEL 10.1
The N-point DFT and N-Point IDFT Are Periodic with Period N

XDFT[k]=
N−1∑
n=0

x[n]e−j2πnk/N , k=0, 1, 2, . . . , N−1 x[n]=
1
N

N−1∑

k=0

XDFT[k]ej2πnk/N , n=0, 1, 2, . . . , N−1

EXAMPLE 10.1 (DFT from the Defining Relation)
Let x[n] = {1, 2, 1, 0}. With N = 4, and e−j2πnk/N = e−jnkπ/2, we successively compute

k = 0: XDFT[0] =
3∑

n=0

x[n]e0 = 1 + 2 + 1 + 0 = 4

k = 1: XDFT[1] =
3∑

n=0

x[n]e−jnπ/2 = 1 + 2e−jπ/2 + e−jπ + 0 = −j2

k = 2: XDFT[2] =
3∑

n=0

x[n]e−jnπ = 1 + 2e−jπ + e−j2π + 0 = 0

k = 3: XDFT[3] =
3∑

n=0

x[n]e−j3nπ/2 = 1 + 2e−j3π/2 + e−j3π + 0 = j2

The DFT is thus XDFT[k] = {4, −j2, 0, j2}.

10.3 Properties of the DFT
The properties of the DFT are summarized in Table 10.3. They are strikingly similar to other frequency-
domain transforms, but must always be used in keeping with implied periodicity (of the DFT and IDFT) in
both domains.

10.3.1 Symmetry

In analogy with all other frequency-domain transforms, the DFT of a real sequence possesses conjugate
symmetry about the origin with XDFT[−k] = X∗

DFT[k]. Since the DFT is periodic, XDFT[−k] = XDFT[N−k].
This also implies conjugate symmetry about the index k = 0.5N , and thus

XDFT[−k] = X∗
DFT[k] = XDFT[N − k] (10.4)
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Table 10.3 Properties of the N -Sample DFT

Property Signal DFT Remarks

Shift x[n− n0] XDFT[k]e−j2πkn0/N No change in magnitude

Shift x[n− 0.5N ] (−1)kXDFT[k] Half-period shift for even N

Modulation x[n]ej2πnk0/N XDFT[k − k0]

Modulation (−1)nx[n] XDFT[k − 0.5N ] Half-period shift for even N

Folding x[−n] XDFT[−k] This is circular folding.

Product x[n]y[n] 1
N XDFT[k] ?©YDFT[k] The convolution is periodic.

Convolution x[n] ?©y[n] XDFT[k]YDFT[k] The convolution is periodic.

Correlation x[n] ?© ?©y[n] XDFT[k]Y ∗
DFT[k] The correlation is periodic.

Central ordinates x[0] =
1
N

N−1∑

k=0

XDFT[k] XDFT[0] =
N−1∑
n=0

x[n]

Central ordinates x[N
2 ] =

1
N

N−1∑

k=0

(−1)kXDFT[k] (N even) XDFT[N
2 ] =

N−1∑
n=0

(−1)nx[n] (N even)

Parseval’s relation
N−1∑
n=0

|x[n]|2 =
1
N

N−1∑

k=0

|XDFT[k]|2

= 7N

−1N

X[k] = [N ]k−X*

= 8N

−1N

X[k] = [N ]k−X*

/2N /2N

k

0
k

0

Conjugate symmetry Conjugate symmetry

Figure 10.2 Symmetry of the DFT for real signals

If N is odd, the conjugate symmetry is about the half-integer value 0.5N . The index k = 0.5N is called the
folding index. This is illustrated in Figure 10.2.

Conjugate symmetry suggests that we need compute only half the DFT values to find the entire DFT
sequence—another labor-saving concept! A similar result applies to the IDFT.

REVIEW PANEL 10.2
The DFT Shows Conjugate Symmetry for Real Signals

XDFT[−k] = X∗
DFT[k] XDFT[−k] = XDFT[N − k]

10.3.2 Central Ordinates and Special DFT Values

The computation of the DFT at the indices k = 0 and (for even N) at k = N
2 can be simplified using the

central ordinate theorems that arise as a direct consequence of the defining relations. In particular, we find
that XDFT[0] equals the sum of the N signal samples x[n], and XDFT[N

2 ] equals the sum of (−1)nx[n] (with
alternating sign changes). This also implies that if x[n] is real valued, so are XDFT[0] and XDFT[N

2 ]. Similar
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results hold for the IDFT.

REVIEW PANEL 10.3

The DFT Is Easy to Compute at k = 0 and (for Even N) at k = N
2

XDFT[0] =
N−1∑
n=0

x[n] XDFT[N
2 ]=

N−1∑
n=0

(−1)nx[n] x[0] =
1
N

N−1∑

k=0

XDFT[k] x[N
2 ] =

1
N

N−1∑

k=0

(−1)kXDFT[k]

10.3.3 Circular Shift and Circular Symmetry

The defining relation for the DFT requires signal values for 0 ≤ n ≤ N − 1. By implied periodicity, these
values correspond to one period of a periodic signal. If we wish to find the DFT of a time-shifted signal
x[n−n0], its values must also be selected over (0, N − 1) from its periodic extension. This concept is called
circular shifting. To generate x[n − n0], we delay x[n] by n0, create the periodic extension of the shifted
signal, and pick N samples over (0, N − 1). This is equivalent to moving the last n0 samples of x[n] to
the beginning of the sequence. Similarly, to generate x[n + n0], we move the first n0 samples to the end
of the sequence. Circular folding generates the signal x[−n] from x[n]. We fold x[n], create the periodic
extension of the folded signal, and pick N samples of the periodic extension over (0, N − 1).

REVIEW PANEL 10.4
Generating One Period (0 ≤ n ≤ N) of a Circularly Shifted Periodic Signal
To generate x[n− n0]: Move the last n0 samples of x[n] to the beginning.
To generate x[n + n0]: Move the first n0 samples of x[n] to the end.

Even symmetry of x[n] requires that x[n] = x[−n]. Its implied periodicity also means x[n] = x[N − n],
and the periodic signal x[n] is said to possess circular even symmetry. Similarly, for circular odd
symmetry, we have x[n] = −x[N − n].

REVIEW PANEL 10.5
Circular Symmetry for Real Periodic Signals with Period N

Circular even symmetry: x[n] = x[N − n] Circular odd symmetry: x[n] = −x[N − n]

10.3.4 Convolution

Convolution in one domain transforms to multiplication in the other. Due to the implied periodicity in both
domains, the convolution operation describes periodic, not regular, convolution. This also applies to the
correlation operation.

REVIEW PANEL 10.6
Multiplication in One Domain Corresponds to Discrete Periodic Convolution in the Other

Periodic Convolution

The DFT offers an indirect means of finding the periodic convolution y[n] = x[n] ?©h[n] of two sequences
x[n] and h[n] of equal length N . We compute their N -sample DFTs XDFT[k] and HDFT[k], multiply them
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to obtain YDFT[k] = XDFT[k]HDFT[k], and find the inverse of YDFT to obtain the periodic convolution y[n]:

x[n] ?©h[n] ⇐⇒ XDFT[k]HDFT[k] (10.5)

Periodic Correlation

Periodic correlation can be implemented using the DFT in almost exactly the same way as periodic convo-
lution, except for an extra conjugation step prior to taking the inverse DFT. The periodic correlation of two
sequences x[n] and h[n] of equal length N gives

rxh[n] = x[n] ?© ?©h[n] ⇐⇒ XDFT[k]H∗
DFT[k] (10.6)

If x[n] and h[n] are real, the final result rxh[n] must also be real (to within machine roundoff).

Regular Convolution and Correlation

We can also find regular convolution (or correlation) using the DFT. For two sequences of length M and N ,
the regular convolution (or correlation) contains M + N − 1 samples. We must thus pad each sequence with
enough zeros, to make each sequence of length M + N − 1, before finding the DFT.

REVIEW PANEL 10.7
Regular Convolution by the DFT Requires Zero-Padding
If x[n] and h[n] are of length M and N , create xz[n] and hz[n], each zero-padded to length M + N − 1.
Find the DFT of the zero-padded signals, multiply the DFT sequences, and find y[n] as the inverse.

10.3.5 The FFT

The DFT describes a set of N equations, each with N product terms and thus requires a total of N2

multiplications for its computation. Computationally efficient algorithms to obtain the DFT go by the
generic name FFT (fast Fourier transform) and need far fewer multiplications. In particular, radix-2 FFT
algorithms require the number of samples N to be a power of 2 and compute the DFT using only N log2 N
multiplications. We discuss such algorithms in a later section.

REVIEW PANEL 10.8
The FFT Describes Computationally Efficient Algorithms for Finding the DFT
Radix-2 FFT algorithms require the number of samples N to be a power of 2 (N = 2m, integer m).

EXAMPLE 10.2 (DFT Computations and Properties)

(a) Let y[n] = {1, 2, 3, 4, 5, 0, 0, 0}, n = 0, 1, 2, . . . , 7. Find one period of the circularly shifted signals
f [n] = y[n− 2], g[n] = y[n + 2], and the circularly folded signal h[n] = y[−n] over 0 ≤ n ≤ 7.

1. To create f [n] = y[n− 2], we move the last two samples to the beginning. So,
f [n] = y[n− 2] = {0, 0, 1, 2, 3, 4, 5, 0}, n = 0, 1, . . . , 7.

2. To create g[n] = y[n + 2], we move the first two samples to the end. So,
g[n] = y[n + 2] = {3, 4, 5, 0, 0, 0, 1, 2}, n = 0, 1, . . . , 7.
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3. To create h[n] = y[−n], we fold y[n] to {0, 0, 0, 5, 4, 3, 2, 1}, n = −7,−6,−5, . . . , 0 and create
its periodic extension by moving all samples (except y[0]) past y[0] to get
h[n] = y[−n] = {1, 0, 0, 0, 5, 4, 3, 2}, n = 0, 1, 2, . . . , 7.

(b) Let us find the DFT of x[n] = {1, 1, 0, 0, 0, 0, 0, 0}, n = 0, 1, 2, . . . , 7.

Since only x[0] and x[1] are nonzero, the upper index in the DFT summation will be n = 1 and the
DFT reduces to

XDFT[k] =
1∑

n=0

x[n]e−j2πnk/8 = 1 + e−jπk/4, k = 0, 1, 2, . . . , 7

Since N = 8, we need compute XDFT[k] only for k ≤ 0.5N = 4. Now, XDFT[0] = 1 + 1 = 2 and
XDFT[4] = 1 − 1 = 0. For the rest (k = 1, 2, 3), we compute XDFT[1] = 1 + e−jπ/4 = 1.707 − j0.707,
XDFT[2] = 1 + e−jπ/2 = 1− j, and XDFT[3] = 1 + e−j3π/4 = 0.293− j0.707.

By conjugate symmetry, XDFT[k] = X∗
DFT[N − k] = X∗

DFT[8− k]. This gives

XDFT[5] = X∗
DFT[3] = 0.293+j0.707, XDFT[6] = X∗

DFT[2] = 1+j, XDFT[7] = X∗
DFT[1] = 1.707+j0.707.

Thus, XDFT[k] = {2, 1.707− j0.707, 0.293− j0.707, 1− j, 0, 1+ j, 0.293+ j0.707, 1.707+ j0.707}.

(c) Consider the DFT pair x[n] = {1, 2, 1, 0} ⇔ XDFT[k] = {4, −j2, 0 , j2} with N = 4.

1. (Time Shift) To find y[n] = x[n− 2], we move the last two samples to the beginning to get
y[n] = x[n− 2] = {1, 0, 1, 2}, n = 0, 1, 2, 3.
To find the DFT of y[n] = x[n− 2], we use the time-shift property (with n0 = 2) to give
YDFT[k] = XDFT[k]e−j2πkn0/4 = XDFT[k]e−jkπ = {4, j2, 0, −j2}.

2. (Modulation) The sequence ZDFT[k] = XDFT[k − 1] equals {j2, 4, −j2, 0}. Its IDFT is
z[n] = x[n]ej2πn/4 = x[n]ejπn/2 = {1, j2, −1, 0}.

3. (Folding) The sequence g[n] = x[−n] is g[n] = {x[0], x[−1], x[−2], x[−3]} = {1, 0, 1, 2}.
Its DFT equals GDFT[k] = XDFT[−k] = X∗

DFT[k] = {4, j2, 0, −j2}.
4. (Conjugation) The sequence p[n] = x∗[n] is p[n] = x∗[n] = x[n] = {1, 2, 1, 0}. Its DFT is

PDFT[k] = X∗
DFT[−k] = {4, j2, 0, −j2}∗ = {4, −j2, 0, j2}.

5. (Product) The sequence h[n] = x[n]x[n] is the pointwise product. So, h[n] = {1, 4, 1, 0}.
Its DFT is HDFT[k] = 1

4XDFT[k] ?©XDFT[k] = 1
4{4, −j2, 0, j2} ?©{4, −j2, 0, j2}.

Keep in mind that this is a periodic convolution.
The result is HDFT[k] = 1

4{24, −j16, 0, j16} = {6, −j4, 0, j4}.
6. (Periodic Convolution) The periodic convolution c[n] = x[n] ?©x[n] gives

c[n] = {1, 2, 1, 0} ?©{1, 2, 1, 0} = {2, 4, 6, 4}.
Its DFT is given by the pointwise product
CDFT[k] = XDFT[k]XDFT[k] = {16, −4, 0, −4}.

7. (Regular Convolution) The regular convolution s[n] = x[n] ? x[n] gives
s[n] = {1, 2, 1, 0} ?©{1, 2, 1, 0} = {1, 4, 6, 4, 1, 0, 0}.
Since x[n] has 4 samples (N = 4), the DFT SDFT[k] of s[n] is the product of the DFT of the
zero-padded (to length N + N − 1 = 7) signal xz[n] = {1, 2, 1, 0, 0, 0, 0} and equals
{16, −2.35− j10.28, −2.18 + j1.05, 0.02 + j0.03, 0.02− j0.03,−2.18− j1.05,−2.35 + j10.28}.

c©Ashok Ambardar, September 1, 2003



10.3 Properties of the DFT 415

8. (Central Ordinates) It is easy to check that x[0] = 1
4

∑
XDFT[k] and XDFT[0] =

∑
x[n].

9. (Parseval’s Relation) We have
∑ |x[n]|2 = 1 + 4 + 1 + 0 = 6.

Since X2
DFT[k] = {16, −4, 0, 4}, we also have 1

4

∑ |XDFT[k]|2 = 1
4 (16 + 4 + 4) = 6.

10.3.6 Signal Replication and Spectrum Zero Interpolation

In analogy with the DTFT and Fourier series, two useful DFT results are that replication in one domain
leads to zero interpolation in the other. Formally, if x[n] ⇔ XDFT[k] form a DFT pair, M -fold replication
of x[n] to y[n] = {x[n], x[n], . . . , x[n]} leads to zero interpolation of the DFT to YDFT[k] = MXDFT[k/M ].
The multiplying factor M ensures that we satisfy Parseval’s theorem and the central ordinate relations. Its
dual is the result that zero interpolation of x[n] to z[n] = x[n/M ] leads to M -fold replication of the DFT to
ZDFT[k] = {XDFT[k], XDFT[k], . . . , XDFT[k]}.

REVIEW PANEL 10.9
Replication in One Domain Corresponds to Zero Interpolation in the Other
If a signal is replicated by M , its DFT is zero interpolated and scaled by M .
If x[n] ⇐⇒ XDFT[k], then {x[n], x[n], . . . , x[n]︸ ︷︷ ︸

M-fold replication

} ⇐⇒ MXDFT[k/M ].

If a signal is zero-interpolated by M , its DFT shows M-fold replication.
If x[n] ⇐⇒ XDFT[k], then x[n/M ] ⇐⇒ {XDFT[k], XDFT[k], . . . , XDFT[k]︸ ︷︷ ︸

M-fold replication

}.

EXAMPLE 10.3 (Signal and Spectrum Replication)
Let x[n] = {2, 3, 2, 1} and XDFT[k] = {8, −j2, 0, j2}. Find the DFT of the 12-point signal described by
y[n] = {x[n], x[n], x[n]} and the 12-point zero-interpolated signal h[n] = x[n/3].

(a) Signal replication by 3 leads to spectrum zero interpolation and multiplication by 3. Thus,

YDFT[k] = 3XDFT[k/3] = {24, 0, 0, −j6, 0, 0, 0, 0, 0, j6, 0, 0}

(b) Signal zero interpolation by 3 leads to spectrum replication by 3. Thus,

HDFT[k] = {XDFT[k], XDFT[k], XDFT[k]} = {8, −j2, 0, j2, 8, −j2, 0, j2, 8, −j2, 0, j2}

10.3.7 Some Useful DFT Pairs

The DFT of finite sequences defined mathematically often results in very unwieldy expressions and explains
the lack of many “standard” DFT pairs. However, the following DFT pairs are quite useful and easy to
obtain from the defining relation and properties:

{1, 0, 0, . . . , 0} (impulse) ⇐⇒ {1, 1, 1, . . . , 1} (constant) (10.7)
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416 Chapter 10 The Discrete Fourier Transform and its Applications

{1, 1, 1, . . . , 1} (constant) ⇐⇒ {N, 0, 0, . . . , 0} (impulse) (10.8)

αn (exponential) ⇐⇒ 1− αN

1− e−j2πk/N
(10.9)

cos(2πnk0/N) (sinusoid) ⇐⇒ 0.5Nδ[k − k0] + 0.5Nδ[k − (N − k0)] (impulse pair) (10.10)

The first result is a direct consequence of the defining relation. For the second result, the DFT is
∑

ej2πnk/N ,
the sum of N equally spaced vectors of unit length, and equals zero (except when k = 0). For the third
result, we use the defining relation

∑
αne−j2πnk/N and the fact that ej2πk = 1 to obtain

XDFT[k] =
N−1∑

k=0

(
αe−j2πk/N

)n =
1− (αe−j2πk/N )N

1− αe−j2πk/N
=

1− αN

1− αe−j2πk/N
(10.11)

Finally, the transform pair for the sinusoid says that for a periodic sinusoid x[n] = cos(2πnF ) whose digital
frequency is F = k0/N , the DFT is a pair of impulses at k = k0 and k = N − k0. By Euler’s relation,
x[n] = 0.5ej2πnk0/N + 0.5e−j2πnk0/N and, by periodicity, 0.5e−j2πnk0/N = 0.5ej2πn(N−k0)/N . Then, with the
DFT pair 1 ⇔ Nδ[k], and the modulation property, we get the required result.

REVIEW PANEL 10.10
The N-Point DFT of a Sinusoid with Period N and F = k0/N Has Two Nonzero Samples

cos(2πnk0
N ) ⇐⇒ N

2 δ[k − k0] + N
2 δ[k − (N − k0)] = {0, . . . , 0, N

2 ,︸︷︷︸
k=k0

0, . . . , 0, N
2 ,︸︷︷︸

k=N−k0

0, . . . , 0} (DFT)

10.4 Some Practical Guidelines
From a purely mathematical or computational standpoint, the DFT simply tells us how to transform a set
of N numbers into another set of N numbers. Its physical significance (what the numbers mean), however,
stems from its ties to the spectra of both analog and discrete signals. In general, the DFT is only an
approximation to the actual (Fourier series or transform) spectrum of the underlying analog signal. The
DFT spectral spacing and DFT magnitude is affected by the choice of sampling rate and how the sample
values are chosen. The DFT phase is affected by the location of sampling instants. The DFT spectral
spacing is affected by the sampling duration. Here are some practical guidelines on how to obtain samples
of an analog signal x(t) for spectrum analysis and interpret the DFT (or DFS) results.

Choice of sampling instants: The defining relation for the DFT (or DFS) mandates that samples of x[n]
be chosen over the range 0 ≤ n ≤ N − 1 (through periodic extension, if necessary). Otherwise, the DFT (or
DFS) phase will not match the expected phase.

Choice of samples: If a sampling instant corresponds to a jump discontinuity, the sample value should be
chosen as the midpoint of the discontinuity. The reason is that the Fourier series (or transform) converges
to the midpoint of any discontinuity.

Choice of frequency axis: The computation of the DFT (or DFS) is independent of the sampling frequency
S or sampling interval ts = 1/S. However, if an analog signal is sampled at a sampling rate S, its spectrum
is periodic with period S. The DFT spectrum describes one period (N samples) of this spectrum starting
at the origin. For sampled signals, it is useful to plot the DFT (or DFS) magnitude and phase against the
analog frequency f = kS/N Hz, k = 0, 1, . . . , N − 1 (with spacing S/N). For discrete-time signals, we can
plot the DFT against the digital frequency F = k/N, k = 0, 1, . . . , N − 1 (with spacing 1/N). These choices
are illustrated in Figure 10.3.
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10.4 Some Practical Guidelines 417

Choice of frequency range: To compare the DFT results with conventional two-sided spectra, just
remember that by periodicity, a negative frequency −f0 (at the index −k0) in the two-sided spectrum
corresponds to the frequency S − f0 (at the index N − k0) in the (one-sided) DFT spectrum.

Identifying the highest frequency: The highest frequency in the DFT spectrum corresponds to the
folding index k = 0.5N and equals F = 0.5 for discrete signals or f = 0.5S Hz for sampled analog signals.
This highest frequency is also called the folding frequency. For purposes of comparison, its is sufficient to
plot the DFT spectra only over 0 ≤ k < 0.5N (or 0 ≤ F < 0.5 for discrete-time signals or 0 ≤ f < 0.5S Hz
for sampled analog signals).

ω = 2π f
Ω = 2π F

F = f/S(N−1)/N1/ N 2/ N 3/ N

f0 f02 f03
f0

0 1 2 3 N −1

(analog radian frequency)
(digital radian frequency)

DFT samples may be plotted against the index or against frequency

Two more options are:

F Digital frequency0

f (Hz) Analog frequency0 S/N=

k (Index)

Figure 10.3 Various ways of plotting the DFT

Plotting reordered spectra: The DFT (or DFS) may also be plotted as two-sided spectra to reveal
conjugate symmetry about the origin by creating its periodic extension. This is equivalent to creating a
reordered spectrum by relocating the DFT samples at indices past the folding index k = 0.5N to the left of
the origin (because X[−k] = X[N − k]). This process is illustrated in Figure 10.4.

/2N

X[k] X[N ]k−=

N/2

Relocate
kk

Original spectrum Reordered spectrum

Figure 10.4 Plotting the DFT or its reordered samples

REVIEW PANEL 10.11
Practical Guidelines for Sampling a Signal and Interpreting the DFT Results
Sampling: Start at t = 0. Choose the midpoint value at jumps. Sample above the Nyquist rate.
Plotting: Plot DFT against index k = 0, 1, . . . , N − 1 or F = k

N or f = k S
N Hz.

Frequency spacing of DFT samples: ∆f = S/N Hz (analog) or ∆F = 1/N (digital frequency).
Highest frequency: This equals F = 0.5 or f = 0.5S corresponding to the index k = N

2 .
For long sequences: The DFT magnitude/phase are usually plotted as continuous functions.
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10.5 Approximating the DTFT by the DFT
The DTFT relation and its inverse are

Xp(F ) =
∞∑

n=−∞
x[n]e−j2πnF x[n] =

∫

1

Xp(F )ej2πnF dF (10.12)

where Xp(F ) is periodic with unit period. If x[n] is a finite N -point sequence with n = 0, 1, . . . , N − 1, we
obtain N samples of the DTFT over one period at intervals of 1/N as

XDFT[k] =
N−1∑
n=0

x[n]e−j2πnk/N , k = 0, 1, . . . , N − 1 (10.13)

This describes the discrete Fourier transform (DFT) of x[n] as a sampled version of its DTFT evaluated
at the frequencies F = k/N, k = 0, 1, . . . , N − 1. The DFT spectrum thus corresponds to the frequency
range 0 ≤ F < 1 and is plotted at the frequencies F = k/N, k = 0, 1, . . . , N − 1.

To recover the finite sequence x[n] from N samples of XDFT[k], we use dF ≈ 1/N and F → k/N to
approximate the integral expression in the inversion relation by

x[n] =
1
N

N−1∑

k=0

XDFT[k]ej2πnk/N , n = 0, 1, . . . , N − 1 (10.14)

This is the inverse discrete Fourier transform (IDFT). The periodicity of the IDFT implies that x[n]
actually corresponds to one period of a periodic signal.

If x[n] is a finite N -point signal with n = 0, 1, . . . , N − 1, the DFT is an exact match to its DTFT Xp(F )
at F = k/N, k = 0, 1, . . . , N − 1, and the IDFT results in perfect recovery of x[n].

If x[n] is not time-limited, its N -point DFT is only an approximation to its DTFT Xp(F ) evaluated at
F = k/N, k = 0, 1, . . . , N − 1. Due to implied periodicity, the DFT, in fact, exactly matches the DTFT of
the periodic extension of x[n] with period N at these frequencies.

If x[n] is a discrete periodic signal with period N , its scaled DFT ( 1
N XDFT[k]) is an exact match to the

impulse strengths in its DTFT Xp(F ) at F = k/N, k = 0, 1, . . . , N − 1. In this case also, the IDFT results
in perfect recovery of one period of x[n] over 0 ≤ n ≤ N − 1.

REVIEW PANEL 10.12
The DFT XDFT[k] of an N-Sample Sequence x[n] Is an Exact Match to Its Sampled DTFT
If x[n] is also periodic, the scaled DFT 1

N XDFT[k] is an exact match to its sampled DTFT.

EXAMPLE 10.4 (Relating the DFT and the DTFT)
(a) Let x[n] = {1, 2, 1, 0}. If we use the DTFT, we first find

Xp(F ) = 1 + 2e−j2πF + e−j4πF + 0 = [2 + 2 cos(2πF )]e−j2πF

With N = 4, we have F = k/4, k = 0, 1, 2, 3. We then obtain the DFT as

XDFT[k] = [2 + 2 cos(2πk/4)]e−j2πk/4, k = 0, 1, 2, 3, or XDFT[k] = {4, −j2, 0, j2}
Since x[n] is a finite sequence, the DFT and DTFT show an exact match at F = k/N, k = 0, 1, 2, 3.
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With N = 4, and e−j2πnk/N = e−jnkπ/2, we compute the IDFT of XDFT[k] = {4, −j2, 0, j2} to give

n = 0: x[0] = 0.25
3∑

k=0

XDFT[k]e0 = 0.25(4− j2 + 0 + j2) = 1

n = 1: x[1] = 0.25
3∑

k=0

XDFT[k]e−jkπ/2 = 0.25(4− j2e−jπ/2 + 0 + j2e−j3π/2) = 2

n = 2: x[2] = 0.25
3∑

k=0

XDFT[k]e−jkπ = 0.25(4− j2e−jπ + 0 + j2e−j3π) = 1

n = 3: x[3] = 0.25
3∑

k=0

XDFT[k]e−j3kπ/2 = 0.25(4− j2e−j3π/2 + 0 + e−j9π/2) = 0

The IDFT is thus {1, 2, 1, 0}, and recovers x[n] exactly.

(b) Let x[n] = αnu[n]. Its DTFT is Xp(F ) = 1
1−αe−j2πF . Sampling Xp(F ) at intervals F = k/N gives

Xp(F )
∣∣
F=k/N

=
1

1− αe−j2πk/N

The N -point DFT of x[n] is

αn (n = 0, 1, . . . , N − 1) ⇐⇒ 1− αN

1− αe−j2πk/N

Clearly, the N -sample DFT of x[n] does not match the DTFT of x[n] (unless N →∞).

Comment: What does match, however, is the DFT of the N -sample periodic extension xpe[n] and the
DTFT of x[n]. We obtain one period of the periodic extension by wrapping around N -sample sections
of x[n] = αn and adding them to give

xpe[n] = αn + αn+N + αn+2N + · · · = αn(1 + αN + α2N + · · ·) =
αn

1− αN
=

1
1− αN

x[n]

Its DFT is thus
1

1− αe−j2πk/N
and matches the DTFT of x[n] at F = k

N , k = 0, 1, . . . , N − 1.

10.6 The DFT of Periodic Signals and the DFS
The Fourier series relations for a periodic signal xp(t) are

xp(t) =
∞∑

k=−∞
X[k]ej2πkf0t X[k] =

1
T

∫

T

xp(t)e−j2πkf0t dt (10.15)

If we acquire x[n], n = 0, 1, . . . , N − 1 as N samples of xp(t) over one period using a sampling rate of S Hz
(corresponding to a sampling interval of ts) and approximate the integral expression for X[k] by a summation
using dt → ts, t → nts, T = Nts, and f0 = 1

T = 1
Nts

, we obtain

XDFS[k] =
1

Nts

N−1∑
n=0

x[n]e−j2πkf0ntsts =
1
N

N−1∑
n=0

x[n]e−j2πnk/N , k = 0, 1, . . . , N − 1 (10.16)
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The quantity XDFS[k] defines the discrete Fourier series (DFS) as an approximation to the Fourier series
coefficients of a periodic signal and equals N times the DFT.

10.6.1 The Inverse DFS

To recover x[n] from one period of XDFS[k], we use the Fourier series reconstruction relation whose summation
index covers one period (from k = 0 to k = N − 1) to obtain

x[n] =
N−1∑

k=0

XDFS[n]ej2πkf0nts =
N−1∑

k=0

XDFS[k]ej2πnk/N , n = 0, 1, 2, . . . , N − 1 (10.17)

This relation describes the inverse discrete Fourier series (IDFS). The sampling interval ts does not
enter into the computation of the DFS or its inverse. Except for a scale factor, the DFS and DFT relations
are identical.

10.6.2 Understanding the DFS Results

The XDFS[k] describes the spectrum of a sampled signal and is thus periodic with period S (starting at the
origin). Its N samples are spaced S/N Hz apart and plotted at the frequencies f = kS/N, k = 0, 1, . . . , N−1.
However, the highest frequency we can identify in the DFS spectrum is 0.5S (corresponding to the folding
index k = 0.5N).

The N -sample DFS XDFS[k] = 1
N XDFT[k] shows an exact match to the Fourier series coefficients X[k]

of a periodic signal x(t) only if all of the following conditions are satisfied:

1. The signal samples must be acquired from x(t) starting at t = 0 (using the periodic extension of the
signal, if necessary). Otherwise, the phase of the DFS coefficients will not match the phase of the
corresponding Fourier series coefficients.

2. The periodic signal must contain a finite number of sinusoids (to ensure a band-limited signal with a
finite highest frequency) and be sampled above the Nyquist rate. Otherwise, there will be aliasing,
whose effects become more pronounced near the folding frequency 0.5S. If the periodic signal is not
band-limited (contains an infinite number of harmonics), we cannot sample at a rate high enough to
prevent aliasing. For a pure sinusoid, the Nyquist rate corresponds to two samples per period.

3. The signal x(t) must be sampled for an integer number of periods (to ensure a match between the
periodic extension of x(t) and the implied periodic extension of the sampled signal). Otherwise, the
periodic extension of its samples will not match that of x(t), and the DFS samples will describe the
Fourier series coefficients of a different periodic signal whose harmonic frequencies do not match those
of x(t). This phenomenon is called leakage and results in nonzero spectral components at frequencies
other than the harmonic frequencies of the original signal x(t).

If we sample a periodic signal for an integer number of periods, the DFS (or DFT) also preserves the effects
of symmetry. The DFS of an even symmetric signal is real, the DFS of an odd symmetric signal is imaginary,
and the DFS of a half-wave symmetric signal is zero at even values of the index k.
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REVIEW PANEL 10.13
The DFT of a Sampled Periodic Signal x(t) Is Related to Its Fourier Series Coefficients
If x(t) is band-limited and sampled for an integer number of periods, the DFT is an exact match to the
Fourier series coefficients X[k], with XDFT[k] = NX[k].
If x(t) is not band-limited, there is aliasing.
If x(t) is not sampled for an integer number of periods, there is also leakage.

10.6.3 The DFS and DFT of Sinusoids

Consider the sinusoid x(t) = cos(2πf0t + θ) whose Fourier series coefficients we know to be 0.56 θ = 0.5ejθ

at f = f0 and 0.56 − θ = 0.5e−jθ at f = −f0. If x(t) is sampled at the rate S, starting at t = 0, the
sampled signal is x[n] = cos(2πnF + θ), where F = f0/S is the digital frequency. As long as F is a rational
fraction of the form F = k0/N , we obtain N samples of x[n] from k0 full periods of x(t). In this case, there
is no leakage, and the N -point DFS will match the expected results and show only two nonzero DFS values,
XDFS[k0] = 0.5ejθ and XDFS[N − k0] = 0.5e−jθ. The DFT is obtained by multiplying the DFS by N .

cos(2πnk0
N + θ) ⇐⇒ {0, . . . , 0, 0.5ejθ,︸ ︷︷ ︸

k=k0

0, . . . , 0, 0.5e−jθ,︸ ︷︷ ︸
k=N−k0

0, . . . , 0} (DFS) (10.18)

For the index k0 to lie in the range 0 ≤ k0 ≤ N−1, we must ensure that 0 ≤ F < 1 (rather than the customary
−0.5 ≤ F < 0.5). The frequency corresponding to k0 will then be k0S/N and will equal f0 (if S > 2f0) or its
alias (if S < 2f0). The nonzero DFT values will equal XDFT[k0] = 0.5Nejθ and XDFT[N − k0] = 0.5Ne−jθ.
These results are straightforward to obtain and can be easily extended, by superposition, to the DFT of a
combination of sinusoids, sampled over an integer number of periods.

REVIEW PANEL 10.14

The N-Point DFT of the Sinusoid x[n] = cos(2πnk0
N + θ) Contains Only Two Nonzero Samples

cos(2πnk0
N + θ) ⇐⇒ {0, . . . , 0, N

2 ejθ,︸ ︷︷ ︸
k=k0

0, . . . , 0, N
2 e−jθ,︸ ︷︷ ︸

k=N−k0

0, . . . , 0} (DFT)

EXAMPLE 10.5 (The DFT and DFS of Sinusoids)
(a) The signal x(t) = 4 cos(100πt) is sampled at twice the Nyquist rate for three full periods. Find and

sketch its DFT.
The frequency of x(t) is 50 Hz, the Nyquist rate is 100 Hz, and the sampling frequency is S = 200Hz.
The digital frequency is F = 50/200 = 1/4 = 3/12 = k/N . This means N = 12 for three full periods.
The two nonzero DFT values will appear at k = 3 and k = N − 3 = 9. The nonzero DFT values will
be X[3] = X[9] = (0.5)(4)(N) = 24. The signal and its DFT are sketched in Figure E10.5A.

= 12N

4

−4

t

Cosine signal (3 periods)

T

DFT

3 6 9 11

24 24

k

Figure E10.5A The signal and DFT for Example 10.5(a)
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(b) Let x(t) = 4 sin(72πt) be sampled at S = 128 Hz. Choose the minimum number of samples necessary
to prevent leakage and find the DFS and DFT of the sampled signal.

The frequency of x(t) is 36 Hz, so F = 36/128 = 9/32 = k0/N . Thus, N = 32, k0 = 9, and
the frequency spacing is S/N = 4 Hz. The DFS components will appear at k0 = 9 (36 Hz) and
N − k0 = 23 (92 Hz). The Fourier series coefficients of x(t) are −j2 (at 36 Hz) and j2 (at −36 Hz).

The DFS samples will be XDFS[9] = −j2, and XDFS[23] = j2. Since XDFT[k] = NXDFS[k], we get
XDFT[9] = −j64, XDFT[23] = j64, and thus

XDFT[k] = {0, . . . , 0, −j64,︸ ︷︷ ︸
k=9

0, . . . , 0, j64,︸︷︷︸
k=23

0, . . . , 0}

(c) Let x(t) = 4 sin(72πt)−6 cos(12πt) be sampled at S = 21 Hz. Choose the minimum number of samples
necessary to prevent leakage and find the DFS and DFT of the sampled signal.

Clearly, the 36-Hz term will be aliased. The digital frequencies (between 0 and 1) of the two terms are
F1 = 36/21 = 12/7 ⇒ 5/7 = k0/N and F2 = 6/21 = 2/7. Thus, N = 7 and the frequency spacing is
S/N = 3 Hz. The DFS components of the first term will be −j2 at k = 5 (15 Hz) and j2 at N − k = 2
(6 Hz). The DFS components of the second term will be −3 at k = 2 and −3 at k = 5. The DFS
values will add up at the appropriate indices to give XDFS[5] = −3− j2, XDFS[2] = −3 + j2, and

XDFS[k] = {0, 0, −3 + j2︸ ︷︷ ︸
k=2

, 0, 0, −3− j2︸ ︷︷ ︸
k=5

, 0} XDFT[k] = NXDFS[k] = 7XDFS[k]

Note how the 36-Hz component was aliased to 6 Hz (the frequency of the second component).

(d) The signal x(t) = 1 + 8 sin(80πt)cos(40πt) is sampled at twice the Nyquist rate for two full periods. Is
leakage present? If not, find the DFS of the sampled signal.

First, note that x(t) = 1 + 4 sin(120πt) + 4 sin(40πt). The frequencies are f1 = 60 Hz and f2 = 20 Hz.
The Nyquist rate is thus 120 Hz, and hence S = 240 Hz. The digital frequencies are F1 = 60/240 = 1/4
and F2 = 20/240 = 1/12. The fundamental frequency is f0 = GCD(f1, f2) = 20 Hz. Thus, two
full periods correspond to 0.1 s or N = 24 samples. There is no leakage because we acquire the
samples over two full periods. The index k = 0 corresponds to the constant (dc value). To find
the indices of the other nonzero DFS samples, we compute the digital frequencies (in the form k/N)
as F1 = 60/240 = 1/4 = 6/24 and F2 = 20/240 = 1/12 = 2/24. The nonzero DFS samples are
thus XDFS[0] = 1, XDFS[6] = −j2, and XDFS[2] = −j2, and the conjugates XDFS[18] = j2 and
XDFS[22] = j2. Thus,

XDFS[k] = {0, 0, −j2︸︷︷︸
k=2

, 0, 0, 0, −j2︸︷︷︸
k=6

, 0, . . . , 0, j2︸︷︷︸
k=18

, 0, 0, 0, j2︸︷︷︸
k=22

, 0, 0}

10.6.4 The DFT and DFS of Sampled Periodic Signals

For periodic signals that are not band-limited, leakage can be prevented by sampling for an integer number of
periods, but aliasing is unavoidable for any sampling rate. The aliasing error increases at higher frequencies.
The effects of aliasing can be minimized (but not eliminated) by choosing a high enough sampling rate. A
useful rule of thumb is that for the DFT to produce an error of about 5% or less up to the Mth harmonic
frequency fM = Mf0, we must choose S ≥ 8fM (corresponding to N ≥ 8M samples per period).
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EXAMPLE 10.6 (DFS of Sampled Periodic Signals)
Consider a square wave x(t) that equals 1 for the first half-period and −1 for the next half-period, as
illustrated in Figure E10.6.

t

1

−1

x(t) (32 samples per period)Square wave 

Figure E10.6 One period of the square wave periodic signal for Example 10.6

Its Fourier series coefficients are X[k] = −j2/kπ, (k odd). If we require the first four harmonics to be in
error by no more than about 5%, we choose a sampling rate S = 32f0, where f0 is the fundamental frequency.
This means that we acquire N = 32 samples for one period. The samples and their DFS up to k = 8 are
listed below, along with the error in the nonzero DFS values compared with the Fourier series coefficients.

x[n] = {0, 1, 1, . . . , 1, 1︸ ︷︷ ︸
15 samples

, 0, −1, −1, . . . , −1, −1︸ ︷︷ ︸
15 samples

}

XDFS[k] = {0, −j0.6346,︸ ︷︷ ︸
off by 0.3%

0, −j0.206,︸ ︷︷ ︸
off by 2.9%

0, −j0.1169,︸ ︷︷ ︸
off by 8.2%

0, −j0.0762,︸ ︷︷ ︸
off by 16.3%

0, . . .}

Note how we picked zero as the sample value at the discontinuities. As expected, the DFS coefficients are
zero for odd k (due to the half-wave symmetry in x(t)) and purely imaginary (due to the odd symmetry in
x(t)). The error in the nonzero harmonics up to k = 4 is less than 5%.

10.6.5 The Effects of Leakage

If we do not sample x(t) for an integer number of periods, the DFT will show the effects of leakage, with
nonzero components appearing at frequencies other than ±f0, because the periodic extension of the signal
with non-integer periods will not match the original signal, as illustrated in Figure 10.5.

t

Sinusoid sampled for one full period
and its periodic extension

t

Sinusoid sampled for half a period
and its periodic extension

Figure 10.5 Illustrating the concept of leakage

The DFT results will also show aliasing because the periodic extension of the signal with non-integer
periods will not, in general, be band-limited. As a result, we must resort to the full force of the defining
relation to compute the DFT.
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Suppose we sample the 1-Hz sine x(t) = sin(2πt) at S = 16 Hz. Then, F0 = 1/16. If we choose N = 8,
the DFT spectral spacing equals S/N = 2 Hz. In other words, there is no DFT component at 1 Hz, the
frequency of the sine wave! Where should we expect to see the DFT components? If we express the digital
frequency F0 = 1/16 as F0 = kF /N , we obtain kF = NF0 = 0.5. Thus, F0 corresponds to the fractional
index kF = 0.5, and the largest DFT components should appear at the integer index nearest to kF , at k = 0
(or dc) and k = 1 (or 2 Hz). In fact, the signal and its DFS are given by

x[n] = {0, 0.3827, 0.7071, 0.9329, 1, 0.9329, 0.7071, 0.3827}
XDFS[k] = { 0.6284,︸ ︷︷ ︸

off by 1.3%

−0.2207,︸ ︷︷ ︸
off by 4%

−0.0518,︸ ︷︷ ︸
off by 23%

−0.0293,︸ ︷︷ ︸
off by 61%

−0.0249,︸ ︷︷ ︸
k=N/2

−0.0293, −0.0518, −0.2207 }

As expected, the largest components appear at k = 0 and k = 1. Since XDFS[k] is real, the DFS results
describe an even symmetric signal with nonzero average value. In fact, the periodic extension of the sampled
signal over half a period actually describes a full-rectified sine with even symmetry and a fundamental
frequency of 2 Hz (see Figure 10.5). The Fourier series coefficients of this full-rectified sine wave (with unit
peak value) are given by

X[k] =
2

π(1− 4k2)

We confirm that XDFS[0] and XDFS[1] show an error of less than 5%. But XDFS[2], XDFS[3], and XDFS[4]
deviate significantly. Since the new periodic signal is no longer band-limited, the sampling rate is not high
enough, and we have aliasing. The value XDFS[3], for example, equals the sum of the Fourier series coefficient
X[3] and all other Fourier series coefficients X[11], X[19], . . . that alias to k = 3. In other words,

XDFS[3] =
∞∑

m=∞
X[3 + 8m] =

2
π

∞∑
m=∞

1
1− 4(3 + 8m)2

Although this sum is not easily amenable to a closed-form solution, it can be computed numerically and
does in fact approach XDFS[3] = −0.0293 (for a large but finite number of coefficients).

Minimizing Leakage

Ideally, we should sample periodic signals over an integer number of periods to prevent leakage. In practice,
it may not be easy to identify the period of a signal in advance. In such cases, it is best to sample over
as long a signal duration as possible (to reduce the mismatch between the periodic extension of the analog
and sampled signal). Sampling for a larger time (duration) not only reduces the effects of leakage but also
yields a more closely spaced spectrum, and a more accurate estimate of the spectrum of the original signal.
Another way to reduce leakage is to multiply the signal samples by a window function (as described later).

REVIEW PANEL 10.15
The DFT of a Sinusoid at f0 Hz Sampled for Non-Integer Periods Shows Leakage
The largest DFT component appears at the integer index closest to kF = F0N = f0N/S.
To minimize leakage: Sample for the longest duration possible or (better still) for integer periods.
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EXAMPLE 10.7 (The Effects of Leakage)
The signal x(t) = 2 cos(20πt) + 5 cos(100πt) is sampled at intervals of ts = 0.005 s for three different
durations, 0.1 s, 0.125 s, and 1.125 s. Explain the DFT spectrum for each duration.

The sampling frequency is S = 1/ts = 200 Hz. The frequencies in x(t) are f1 = 10 Hz and f2 = 50 Hz.
The two-sided spectrum of x(t) will show a magnitude of 1 at 10 Hz and 2.5 at 50 Hz. The fundamental
frequency is 10 Hz, and the common period of x(t) is 0.1 s. We have the following results with reference to
Figure E10.7, which shows the DFS magnitude (|XDFT|/N) up to the folding index (or 100 Hz).
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(a)   Length = 0.1 s    N=20
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(b)   Length = 0.125 s    N=25
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(c)  Length = 1.125 s    N=225

Figure E10.7 DFT results for Example 10.7

(a) The duration of 0.1 s corresponds to one full period, and N = 20. No leakage is present, and the DFS
results reveal an exact match to the spectrum of x(t). The nonzero components appear at the integer indices
k1 = NF = Nf1/S = 1 and k2 = NF2 = Nf2/S = 5 (corresponding to 10 Hz and 50 Hz, respectively).

(b) The duration of 0.125 s does not correspond to an integer number of periods. The number of samples
over 0.125 s is N = 25. Leakage is present. The largest components appear at the integer indices closest to
k1 = NF = Nf1/S = 1.25 (i.e., k = 1 or 8 Hz) and k2 = Nf2/S = 6.25 (i.e., k = 6 or 48 Hz).

(c) The duration of 1.125 s does not correspond to an integer number of periods. The number of samples
over 1.125 s is N = 225. Leakage is present. The largest components appear at the integer indices closest to
k1 = NF = Nf1/S = 11.25 (i.e., k = 11 or 9.78 Hz) and k2 = Nf2/S = 56.25 (i.e., k = 56 or 49.78 Hz).

Comment: The spectra reveal that the longest duration (1.125 s) also produces the smallest leakage.

10.7 The DFT of Nonperiodic Signals
The Fourier transform X(f) of a nonperiodic signal x(t) is continuous. To find the DFT, x(t) must be
sampled over a finite duration (N samples). The spectrum of a sampled signal over its principal period
(−0.5S, 0.5S) corresponds to the spectrum of the analog signal SX(f), provided x(t) is band-limited to
B < 0.5S. In practice, no analog signal is truly band-limited. As a result, if x[n] corresponds to N samples
of the analog signal x(t), obtained at the sampling rate S, the DFT XDFT[k] of x[n] yields essentially the
Fourier series of its periodic extension, and is only approximately related to X(f) by

XDFT[k] ≈ SX(f)|f=kS/N , 0 ≤ k < 0.5N (0 ≤ f < 0.5S) (10.19)

REVIEW PANEL 10.16
The DFT of a Sampled Aperiodic Signal x(t) Approximates Its Scaled Transform SX(f)
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To find the DFT of an arbitrary signal with some confidence, we must decide on the number of samples N
and the sampling rate S, based on both theoretical considerations and practical compromises. For example,
one way to choose a sampling rate is based on energy considerations. We pick the sampling rate as 2B Hz,
where the frequency range up to B Hz contains a significant fraction P of the signal energy. The number of
samples should cover a large enough duration to include significant signal values.

10.7.1 Spectral Spacing and Zero-Padding

Often, the spectral spacing S/N is not small enough to make appropriate visual comparisons with the analog
spectrum X(f), and we need a denser or interpolated version of the DFT spectrum. To decrease the spectral
spacing, we must choose a larger number of samples N . This increase in N cannot come about by increasing
the sampling rate S (which would leave the spectral spacing S/N unchanged), but by increasing the duration
over which we sample the signal. In other words, to reduce the frequency spacing, we must sample the signal
for a longer duration at the given sampling rate. However, if the original signal is of finite duration, we can
still increase N by appending zeros (zero-padding). Appending zeros does not improve accuracy because it
adds no new signal information. It only decreases the spectral spacing and thus interpolates the DFT at
a denser set of frequencies. To improve the accuracy of the DFT results, we must increase the number of
signal samples by sampling the signal for a longer time (and not just zero-padding).

REVIEW PANEL 10.17
Signal Zero-Padding Corresponds to an Interpolated Spectrum
Zero-padding reduces the spectral spacing. It does not improve accuracy of the DFT results.
To improve accuracy, we need more signal samples (not zeros).

EXAMPLE 10.8 (DFT of Finite-Duration Signals)

(a) (Spectral Spacing) A 3-s signal is sampled at S = 100 Hz. The maximum spectral spacing is to be
∆f = 0.25 Hz. How many samples are needed for the DFT and FFT?

If we use the DFT, the number of samples is N = S/∆f = 400. Since the 3-s signal gives only 300
signal samples, we must add 100 padded zeros. The spectral spacing is S/N = 0.25 Hz as required.
If we use the FFT, we need NFFT = 512 samples (the next higher power of 2). There are now 212
padded zeros, and the spectral spacing is S/NFFT = 0.1953 Hz, better (i.e. less) than required.

(b) Let x(t) = tri(t). Its Fourier transform is X(f) = sinc2(f). Let us choose S = 4 Hz and N = 8.
To obtain samples of x(t) starting at t = 0, we sample the periodic extension of x(t) as illustrated in
Figure E10.8B and obtain tsXDFT[k] to give

x[n] = {1, 0.75, 0.5, 0.25, 0, 0.25, 0.5, 0.75}
X(f) ≈ tsXDFT[k] = {1, 0.4268,︸ ︷︷ ︸

off by 5.3%

0, 0.0732,︸ ︷︷ ︸
off by 62.6%

0,︸︷︷︸
k=N/2

0.0732, 0, 0.4268}

Since highest frequency present in the DFT spectrum is 0.5S = 2 Hz, the DFT results are listed only
up to k = 4. Since the frequency spacing is S/N = 0.5 Hz, we compare tsXDFT[k] with X(kS/N) =
sinc2(0.5k). At k = 0 (dc) and k = 2 (1 Hz), we see a perfect match. At k = 1 (0.5 Hz), tsXDFT[k] is
in error by about 5.3%, but at k = 3 (1.5 Hz), the error is a whopping 62.6%.
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S = 4 Hz
N = 8

= tri( t )x(t) 

N = 16
S = 4 Hz

= tri( t )x(t) 

1 20.5

S = 8 Hz
N = 16

= tri( t )x(t) 

0.5 1
t

Periodic extension
Period = 1

t

Period = 2
Periodic extension

Period = 1

0.5 1
t

Periodic extension

Figure E10.8B The triangular pulse signal for Example 10.8(b)

• (Reducing Spectral Spacing) Let us decrease the spectral spacing by zero-padding to increase
the number of samples to N = 16. We must sample the periodic extension of the zero-padded
signal, as shown in Figure E10.8B, to give

x[n] = {1, 0.75, 0.5, 0.25, 0, 0, 0, 0, 0, 0, 0, 0, 0︸ ︷︷ ︸
8 zeros

, 0.25, 0.5, 0.75}

Note how the padded zeros appear in the middle. Since highest frequency present in the DFT
spectrum is 2 Hz, the DFT results are listed only up to the folding index k = 8.

tsXDFT[k] = {1, 0.8211, 0.4268,︸ ︷︷ ︸
off by 5.3%

0.1012, 0, 0.0452, 0.0732,︸ ︷︷ ︸
off by 62.6%

0.0325, 0,︸︷︷︸
k=N/2

. . .}

The frequency separation is reduced to S/N = 0.25 Hz. Compared with X(kf0) = sinc2(0.25k),
the DFT results for k = 2 (0.5 Hz) and k = 6 (1.5 Hz) are still off by 5.3% and 62.6%, respectively.
In other words, zero-padding reduces the spectral spacing, but the DFT results are no more
accurate. To improve the accuracy, we must pick more signal samples.

• (Improving Accuracy) If we choose S = 8 Hz and N = 16, we obtain 16 samples shown in
Figure E16.8B. We list the 16-sample DFT up to k = 8 (corresponding to the highest frequency
of 4 Hz present in the DFT):

tsXDFT[k] = {1, 0.4105,︸ ︷︷ ︸
off by 1.3%

0, 0.0506,︸ ︷︷ ︸
off by 12.4%

0, 0.0226,︸ ︷︷ ︸
off by 39.4%

0, 0.0162,︸ ︷︷ ︸
off by 96.4%

0,︸︷︷︸
k=N/2

. . .}

The DFT spectral spacing is still S/N = 0.5 Hz. In comparison with X(k/2) = sinc2(0.5k), the
error in the DFT results for the 0.5-Hz component (k = 1) and the 1.5-Hz component (k = 3)
is now only about 1.3% and 12.4%, respectively. In other words, increasing the number of signal
samples improves the accuracy of the DFT results. However, the error at 2.5 Hz (k = 5) and
3.5 Hz (k = 7) is 39.4% and 96.4%, respectively, and implies that the effects of aliasing are more
predominant at frequencies closer to the folding frequency.

(c) Consider the signal x(t) = e−tu(t) whose Fourier transform is X(f) = 1/(1 + j2πf). Since the energy
E in x(t) equals 1, we use Parseval’s relation to estimate the bandwidth B that contains the fraction
P of this energy as ∫ B

−B

1
1 + 4π2f2

df = P B =
tan(0.5πP )

2π
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1. If we choose B to contain 95% of the signal energy (P = 0.95), we find B = 12.71/2π = 2.02 Hz.
Then, S > 4.04 Hz. Let us choose S = 5 Hz. For a spectral spacing of 1 Hz, we have S/N = 1 Hz
and N = 5. So, we sample x(t) at intervals of ts = 1/S = 0.2 s, starting at t = 0, to obtain x[n].
Since x(t) is discontinuous at t = 0, we pick x[0] = 0.5, not 1. The DFT results based on this set
of choices will not be very good because with N = 5 we sample only a 1-s segment of x(t).

2. A better choice is N = 15, a 3-s duration over which x(t) decays to 0.05. A more practical choice is
N = 16 (a power of 2, which allows efficient computation of the DFT, using the FFT algorithm).
This gives a spectral spacing of S/N = 5/16 Hz. Our rule of thumb (N > 8M) suggests that
with N = 16, the DFT values XDFT[1] and XDFT[2] should show an error of only about 5%. We
see that tsXDFT[k] does compare well with X(f) (see Figure E10.8C), even though the effects of
aliasing are still evident.
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Figure E10.8C DFT results for Example 10.8(c)

3. To improve the results (and minimize aliasing), we must increase S. For example, if we require
the highest frequency based on 99% of the signal energy, we obtain B = 63.6567/2π = 10.13 Hz.
Based on this, let us choose S = 25 Hz. If we sample x(t) over 5 s (by which time it decays to
less that 0.01), we compute N = (25)(5) = 125. Choosing N = 128 (the next higher power of 2),
we find that the 128-point DFT result tsXDFT[k] is almost identical to the true spectrum X(f).

4. What would happen if we choose S = 5 Hz and five signal samples, but reduce the spectral spacing
by zero-padding to give N = 50? The 50-point DFT clearly shows the effects of truncation (as
wiggles) and is a poor match to the true spectrum. This confirms that improved accuracy does
not come by zero-padding but by including more signal samples.

10.8 Spectral Smoothing by Time Windows
Sampling an analog signal for a finite number of samples N is equivalent to multiplying the samples by a
rectangular N -point window. Due to abrupt truncation of this rectangular window, the spectrum of the
windowed signal shows a mainlobe and sidelobes that do not decay rapidly enough. This phenomenon is
similar to the Gibbs effect, which arises during the reconstruction of periodic signals from a finite number of
harmonics (an abrupt truncation of its spectrum). Just as Fourier series reconstruction uses tapered spectral
windows to smooth the time signal, the DFT uses tapered time-domain windows to smooth the spectrum,
but at the expense of making it broader. This is another manifestation of leakage in that the spectral energy
is distributed (leaked) over a wider frequency range.

Unlike windows for Fourier series smoothing, we are not constrained by odd-length windows. As shown
in Figure 10.6, an N -point DFT window is actually generated from a symmetric (N + 1)-point window
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(sampled over N intervals and symmetric about its midpoint) with its last sample discarded (in keeping
with the implied periodicity of the signal and the window itself). To apply a window, we position it over the
signal samples and create their pointwise product.

N =  12 N =  9
Bartlett window

12  intervals

No sample here

9  intervals

Figure 10.6 Features of a DFT window

10.8.1 Performance Characteristics of Windows

The spectrum of all windows shows a mainlobe and decaying sidelobes, as illustrated in Figure 10.7. Measures
of magnitude are often normalized by the peak magnitude P and expressed in decibels (dB) (as a gain or
attenuation). These measures include the peak value P , the peak sidelobe level, the 3-dB level and the 6-dB
level, and the high-frequency decay rate (in dB/decade or dB/octave). Measures of spectral width include
the 3-dB width W3, 6-dB width W6, the width WS to reach the peak sidelobe level (PSL), and the mainlobe
width WM . These measures are illustrated in Figure 10.7.

3W SW MW6W

P

PSL

0.707P

0.5P

F

DTFT magnitude spectrum of a typical window

High-frequency decay

0.5

Figure 10.7 DFT spectrum of a typical window

Other measures of window performance include the coherent gain (CG), equivalent noise bandwidth
(ENBW), and the scallop loss (SL). For an N -point window w[n], these measures are defined by

CG =
1
N

N−1∑

k=0

|w[k]| ENBW =

N

N−1∑

k=0

|w[k]|2

∣∣∣∣∣
N−1∑

k=0

w[k]

∣∣∣∣∣

2 SL = 20 log

∣∣∣∣∣
N−1∑

k=0

w[k]e−jπk/N

∣∣∣∣∣
N−1∑

k=0

w[k]

dB (10.20)

The reciprocal of the equivalent noise bandwidth is also called the processing gain. The larger the pro-
cessing gain, the easier it is to reliably detect a signal in the presence of noise.
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As we increase the window length, the mainlobe width of all windows decreases, but the peak sidelobe
level remains more or less constant. Ideally, for a given window length, the spectrum of a window should
approach an impulse with as narrow (and tall) a mainlobe as possible, and as small a peak sidelobe level as
possible. The aim is to pack as much energy in a narrow mainlobe as possible and make the sidelobe level
as small as possible. These are conflicting requirements in that a narrow mainlobe width also translates
to a higher peak sidelobe level. Some DFT windows and their spectral characteristics are illustrated in
Figure 10.8, and summarized in Table 10.4.

REVIEW PANEL 10.18
A Window Should Maximize the Mainlobe Energy and Minimize the Sidelobe Energy
A narrow mainlobe and small sidelobe are conflicting requirements for the spectrum of a window.

Table 10.4 Some Commonly Used N -Point DFT Windows

Entry Window Expression for w[n] WM = K
N Normalized Peak Sidelobe

1 Boxcar 1 2/N 0.2172 ≈ −13.3 dB

2 Bartlett 1− 2|k|
N 4/N 0.0472 ≈ −26.5 dB

3 von Hann 0.5 + 0.5 cos( 2πk
N ) 4/N 0.0267 ≈ −31.5 dB

4 Hamming 0.54 + 0.46 cos( 2πk
N ) 4/N 0.0073 ≈ −42.7 dB

5 Blackman 0.42 + 0.5 cos( 2πk
N ) + 0.08 cos( 4πk

N ) 6/N 0.0012 ≈ −58.1 dB

6 Kaiser I0(πβ
√

1− (2k/N)2)
I0(πβ)

2
√

1+β2

N

0.22πβ

sinh(πβ)
≈ −45.7 dB (for β = 2)

NOTES: k = 0.5N − n, where n = 0, 1, . . . , N − 1. WM is the mainlobe width.
For the Kaiser window, I0(.) is the modified Bessel function of order zero.
For the Kaiser window, the parameter β controls the peak sidelobe level.
The von Hann window is also known as the Hanning window.

10.8.2 The Spectrum of Windowed Sinusoids

Consider the signal x[n] = cos(2πnF0), F0 = k0/M . Its DTFT is Xp(F ) = 0.5δ(F − F0) + 0.5δ(F + F0). If
this sinusoid is windowed by an N -point window w[n] whose spectrum is W (F ), the DTFT of the windowed
signal is given by the periodic convolution

Xw(F ) = Xp(F ) ?©W (F ) = 0.5W (F − F0) + 0.5W (F + F0) (10.21)

The window thus smears out the true spectrum. To obtain a windowed signal that is a replica of the
spectrum of the sinusoid, we require W (F ) = δ(F ), which corresponds to the impractical infinite-length
time window. The more the spectrum W (F ) of an N -point window resembles an impulse, the better the
windowed spectrum matches the original.

The N -point DFT of the signal x[n] may be regarded as the DTFT of the product of the infinite-length
x[n] and an N -point rectangular window, evaluated at F = k/N, k = 0, 1, . . . , N − 1. Since spectrum of the
N -point rectangular window is W (F ) = N sinc(NF )

sincF , the DTFT spectrum of the windowed signal is

Xw(F ) = 0.5N
sinc[N(F − F0)]

sinc(F − F0)
+ 0.5N

sinc[N(F + F0)]
sinc(F + F0)

(10.22)
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Figure 10.8 Commonly used DFT windows and their spectral characteristics
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The N -point DFT of the windowed sinusoid is given by XDFT[k] = Xw(F )|F=k/N . If the DFT length N
equals M , the number of samples over k0 full periods of x[n], we see that sinc[N(F − F0)] = sinc(k − k0),
and this equals zero, unless k = k0. Similarly, sinc[N(F + F0)] = sinc(k + k0) is nonzero only if k = −k0.
The DFT thus contains only two nonzero terms and equals

XDFT[k] = Xw(F )
∣∣∣
F=k/N

= 0.5Nδ[k − k0] + 0.5Nδ[k − k0] (if N = M) (10.23)

In other words, using an N -point rectangular window that covers an integer number of periods (M samples)
of a sinusoid (i.e., with M = N) gives us exact results. The reason of course is that the DTFT sampling
instants fall on the nulls of the sinc spectrum. If the window length N does not equal M (an integer number
of periods), the sampling instants will fall between the nulls, and since the sidelobes of the sinc function are
large, the DFT results will show considerable leakage. To reduce the effects of leakage, we must use windows
whose spectrum shows small sidelobe levels.

10.8.3 Resolution

Windows are often used to reduce the effects of leakage and improve resolution. Frequency resolution refers
to our ability to clearly distinguish between two closely spaced sinusoids of similar amplitudes. Dynamic-
range resolution refers to our ability to resolve large differences in signal amplitudes. The spectrum of all
windows reveals a mainlobe and smaller sidelobes. It smears out the true spectrum and makes components
separated by less than the mainlobe width indistinguishable. The rectangular window yields the best fre-
quency resolution for a given length N since it has the smallest mainlobe. However, it also has the largest
peak sidelobe level of any window. This leads to significant leakage and the worst dynamic-range resolution
because small amplitude signals can get masked by the sidelobes of the window.

Tapered windows with less abrupt truncation show reduced sidelobe levels and lead to reduced leakage
and improved dynamic-range resolution. They also show increased mainlobe widths WM , leading to poorer
frequency resolution. The choice of a window is based on a compromise between the two conflicting re-
quirements of minimizing the mainlobe width (improving frequency resolution) and minimizing the sidelobe
magnitude (improving dynamic-range resolution).

REVIEW PANEL 10.19
Good Frequency Resolution and Dynamic-Range Resolution Are Conflicting Requirements
To improve frequency resolution, use windows with narrow mainlobes.
To improve dynamic-range resolution, use windows with small sidelobes.

The mainlobe width of all windows decreases as we increase the window length. However, the peak
sidelobe level remains more or less constant. To achieve a frequency resolution of ∆f , the digital frequency
∆F = ∆f/S must equal or exceed the mainlobe width WM of the window. This yields the window length N .
For a given window to achieve the same frequency resolution as the rectangular window, we require a larger
window length (a smaller mainlobe width) and hence a larger signal length. The increase in signal length
must come by choosing more signal samples (and not by zero-padding). To achieve a given dynamic-range
resolution, however, we must select a window with small sidelobes, regardless of the window length.

REVIEW PANEL 10.20
The Smallest Frequency We Can Resolve Depends on the Mainlobe Width of the Window
To resolve frequencies separated by ∆f , we require ∆f

S = WM = K
N (window mainlobe width).

K depends on the window. To decrease ∆f , increase N (more signal samples, not zero-padding).

c©Ashok Ambardar, September 1, 2003



10.8 Spectral Smoothing by Time Windows 433

EXAMPLE 10.9 (Frequency Resolution)
The signal x(t) = A1 cos(2πf0t) + A2 cos[2π(f0 + ∆f)t], where A1 = A2 = 1, f0 = 30 Hz is sampled at the
rate S = 128 Hz. We acquire N samples, zero-pad them to length NFFT, and obtain the NFFT-point FFT.
1. What is the smallest ∆f that can be resolved for

N = 256, NFFT = 2048 using a rectangular and von Hann (Hanning) window.
N = 512, NFFT = 2048 using a rectangular and von Hann window.
N = 256, NFFT = 4096 using a rectangular and von Hann window.

2. How do the results change if A2 = 0.05?

(a) (Frequency Resolution) Since ∆F = ∆f/S = WM , we have ∆f = SWM . We compute:

Rectangular window: ∆f = SWM = 2S/N = 1 Hz for N = 256 and 0.5 Hz for N = 512

von Hann window: ∆f = SWM = 4S/N = 2 Hz for N = 256 and 1 Hz for N = 512

Note that NFFT governs only the FFT spacing S/NFFT, whereas N governs only the frequency resolu-
tion S/N (which does not depend on the zero-padded length). Figure E10.9A shows the FFT spectra,
plotted as continuous curves, over a selected frequency range. We make the following remarks:

1. For a given signal length N, the rectangular window resolves a smaller ∆f but also has the largest
sidelobes (panels a and b). This means that the effects of leakage are more severe for a rectangular
window than for any other.

2. We can resolve a smaller ∆f by increasing the signal length N alone (panel c). To resolve the
same ∆f with a von Hann window, we must double the signal length N (panel d). This means that
we can improve resolution only by increasing the number of signal samples (adding more signal
information). How many more signal samples we require will depend on the desired resolution
and the type of window used.

3. We cannot resolve a smaller ∆f by increasing the zero-padded length NFFT alone (panels e and
f). This means that increasing the number of samples by zero-padding cannot improve resolution.
Zero-padding simply interpolates the DFT at a denser set of frequencies. It simply cannot improve
the accuracy of the DFT results because adding more zeros does not add more signal information.
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Figure E10.9A DFT spectra for Example 10.9(a)

(b) (Dynamic-Range Resolution) If A2 = 0.05 (26 dB below A1), the large sidelobes of the rectangular
window (13 dB below the peak) will mask the second peak at 31 Hz, even if we increase N and NFFT.
This is illustrated in Figure E10.9B(a) (where the peak magnitude is normalized to unity, or 0 dB) for
N = 512 and NFFT = 4096. For the same values of N and NFFT, however, the smaller sidelobes of the
von Hann window (31.5 dB below the peak) do allow us to resolve two distinct peaks in the windowed
spectrum, as shown in Figure E10.9B(b).
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Figure E10.9B DFT spectra for Example 10.9(b)

10.8.4 Detecting Hidden Periodicity Using the DFT

Given an analog signal x(t) known to contain periodic components, how do we estimate their frequencies
and magnitude? There are several ways. Most rely on statistical estimates, especially if the signal x(t) is
also corrupted by noise. Here is a simpler, perhaps more intuitive—but by no means the best—approach
based on the effects of aliasing. The location and magnitude of the components in the DFT spectrum can
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change with the sampling rate if this rate is below the Nyquist rate. Due to aliasing, the spectrum may not
drop to zero at 0.5S and may even show increased magnitudes as we move toward the folding frequency. If
we try to minimize the effects of noise by using a lowpass filter, we must ensure that its cutoff frequency
exceeds the frequency of all the components of interest present in x(t). We have no a priori way of doing
this. A better way, if the data can be acquired repeatedly, is to use the average of many runs. Averaging
minimizes noise while preserving the integrity of the signal.

A crude estimate of the sampling frequency may be obtained by observing the most rapidly varying
portions of the signal. Failing this, we choose an arbitrary but small sampling frequency, sample x(t), and
observe the DFT spectrum. We repeat the process with increasing sampling rates and observe how the DFT
spectrum changes, and when the spectrum shows little change in the location of its spectral components,
we have the right spectrum and the right sampling frequency. This trial-and-error method is illustrated in
Figure 10.9 and actually depends on aliasing for its success.
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Figure 10.9 Trial-and-error method for obtaining the DFT spectrum

If x(t) is a sinusoid, its magnitude A is computed from XDFT[k0] = 0.5NA, where the index k0 corresponds
to the peak in the N -point DFT. However, if other nonperiodic signals are also present in x(t), this may not
yield a correct result. A better estimate of the magnitude of the sinusoid may be obtained by comparing
two DFT results of different lengths—say, N1 = N and N2 = 2N . The N1-point DFT at the index k1 of
the peak will equal 0.5N1A plus a contribution due to the nonperiodic signals. Similarly, the N2-point DFT
will show a peak at k2 (where k2 = 2k1 if N2 = 2N1), and its value will equal 0.5N2A plus a contribution
due to the nonperiodic signals. If the nonperiodic components do not affect the spectrum significantly, the
difference in these two values will cancel out the contribution due to the nonperiodic components, and yield
an estimate for the magnitude of the sinusoid from

XDFT2[k2]−XDFT1[k1] = 0.5N2A− 0.5N1A (10.24)
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EXAMPLE 10.10 (Detecting Hidden Periodicity)
A signal x(t) is known to contain a sinusoidal component. The 80-point DFT result and a comparison of
the 80-point and 160-point DFT are shown in Figure E10.10. Estimate the frequency and magnitude of the
sinusoid and its DFT index. The sampling rate is S = 10 Hz.
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Figure E10.10 DFT spectra for Example 10.10

The comparison of the two DFT results suggests a peak at F = 0.05 and the presence of a sinusoid.
Since the sampling rate is S = 10 Hz, the frequency of the sinusoid is f = FS = 0.5 Hz. Let N1 = 80 and
N2 = 160. The peak in the N1-point DFT occurs at the index k1 = 4 because F = 0.05 = k1/N1 = 4/80.
Similarly, the peak in the N2-point DFT occurs at the index k2 = 8 because F = 0.05 = k2/N2 = 8/160.
Since the two spectra do not differ much, except near the peak, the difference in the peak values allows us
to compute the peak value A of the sinusoid from

XDFT2[k2]−XDFT1[k1] = 86.48− 47.12 = 0.5N2A− 0.5N1A = 40A

Thus, A = 0.984 and implies the presence of the 0.5-Hz sinusoidal component 0.984 cos(πt + θ).

Comment: The DFT results shown in Figure E10.10 are actually for the signal x(t) = cos(πt) + e−t,
sampled at S = 10 Hz. The sinusoidal component has unit peak value, and the DFT estimate (A = 0.984)
differs from this value by less than 2%. Choosing larger DFT lengths would improve the accuracy of the
estimate. However, the 80-point DFT alone yields the estimate A = 47.12/40 = 1.178 (an 18% difference),
whereas the 160-point DFT alone yields A = 86.48/80 = 1.081 (an 8% difference).

10.9 Applications in Signal Processing
The applications of the DFT and FFT span a wide variety of disciplines. Here, we briefly describe some
applications directly related to digital signal processing.

10.9.1 Convolution of Long Sequences

A situation that often arises in practice is the processing of a long stream of incoming data by a filter whose
impulse response is much shorter than that of the incoming data. The convolution of a short sequence
h[n] of length N (such as an averaging filter) with a very long sequence x[n] of length L À N (such as an
incoming stream of data) can involve large amounts of computation and memory. There are two preferred
alternatives, both of which are based on sectioning the long sequence x[n] into shorter ones. The DFT offers
a useful means of finding such a convolution. It even allows on-line implementation if we can tolerate a small
processing delay.
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The Overlap-Add Method

Suppose h[n] is of length N , and the length of x[n] is L = mN (if not, we can always zero-pad it to this
length). We partition x[n] into m segments x0[n], x1[n], . . . , xm−1[n], each of length N . We find the regular
convolution of each section with h[n] to give the partial results y0[n], y1[n], . . . , ym−1[n]. Using superposition,
the total convolution is the sum of their shifted (by multiples of N) versions

y[n] = y0[n] + y1[n−N ] + y2[n− 2N ] + · · ·+ ym−1[n− (m− 1)N ] (10.25)

Since each regular convolution contains 2N − 1 samples, we zero-pad h[n] and each section xk[n] with N − 1
zeros before finding yk[n] using the FFT. Splitting x[n] into equal-length segments is not a strict requirement.
We may use sections of different lengths, provided we keep track of how much each partial convolution must
be shifted before adding the results.

The Overlap-Save Method

The regular convolution of sequences of length L and N has L + N − 1 samples. If L > N and we zero-pad
the second sequence to length L, their periodic convolution has 2L− 1 samples. Its first N − 1 samples are
contaminated by wraparound, and the rest correspond to the regular convolution. To understand this, let
L = 16 and N = 7. If we pad N by nine zeros, their regular convolution has 31 (or 2L−1) samples with nine
trailing zeros (L − N = 9). For periodic convolution, 15 samples (L − 1 = 15) are wrapped around. Since
the last nine (or L−N) are zeros, only the first six samples (L−N − (N − 1) = N − 1 = 6) of the periodic
convolution are contaminated by wraparound. This idea is the basis for the overlap-save method. First, we
add N − 1 leading zeros to the longer sequence x[n] and section it into k overlapping (by N − 1) segments of
length M . Typically, we choose M ≈ 2N . Next, we zero-pad h[n] (with trailing zeros) to length M , and find
the periodic convolution of h[n] with each section of x[n]. Finally, we discard the first N − 1 (contaminated)
samples from each convolution and glue (concatenate) the results to give the required convolution.

In either method, the FFT of the shorter sequence need be found only once, stored, and reused for
all subsequent partial convolutions. Both methods allow on-line implementation if we can tolerate a small
processing delay that equals the time required for each section of the long sequence to arrive at the proces-
sor (assuming the time taken for finding the partial convolutions is less than this processing delay). The
correlation of two sequences may also be found in exactly the same manner, using either method, provided
we use a folded version of one sequence.

EXAMPLE 10.11 (Overlap-Add and Overlap-Save Methods of Convolution)
Let x[n] = {1, 2, 3, 3, 4, 5} and h[n] = {1, 1, 1}. Here L = 6 and N = 3.

(a) To find their convolution using the overlap-add method, we section x[n] into two sequences given by
x0[n] = {1, 2, 3} and x1[n] = {3, 4, 5}, and obtain the two convolution results:

y0[n] = x0[n] ? h[n] = {1, 3, 6, 5, 3} y1[n] = x1[n] ? h[n] = {3, 7, 12, 9, 5}

Shifting and superposition results in the required convolution y[n] as

y[n] = y0[n] + y1[n− 3] =
{

1, 3, 6, 5, 3
3, 7, 12, 9, 5

}
= {1, 3, 6, 8, 10, 12, 9, 5}

This result can be confirmed using any of the convolution algorithms described in the text.
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(b) To find their convolution using the overlap-add method, we start by creating the zero-padded sequence
x[n] = {0, 0, 1, 2, 3, 3, 4, 5}. If we choose M = 5, we get three overlapping sections of x[n] (we need to
zero-pad the last one) described by

x0[n] = {0, 0, 1, 2, 3} x1[n] = {2, 3, 3, 4, 5} x2[n] = {4, 5, 0, 0, 0}
The zero-padded h[n] becomes h[n] = {1, 1, 1, 0, 0}. Periodic convolution gives

x0[n] ?©h[n] = {5, 3, 1, 3, 6}
x1[n] ?©h[n] = {11, 10, 8, 10, 12}
x2[n] ?©h[n] = {4, 9, 9, 5, 0}

We discard the first two samples from each convolution and glue the results to obtain

y[n] = x[n] ? h[n] = {1, 3, 6, 8, 10, 12, 9, 5, 0}
Note that the last sample (due to the zero-padding) is redundant, and may be discarded.

10.9.2 Deconvolution

Given a signal y[n] that represents the output of some system with impulse response h[n], how do we recover
the input x[n] where y[n] = x[n]?h[n]? One method is to undo the effects of convolution using deconvolution.
The time-domain approach to deconvolution was studied earlier. Here, we examine a frequency-domain
alternative based on the DFT (or FFT).

The idea is to transform the convolution relation using the FFT to obtain YFFT[k] = XFFT[k]HFFT[k],
compute XFFT[k] = YFFT[k]/HFFT[k] by pointwise division, and then find x[n] as the IFFT of XFFT[k].
This process does work in many cases, but it has two disadvantages. First, it fails if HFFT[k] equals zero at
some index because we get division by zero. Second, it is quite sensitive to noise in the input x[n] and to
the accuracy with which y[n] is known.

10.9.3 Band-Limited Signal Interpolation

Interpolation of x[n] by M to a new signal xI [n] is equivalent to a sampling rate increase by M . If the
signal has been sampled above the Nyquist rate, signal interpolation should add no new information to the
spectrum. The idea of zero-padding forms the basis for an interpolation method using the DFT in the sense
that the (MN)-sample DFT of the interpolated signal should contain N samples corresponding to the DFT
of x[n], while the rest should be zero. Thus, if we find the DFT of x[n], zero-pad it (by inserting zeros about
the folding index) to increase its length to MN , and find the inverse DFT of the zero-padded sequence, we
should obtain the interpolated signal xI [n]. This approach works well for band-limited signals (such as pure
sinusoids sampled above the Nyquist rate over an integer number of periods). To implement this process,
we split the N -point DFT XDFT[k] of x[n] about the folding index N/2. If N is even, the folding index falls
on the sample value X[N/2], and it must also be split in half. We then insert enough zeros in the middle to
create a padded sequence Xzp[k] with MN samples. It has the form

Xzp[k] =





{X[0], . . . , X[N/2− 1], 0, . . . , 0,︸ ︷︷ ︸
(M−1)N zeros

X[N/2 + 1], . . . , X[N − 1]} (odd N)

{X[0], . . . , 0.5X[N/2], 0, . . . , 0,︸ ︷︷ ︸
N(M−1)−1 zeros

0.5X[N/2], . . . , X[N − 1]} (even N) (10.26)
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The inverse DFT of Xzp[k] will include the factor 1/MN and its machine computation may show (small)
imaginary parts. We therefore retain only its real part, and divide by M , to obtain the interpolated signal
xI [n], which contains M − 1 interpolated values between each sample of x[n]:

xI [n] =
1
M

Re
[
IDFT{Xzp[k]}

]
(10.27)

This method is entirely equivalent to creating a zero-interpolated signal (which produces spectrum repli-
cation), and filtering the replicated spectrum (by zeroing out the spurious images). For periodic band-limited
signals sampled above the Nyquist rate for an integer number of periods, the interpolation is exact. For all
others, imperfections show up as a poor match, especially near the ends, since we are actually interpolating
to zero outside the signal duration.

EXAMPLE 10.12 (Signal Interpolation Using the FFT)
(a) For a sinusoid sampled over one period with four samples, we obtain the signal x[n] = {0, 1, 0,−1}.

Its DFT is XDFT[k] = {0,−j2, 0, j2}. To interpolate this by M = 8, we generate the 32-sample zero-
padded sequence ZT = {0,−j2, 0, (27 zeros), 0, j2}. The interpolated sequence (the IDFT of ZT )
shows an exact match to the sinusoid, as illustrated in Figure E10.12)(a).
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Figure E10.12 Interpolated sinusoids for Example 10.12

(b) For a sinusoid sampled over a half-period with four samples, interpolation does not yield exact results,
as shown in Figure E10.12(b). Since we are actually sampling one period of a full-rectified sine (the
periodic extension), the signal is not band-limited, and the chosen sampling frequency is too low. This
shows up as a poor match, especially near the ends of the sequence.

10.9.4 The Discrete Hilbert Transform

The Hilbert transform describes an operation that shifts the phase of a signal x(t) by −π
2 . In the analog

domain, the phase shift can be achieved by passing x(t) through a filter whose transfer function H(f) is

H(f) = −j sgn(f) =
{ −j, f > 0

j, f < 0 (10.28)

In the time domain, the phase-shifted signal x̂(t) is given by the convolution

x̂(t) =
1
πt

? x(t) (10.29)
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The phase-shifted signal x̂(t) defines the Hilbert transform of x(t). The spectrum X̂(f) of the Hilbert-
transformed signal equals the product of X(f) with the transform of 1/πt. In other words,

X̂(f) = −j sgn(f)X(f) (10.30)

A system that shifts the phase of a signal by ±π
2 is called a Hilbert transformer or a quadrature filter.

Such a system can be used to generate a single-sideband amplitude modulated (SSB AM) signal.
Unlike most other transforms, the Hilbert transform belongs to the same domain as the signal trans-

formed. Due to the singularity in 1/πt at t = 0, a formal evaluation of this relation requires complex
variable theory.

The discrete Hilbert transform of a sequence may be obtained by using the FFT. The Hilbert
transform of x[n] involves the convolution of x[n] with the impulse response h[n] of the Hilbert transformer
whose spectrum is H(F ) = −j sgn(F ). The easiest way to perform this convolution is by FFT methods.
We find the N -point FFT of x[n] and multiply by the periodic extension (from k = 0 to k = N − 1) of N
samples of sgn(F ), which may be written as

sgn[k] = {0, 1, 1, . . . , 1,︸ ︷︷ ︸
N
2 −2 samples

0, −1,−1, . . . ,−1︸ ︷︷ ︸
N
2 −2 samples

} (10.31)

The inverse FFT of the product, multiplied by the omitted factor −j, yields the Hilbert transform.

10.10 Spectrum Estimation
The power spectral density (PSD) Rxx(f) of an analog power signal or random signal x(t) is the Fourier
transform of its autocorrelation function rxx(t) and is a real, non-negative, even function with Rxx(0) equal
to the average power in x(t). If a signal x(t) is sampled and available only over a finite duration, the best
we can do is estimate the PSD of the underlying signal x(t) from the given finite record. This is because the
spectrum of finite sequences suffers from leakage and poor resolution. The PSD estimate of a noisy analog
signal x(t) from a finite number of its samples is based on two fundamentally different approaches. The first,
non-parametric spectrum estimation, makes no assumptions about the data. The second, parametric
spectrum estimation, models the data as the output of a digital filter excited by a noise input with a
constant power spectral density, estimates the filter coefficients, and in so doing arrives at an estimate of the
true PSD. Both rely on statistical measures to establish the quality of the estimate.

10.10.1 The Periodogram Estimate

The simplest non-parametric estimate is the periodogram P [k] that is based on the DFT of an N -sample
sequence x[n]. It is defined as

P [k] =
1
N
|XDFT[k]|2 (10.32)

Although P [k] provides a good estimate for deterministic, band-limited, power signals sampled above the
Nyquist rate, it yields poor estimates for noisy signals because the quality of the estimate does not improve
with increasing record length N (even though the spectral spacing decreases).

EXAMPLE 10.13 (The Concept of the Periodogram)
The sequence x[n] = {0, 1, 0, −1} is obtained by sampling a sinusoid for one period at twice the Nyquist
rate. Find its periodogram estimate.
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The DFT of x[n] is XDFT[k] = {0, −j2, 0, j2}. Thus, P [k] = 1
N |XDFT[k]|2 = {0, 1, 0, 1}.

This is usually plotted as a bar graph with each sample occupying a bin width ∆F = 1/N = 0.25.
The total power thus equals ∆F

∑
P [k] = 0.5, and matches the true power in the sinusoid.

10.10.2 PSD Estimation by the Welch Method

The Welch method is based on the concept of averaging the results of overlapping periodogram estimates
and finds widespread use in spectrum estimation. The N -sample signal x[n] is sectioned into K overlapping
M -sample sections xM [n], each with an overlap of D samples. A 50%– 75% overlap is common practice.
Each section is windowed by an M -point window w[n] to control leakage. The PSD of each windowed section
is found using the periodogram 1

M |XM [k]|2, and the K periodograms are averaged to obtain an M -point
averaged periodogram. It is customary to normalize (divide) this result by the power in the window
signal (

∑ |WDFT[k]|2 or 1
M

∑ |w[n]|2). Sections of larger length result in a smaller spectral spacing, whereas
more sections result in a smoother estimate (at the risk of masking sharp details). The number of sections
chosen is a trade-off between decreasing the spectral spacing and smoothing the estimate. Averaging the
results of the (presumably uncorrelated) segments reduces the statistical fluctuations (but at the expense
of a larger spectral spacing). In the related Bartlett method, the segments are neither overlapped nor
windowed. Figure 10.10(a) shows the Welch PSD of a 400-point chirp signal, whose digital frequency varies
from F = 0.2 to F = 0.4, using a 45% overlap and a 64-point von Hann window (shown dark), and a
rectangular window (no window). Note how the windowing results in significant smoothing.
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Figure 10.10 Welch and Tukey PSD of a chirp signal

10.10.3 PSD Estimation by the Blackman-Tukey Method

The Blackman-Tukey method relies on finding the PSD from the windowed autocorrelation, which is
assumed to be zero past the window length. The N -sample signal x[n] is zero-padded to get the 2N -sample
signal y[n]. The linear autocorrelation of x[n] equals the periodic autocorrelation of y[n] and is evaluated by
finding the FFT YFFT[k] and taking the IFFT of YFFT[k]Y ∗

FFT[k] to obtain the 2N -sample autocorrelation
estimate rxx[n]. This autocorrelation is then windowed by an M -point window (to smooth the spectrum and
reduce the effects of poor autocorrelation estimates due to the finite data length). The FFT of the M -sample
windowed autocorrelation yields the smoothed periodogram. Using a smaller M (narrower windows) for
the autocorrelation provides greater smoothing but may also mask any peaks or obscure the sharp details.
Typical values of the window length M range from M = 0.1N to M = 0.5N . Only windows whose transform
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is entirely positive should be used. Of the few that meet this constraint, the most commonly used is the
Bartlett (triangular) window. Figure 10.10(b) shows the Tukey PSD of a 1000-point chirp signal, whose
digital frequency varies from F = 0.2 to F = 0.4, using a 64-point Bartlett window.

The Welch method is more useful for detecting closely spaced peaks of similar magnitudes (frequency res-
olution). The Blackman-Tukey method is better for detecting well-separated peaks with different magnitudes
(dynamic-range resolution). Neither is very effective for short data lengths.

10.10.4 Non-Parametric System Identification

The Fourier transform Ryx(f) of the cross-correlation ryx(t) = y(t) ?? x(t) = y(t) ? x(−t) of two random
signals x(t) and y(t) is called the cross-spectral density. For a system with impulse response h(t), the
input x(t) yields the output y(t) = x(t) ? h(t), and we have

ryx(t) = y(t) ? x(−t) = h(t) ? x(t) ? x(−t) = h(t) ? rxx(t) (10.33)

The Fourier transform of both sides yields

Ryx(f) = H(f)Rxx(f) H(f) =
Ryx(f)
Rxx(f)

(10.34)

This relation allows us to identify an unknown transfer function H(f) as the ratio of the cross-spectral
density Ryx(f) and the PSD Rxx(f) of the input x(t). If x(t) is a noise signal with a constant power spectral
density, its PSD is a constant of the form Rxx(f) = K. Then, H(f) = Ryx(f)/K is directly proportional to
the cross-spectral density.
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Figure 10.11 Spectrum of an IIR filter and its non-parametric FIR filter estimate

This approach is termed non-parametric because it presupposes no model for the system. In practice,
we use the FFT to approximate Rxx(f) and Ryx(f) (using the Welch method, for example) by the finite
N -sample sequences Rxx[k] and Ryx[k]. As a consequence, the transfer function H[k] = Ryx[k]/Rxx[k] also
has N samples and describes an FIR filter. Its inverse FFT yields the N -sample impulse response h[n].
Figure 10.11 shows the spectrum of an IIR filter defined by y[n]− 0.5y[n− 1] = x[n] (or h[n] = (0.5)nu[n]),
and its 20-point FIR estimate obtained by using a 400-sample noise sequence and the Welch method.
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10.10.5 Time-Frequency Plots

In practical situations, we are often faced with the task of finding how the spectrum of signals varies with
time. A simple approach is to section the signal into overlapping segments, window each section to reduce
leakage, and find the PSD (using the Welch method, for example). The PSD for each section is then staggered
and stacked to generate what is called a waterfall plot or time-frequency plot. Figure 10.12 shows such
a waterfall plot for the sum of a single frequency sinusoid and a chirp signal whose frequency varies linearly
with time. It provides a much better visual indication of how the spectrum evolves with time.
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Figure 10.12 Time-frequency plot for the sum of a sinusoid and a chirp signal

The fundamental restriction in obtaining the time-frequency information, especially for short time records,
is that we cannot localize both time and frequency to arbitrary precision. Recent approaches are based on
expressing signals in terms of wavelets (much like the Fourier series). Wavelets are functions that show the
“best” possible localization characteristics in both the time-domain and the frequency-domain, and are an
area of intense ongoing research.

10.11 The Cepstrum and Homomorphic Filtering
Consider a signal x[n]. If we take the complex logarithm of its DTFT X(F ) to get XK(F ) = ln X(F ), the
inverse transform xK [n] is called the cepstrum (pronounced kepstrum) of x[n]. We have

XK(F ) = ln X(F ) xK [n] =
∫ 1/2

−1/2

[lnX(F )]ej2nπF dF (10.35)

We can recover X(F ) from XK(F ) by taking complex exponentials to give

X(F ) = |X(F )|ejφ(F ) = eXK(F )

This allows us to obtain XK(F ) from the magnitude and phase of X(F ) as follows

XK(F ) = ln X(F ) = ln |X(F )|+ jφ(F ) (10.36)

The cepstrum xK [n] may then be expressed as

xK [n] =
∫ 1/2

−1/2

(ln |X(F )|)ej2nπF dF + j

∫ 1/2

−1/2

φ(F )ej2nπF dF (10.37)
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In other words, the cepstrum is a complex quantity. Its real part corresponds to the IDTFT of ln |X(F )|
and is called the real cepstrum. The existence of the cepstrum is restricted by the nature of X(F ).
The cepstrum does not exist if X(F ) = 0 over a range of frequencies because ln |X(F )| is undefined. The
cepstrum does not exist if X(F ) is bipolar (zero at isolated frequencies where it changes sign) and exhibits
phase jumps of ±π. In fact, the cepstrum does not exist unless the phase φ(F ) is a continuous single valued
function of frequency (with no phase jumps of any kind) and equals zero at F = 0 and F = 0.5. We can get
around these problems by working with the unwrapped phase (to eliminate any phase jumps of ±2π) and,
when necessary, adding a large enough positive constant to X(F ) to ensure X(F ) > 0 for all frequencies
(and eliminate any phase jumps of ±π).

10.11.1 Homomorphic Filters and Deconvolution

Deconvolution is a process of extracting the input signal from a filter output and its transfer function. Since
the convolution y[n] = x[n] ? h[n] transforms to the product Y (F ) = X(F )H(F ), we can extract x[n] from
the inverse transform of the ratio X(F ) = Y (F )/H(F ). We may also perform deconvolution using cepstral
transformations. The idea is to first find the cepstrum of y[n] by starting with start with Y (F ) = X(F )H(F )
to obtain

YK(F ) = ln Y (F ) = ln X(F ) + ln H(F ) = XK(F ) + HK(F ) (10.38)

Inverse transformation gives

yK [n] = xK [n] + hK [n] (10.39)

Notice how the convolution operation transforms to a summation in the cepstral domain.

y[n] = x[n] ? h[n] yK [n] = xK [n] + hK [n] (10.40)

Systems capable of this transformation are called homomorphic systems.
If xK [n] and hK [n] lie over different ranges, we may extract xK [n] by using a time window w[n] whose

samples equal 1 over the extent of xK [n] and zero over the extent of hK [n]. This operation is analogous
to filtering (albeit in the time domain) and is often referred to as homomorphic filtering. Finally, we
can use xK [n] to recover x[n] by first finding XK(F ), then take its exponential to give X(F ) and finally
evaluating its inverse transform. A homomorphic filter performs deconvolution in several steps as outlined
in the following review panel.

REVIEW PANEL 10.21
Homomorphic Filtering and Cepstral Analysis
Transform of Cepstrum: YK(F ) = ln Y (F ) = ln[X(F )H(F )] = ln X(F ) + ln H(F ) = XK(F ) + HK(F )
Cepstrum: yK [n] = xK [n] + hK [n]
Windowed Cepstrum: yK [n]w[n] = xK [n]
Signal Recovery: xK [n] ⇐ dtft ⇒ XK(F ) eXK(F ) = X(F )

Cepstral methods and homomorphic filtering have found practical applications in various fields including
deconvolution, image processing (restoring degraded images), communications (echo cancellation), speech
processing (pitch detection, dynamic range expansion, digital restoration of old audio recordings) and seismic
signal processing.

c©Ashok Ambardar, September 1, 2003



10.11 The Cepstrum and Homomorphic Filtering 445

10.11.2 Echo Detection and Cancellation

Cepstral methods may be used to detect and remove unwanted echos from a signal. We illustrate echo
detection and cancellation by considering a simple first order echo system described by

y[n] = x[n] + αx[n−D] (10.41)

Here, αx[n − D] describes the echo of strength α delayed by D samples. It is reasonable to assume that
α < 1 since the echo magnitude will be less than that of the original signal x[n]. In the frequency domain,
we get

Y (F ) = X(F ) + αX(F )e−j2πFD

The transfer function of the system that produces the echo may be written as

H(F ) =
Y (F )
X(F )

= 1 + αe−j2πFD (10.42)

Now, we find HK(F ) = ln H(F ) to yield the transform of the cepstrum hK [n] as

HK(F ) = ln H(F ) = ln[1 + αe−j2πFD] (10.43)

Note that HK(F ) is periodic in F with period 1/D and, as a consequence, the cepstrum hK [n], describes a
signal with sample spacing D. To formalize this result, we invoke the series expansion

ln(1 + r) =
∞∑

k=1

(−1)k+1 rk

k
, |r| < 1

With r = αe−j2πFD in the above result, we can express HK(F ) as

HK(F ) = ln[1 + αe−j2πFD] =
∞∑

k=1

(−1)k+1 αk

k
e−j2πkFD (10.44)

Its inverse transform leads to the cepstrum hK [n] of the echo-producing system as

hK [n] =
∞∑

k=1

(−1)k+1 αk

k
δ(n− kD) (10.45)

Note that this cepstrum hK [n] is an impulse train with impulses located at integer multiples of the delay D.
The impulses alternate in sign and their amplitude decreases with the index k that equals integer multiples
of the delay.
Since y[n] = x[n] ? h[n], its cepstral transformation leads to

yK [n] = xK [n] + hK [n] YK(F ) = XK(F ) + HK(F ) (10.46)

We see that the cepstrum yK [n] of the contaminated signal y[n] equals the sum of the cepstrum xK [n] of the
original signal x[n] and an impulse train hK [n] whose decaying impulses alternate in sign and are located at
multiples of the delay D. If the spectra XK(F ) and HK(F ) occupy different frequency bands, HK(F ) may
be eliminated by ordinary frequency domain filtering and lead to the recovery of x[n]. Since hK [n] contains
impulses at multiples of D, we may also eliminate the unwanted echoes in the cepstral domain itself by using
a comb filter whose weights are zero at integer multiples of D and unity elsewhere. Naturally, the comb
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filter can be designed only if the delay D is known a priori. Even if D is not known, its value may still be
estimated from the location of the impulses in the cepstrum.

As an example of echo cancellation by homomorphic signal processing, consider the clean signal x[n] =
(0.9)nu[n] contaminated by its echo delayed by 20 samples and with a strength of 0.8. The contaminated
signal y[n] is then given by

y[n] = x[n] + 0.8x[n− 20]

Our objective is to recover the clean signal x[n] using cepstral techniques. A 64-sample portion of x[n] and
y[n] is shown in Figure 10.13(b). The complex cepstrum of the contaminated signal y[n] is displayed in
Figure 10.13(a) and is a practical approximation based on the 64-point FFT (to approximate the DTFT).
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Figure 10.13 Complex cepstrum (a) of the echo signal in (b)

The appearance of the cepstral spikes (deltas) at n = 20, 40, 60 indicates a delay of D = 20 as expected.
Once these spikes are removed, we get the cepstrum shown in Figure 10.14(a). The signal corresponding to
this cepstrum is shown in Figure 10.14(b) and clearly reveals the absence of the echo signal.
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Figure 10.14 Complex cepstrum (a) with spikes removed and its corresponding signal (b)

However, the correspondence with the clean signal is not perfect. The reason is that the complex cepstrum
still contains spikes at the indices n = 80, 100, 120 . . . that get aliased to n = 16, 36, 56, . . .. These aliases are
visible in Figure 10.14(a) and are the consequence of using the FFT to approximate the true cepstrum. Once
these aliased spikes are also removed, we get the cepstrum of Figure 10.15(a). The signal corresponding to
this cepstrum, shown in Figure 10.15(b), is now an almost exact replica of the original clean signal.
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Figure 10.15 Complex cepstrum (a) with aliased spikes removed and its corresponding signal (b)

10.12 Optimal Filtering
For a filter with impulse response is h[n], the output y[n] is described by the convolution y[n] = x[n] ? h[n].
Ideally it is possible to recover x[n] by deconvolution. However, if the output is contaminated by noise or
interference, an optimal filter provides a means for recovering the input signal. Such a filter is optimized in
the sense that its output, when deconvolved by h[n], results in a signal x̂[n] that is the best (in some sense)
approximation to x[n]. Suppose the contaminated response w[n] equals the sum of the ideal response y[n]
and a noise component s[n] such that

w[n] = y[n]︸ ︷︷ ︸
ideal output

+ s[n]︸ ︷︷ ︸
noise

(10.47)

If we pass this signal through an optimal filter with a transfer function Φ(F ), the filter output in the frequency
domain equals W (F )Φ(F ). When we deconvolve this by h[n], we obtain x̂[n]. In the frequency domain this
is equivalent to finding X̂(F ) as the ratio

X̂(F ) =
W (F )Φ(F )

H(F )
=

Φ(F )[Y (F ) + S(F )]
H(F )

If x̂[n] is to be the best approximation to x[n] in the least square sense, we must minimize the mean (or
integral) square error. Since the error equals x[n]− x̂[n], the mean square error ε may be written as

ε =
∞∑
−∞

|x[n]− x̂[n]|2 dt =
∫ 1/2

−1/2

|X(F )− X̂(F )|2 dF

Substituting for X(F ) and X̂(F ), we get

ε =
∫ 1/2

−1/2

|Y (F )− Φ(F )[Y (F ) + S(F )]|2
|H(F )|2 dF =

∫ 1/2

−1/2

|Y (F )[1− Φ(F )]− S(F )Φ(F )|2
|H(F )|2 dF

If the noise s[n] and signal y[n] are uncorrelated (as they usually are), the integral of the product Y (F )S(F )
equals zero and we obtain

ε =
∫ 1/2

−1/2

|Y (F )|2|1− Φ(F )|2 + |S(F )|2|Φ(F )|2
|H(F )|2 dF =

∫ 1/2

−1/2

K(F ) dF
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To ensure that ε is a minimum, the kernel K(F ) must be minimized with respect to Φ(F ). So, we set
dK(F )/dΦ(F ) = 0 and (assuming that Φ(F ) is real), this leads to the result

Φ(F ) =
|Y (F )|2

|Y (F )|2 + |S(F )|2

This result describes a Wiener (or Wiener-Hopf) optimal filter. Note that Φ(F ) = 1 in the absence of
noise and Φ(F ) ≈ 0 when noise dominates. In other words, it combats the effects of noise only when required.
Interestingly, the result for Φ(F ) does not depend on X(F ) even though it requires that we obtain estimates
of |Y (F )| and |S(F )|2 separately. In theory, this may indeed be difficult without additional information. In
practice however, the power spectral density (PSD) |W (F )|2 may be approximated by

|W (F )|2 ≈ |Y (F )|2 + |S(F )|2

In addition, the noise spectral density |S(F )|2 often has a form that can be deduced from its high frequency
behaviour. Once this form is known, we estimate |Y (F )|2 = |W (F )|2 − |S(F )|2 (by graphical extrapolation,
for example). Once known, we generate the optimal filter transfer function and the spectrum of the estimated
input as

Φ(F ) =
|Y (F )|2

|Y (F )|2 + |S(F )|2 ≈
|Y (F )|2
|W (F )|2 X̂(F ) =

W (F )Φ(F )
H(F )

The inverse transform of X̂(F ) leads to the desired time domain signal x̂[n]. We remark that the transfer
function Φ(F ) is even symmetric. In turn, the impulse response is also even symmetric about n = 0. This
means that the optimal filter is noncausal. The design of causal optimal filters is much more involved and
has led to important developments such as the Kalman filter.

In practice, the DFT (or its FFT implementation) is often used as a tool in the optimal filtering of
discrete-time signals. The idea is to implement the optimal filter transfer function and signal estimate by
the approximate relations

Φ[k] =
|Y [k]|2

|Y [k]|2 + |S[k]|2 ≈
|Y [k]|2
|W [k]|2 X̂[k] =

W [k]Φ[k]
H[k]

Here, W [k] is the DFT of w[n] which allows us to generate |W [k]|2, estimate |Y [k]|2 and then compute the
transfer function Φ[k] of the optimal filter. We also compute H[k], the DFT of h[n] which leads to the
spectrum of the estimated input as X̂[k] = W [k]Φ[k]/H[k]. The IDFT of this result recovers the signal x̂[n].
This approach has its pitfalls however, and may fail, for example, if some samples of H[k] are zero.

10.13 Matrix Formulation of the DFT and IDFT
If we let WN = exp(−j2π/N), the defining relations for the DFT and IDFT may be written as

XDFT[k] =
N−1∑
n=0

x[n]Wnk
N , k = 0, 1, . . . , N − 1 (10.48)

x[n] =
1
N

N−1∑

k=0

XDFT[k][Wnk
N ]∗, n = 0, 1, . . . , N − 1 (10.49)

The first set of N DFT equations in N unknowns may be expressed in matrix form as

X = WNx (10.50)
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Here, X and x are (N × 1) matrices, and WN is an (N ×N) square matrix called the DFT matrix. The
full matrix form is described by




X[0]

X[1]

X[2]
...
X[N − 1]




=




W 0
N W 0

N W 0
N . . . W 0

W 0
N W 1

N W 2
N . . . WN−1

N

W 0
N W 2

N W 4
N . . . W

2(N−1)
N

...
...

...
. . .

...
W 0

N WN−1
N W

2(N−1)
N . . . W

(N−1)(N−1)
N







x[0]

x[1]

x[2]
...
x[N − 1]




(10.51)

The exponents t in the elements W t
N of WN are called twiddle factors.

EXAMPLE 10.14 (The DFT from the Matrix Formulation)
Let x[n] = {1, 2, 1, 0}. Then, with N = 4 and WN = exp(−j2π/4) = −j, the DFT may be obtained by
solving the matrix product:




X[0]

X[1]

X[2]

X[3]




=




W 0
N W 0

N W 0
N W 0

N

W 0
N W 1

N W 2
N W 3

N

W 0
N W 2

N W 4
N W 6

N

W 0
N W 3

N W 6
N W 9

N







x[0]

x[1]

x[2]

x[3]




=




1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j







1
2
1
0


 =




4
−j2

0
j2




The result is XDFT[k] = {4, −j2, 0, j2}.

10.13.1 The IDFT from the Matrix Form

The matrix x may be expressed in terms of the inverse of WN as

x = W−1
N X (10.52)

The matrix W−1
N is called the IDFT matrix. We may also obtain x directly from the IDFT relation

in matrix form, where the change of index from n to k, and the change in the sign of the exponent in
exp(j2πnk/N), lead to a conjugate transpose of WN . We then have

x =
1
N

[W∗
N ]T X (10.53)

Comparison of the two forms suggests that

W−1
N =

1
N

[W∗
N ]T (10.54)

This very important result shows that W−1
N requires only conjugation and transposition of WN , an obvious

computational advantage.
The elements of the DFT and IDFT matrices satisfy Aij = A(i−1)(j−1). Such matrices are known as

Vandermonde matrices. They are notoriously ill conditioned insofar as their numerical inversion. This
is not the case for WN , however. The product of the DFT matrix WN with its conjugate transpose matrix
equals the identity matrix I. Matrices that satisfy such a property are called unitary. For this reason, the
DFT and IDFT, which are based on unitary operators, are also called unitary transforms.
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10.13.2 Using the DFT to Find the IDFT

Both the DFT and IDFT are matrix operations, and there is an inherent symmetry in the DFT and IDFT
relations. In fact, we can obtain the IDFT by finding the DFT of the conjugate sequence and then conjugating
the results and dividing by N . Mathematically,

x[n] = IDFT{XDFT[k]} =
1
N

(
DFT{X∗

DFT[k]}
)∗

(10.55)

This result invokes the conjugate symmetry and duality of the DFT and IDFT, and suggests that the DFT
algorithm itself can also be used to find the IDFT. In practice, this is indeed what is done.

EXAMPLE 10.15 (Using the DFT to Find the IDFT)
Let us find the IDFT of XDFT[k] = {4, −j2, 0, j2} using the DFT. First, we conjugate the sequence to get
X∗

DFT[k] = {4, j2, 0, −j2}. Next, we find the DFT of X∗
DFT[k], using the 4× 4 DFT matrix of the previous

example, to give

DFT{X∗
DFT[k]} =




1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j







4
−j2

0
j2


 =




4
8
4
0




Finally, we conjugate this result (if complex) and divide by N = 4 to get the IDFT of XDFT[k] as

IDFT {XDFT[k]} = 1
4{4, 8, 4, 0} = {1, 2, 1, 0}

10.14 The FFT
The importance of the DFT stems from the fact that it is amenable to fast and efficient computation using
algorithms called fast Fourier transform, or FFT, algorithms. Fast algorithms reduce the problem of
calculating an N -point DFT to that of calculating many smaller-size DFTs. The key ideas in optimizing the
computation are based on the following ideas.

Symmetry and Periodicity

All FFT algorithms take advantage of the symmetry and periodicity of the exponential WN = exp(−j2πn/N),
as listed in Table 10.5. The last entry in this table, for example, suggests that WN/2 = exp(j2πn/0.5N) is
periodic with period N

2 .

Table 10.5 Symmetry and Periodicity of WN = exp(−j2π/N)

Entry Exponential Form Symbolic Form

1 e−j2πn/N = e−j2π(n+N)/N Wn+N
N = Wn

N

2 e−j2π(n+N/2)/N = −e−j2πn/N W
n+N/2
N = −Wn

N

3 e−j2πK = e−j2πNK/N = 1 WNK
N = 1

4 e−j2(2π/N) = e−j2π/(N/2) W 2
N = WN/2
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Choice of Signal Length

We choose the signal length N as a number that is the product of many smaller numbers rk such that
N = r1r2 . . . rm. A more useful choice results when the factors are equal, such that N = rm. The factor r
is called the radix. By far the most practically implemented choice for r is 2, such that N = 2m, and leads
to the radix-2 FFT algorithms.

Index Separation and Storage

The computation is carried out separately on even-indexed and odd-indexed samples to reduce the compu-
tational effort. All algorithms allocate storage for computed results. The less the storage required, the more
efficient is the algorithm. Many FFT algorithms reduce storage requirements by performing computations
in place by storing results in the same memory locations that previously held the data.

10.14.1 Some Fundamental Results

We begin by considering two trivial, but extremely important, results.

• 1-point transform: The DFT of a single number A is the number A itself.

• 2-point transform: The DFT of a 2-point sequence is easily found to be

XDFT[0] = x[0] + x[1] and XDFT[1] = x[0]− x[1] (10.56)

The single most important result in the development of a radix-2 FFT algorithm is that an N -sample
DFT can be written as the sum of two N

2 -sample DFTs formed from the even- and odd-indexed samples of
the original sequence. Here is the development:

XDFT[k] =
N−1∑
n=0

x[n]Wnk
N =

N/2−1∑
n=0

x[2n]W 2nk
N +

N/2−1∑
n=0

x[2n + 1]W (2n+1)k
N

XDFT[k] =
N/2−1∑

n=0

x[2n]W 2nk
N + W k

N

N/2−1∑
n=0

x[2n + 1]W 2nk
N

=
N/2−1∑

n=0

x[2n]Wnk
N/2 + WN

N/2−1∑
n=0

x[2n + 1]Wnk
N/2

If Xe[k] and Xo[k] denote the DFT of the even- and odd-indexed sequences of length N/2, we can rewrite
this result as

XDFT[k] = Xe[k] + W k
NXo[k], k = 0, 1, 2, . . . , N − 1 (10.57)

Note carefully that the index k in this expression varies from 0 to N − 1 and that Xe[k] and Xo[k] are both
periodic in k with period N/2; we thus have two periods of each to yield XDFT[k]. Due to periodicity, we
can split XDFT[k] and compute the first half and next half of the values as

XDFT[k] = Xe[k] + W k
NXo[k], k = 0, 1, 2, . . . , 1

2N − 1

XDFT[k + N
2 ] = Xe[k + 1

2N ] + W
k+ N

2
N Xo[k + N

2 ]

= Xe[k]−W k
NXo[k], k = 0, 1, 2, . . . , N

2 − 1
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Figure 10.16 A typical butterfly

This result is known as the Danielson-Lanczos lemma. Its signal-flow graph is shown in Figure 10.16 and
is called a butterfly due to its characteristic shape.

The inputs Xe and Xo are transformed into Xe + W k
NXo and Xe−W k

NXo. A butterfly operates on one
pair of samples and involves two complex additions and one complex multiplication. For N samples, there
are N/2 butterflies in all. Starting with N samples, this lemma reduces the computational complexity by
evaluating the DFT of two N

2 -point sequences. The DFT of each of these can once again be reduced to the
computation of sequences of length N/4 to yield

Xe[k] = Xee[k] + W k
N/2X

eo[k] Xo[k] = Xoe[k] + W k
N/2X

oo[k] (10.58)

Since W k
N/2 = W 2k

N , we can rewrite this expression as

Xe[k] = Xee[k] + W 2k
N Xeo[k] Xo[k] = Xoe[k] + W 2k

N Xoo[k] (10.59)

Carrying this process to its logical extreme, if we choose the number N of samples as N = 2m, we can reduce
the computation of an N -point DFT to the computation of 1-point DFTs in m stages. And the 1-point
DFT is just the sample value itself (repeated with period 1). This process is called decimation. The FFT
results so obtained are actually in bit-reversed order. If we let e = 0 and o = 1 and then reverse the
order, we have the sample number in binary representation. The reason is that splitting the sequence into
even and odd indices is equivalent to testing each index for the least significant bit (0 for even, 1 for odd).
We describe two common in-place FFT algorithms based on decimation. A summary appears in Table 10.6.

10.14.2 The Decimation-in-Frequency FFT Algorithm

The decimation-in-frequency (DIF) FFT algorithm starts by reducing the single N -point transform at each
successive stage to two N

2 -point transforms, then four N
4 -point transforms, and so on, until we arrive at N 1-

point transforms that correspond to the actual DFT. With the input sequence in natural order, computations
can be done in place, but the DFT result is in bit-reversed order and must be reordered.

The algorithm slices the input sequence x[n] into two halves and leads to

XDFT[k] =
N−1∑
n=0

x[n]Wnk
N =

N/2−1∑
n=0

x[n]Wnk
N +

N/2−1∑

n=N/2

x[n]Wnk
N =

N/2−1∑
n=0

x[n]Wnk
N +

N/2−1∑
n=0

x[n + N/2]W (n+ N
2 )k

N

This may be rewritten as

XDFT[k] =
N/2−1∑

n=0

x[n]Wnk
N + W

Nk/2
N

N/2−1∑
n=0

x[n + N
2 ]Wnk

N =
N/2−1∑

n=0

x[n]Wnk
N + (−1)k

N/2−1∑
n=0

x[n + N
2 ]Wnk

N
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Table 10.6 FFT Algorithms for Computing the DFT

Entry Characteristic Decimation in Frequency Decimation in Time

1 Number of samples N = 2m N = 2m

2 Input sequence Natural order Bit-reversed order

3 DFT result Bit-reversed order Natural order

4 Computations In place In place

5 Number of stages m = log2 N m = log2 N

6 Multiplications N
2 log2 N (complex) N

2 log2 N(complex)

7 Additions N log2 N (complex) N log2 N (complex)

Structure of the ith Stage

8 No. of butterflies N
2

N
2

9 Butterfly input A (top) and B (bottom) A (top) and B (bottom)

10 Butterfly output (A + B) and (A−B)W t
N (A + BW t

N ) and (A−BW t
N )

11 Twiddle factors t 2i−1Q, Q = 0, 1, . . . , P − 1 2m−iQ, Q = 0, 1, . . . , P − 1

12 Values of P P = 2m−i P = 2i−1

Separating even and odd indices, and letting x[n] = xa and x[n + N/2] = xb,

XDFT[2k] =
N/2−1∑

n=0

[xa + xb]W 2nk
N , k = 0, 1, 2, . . . , N

2 − 1 (10.60)

XDFT[2k + 1] =
N/2−1∑

n=0

[xa − xb]W (2k+1)n
N =

N/2−1∑
n=0

[xa − xb]Wn
NW 2nk

N , k = 0, 1, . . . , N
2 − 1 (10.61)

Since W 2nk
N = Wnk

N/2, the even-indexed and odd-indexed terms describe a N
2 -point DFT. The computations

result in a butterfly structure with inputs x[n] and x[n + N
2 ], and outputs XDFT[2k] = {x[n] + x[n + N

2 ]}
and XDFT[2k + 1] = {x[n]− x[n + N

2 ]}Wn
N . Its butterfly structure is shown in Figure 10.17.

[k]X
e
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[k]X
o

B = W t

A + B

(A−B)W t

A + B

(A−B)W t

A

B

A

B

t

Figure 10.17 A typical butterfly for the decimation-in-frequency FFT algorithm

The factors W t, called twiddle factors, appear only in the lower corners of the butterfly wings at each
stage. Their exponents t have a definite order, described as follows for an N = 2m-point FFT algorithm
with m stages:

1. Number P of distinct twiddle factors W t at ith stage: P = 2m−i.

2. Values of t in the twiddle factors W t: t = 2i−1Q with Q = 0, 1, 2, . . . , P − 1.
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The DIF algorithm is illustrated in Figure 10.18 for N = 2, N = 4, and N = 8.
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Figure 10.18 The decimation-in-frequency FFT algorithm for N = 2, 4, 8

EXAMPLE 10.16 (A 4-Point Decimation-in-Frequency FFT Algorithm)
For a 4-point DFT, we use the above equations to obtain

XDFT[2k] =
1∑

n=0

{x[n] + x[n + 2]}W 2nk
4

XDFT[2k + 1] =
1∑

n=0

{x[n]− x[n + 2]}Wn
4 W 2nk

4 , k = 0, 1

Since W 0
4 = 1 and W 2

4 = −1, we arrive at the following result:

XDFT[0] = x[0] + x[2] + x[1] + x[3] XDFT[2] = x[0] + x[2]− {x[1] + x[3]}
XDFT[1] = x[0]− x[2] + W4{x[1]− x[3]} XDFT[3] = x[0]− x[2]−W4{x[1]− x[3]}

We do not reorder the input sequence before using it.

10.14.3 The Decimation-in-Time FFT Algorithm

In the decimation-in-time (DIT) FFT algorithm, we start with N 1-point transforms, combine adjacent pairs
at each successive stage into 2-point transforms, then 4-point transforms, and so on, until we get a single
N -point DFT result. With the input sequence in bit-reversed order, the computations can be done in place,
and the DFT is obtained in natural order. Thus, for a 4-point input, the binary indices {00, 01, 10, 11}
reverse to {00, 10, 01, 11}, and we use the bit-reversed order {x[0], x[2], x[1], x[3]}.

For an 8-point input sequence, {000, 001, 010, 011, 100, 101, 110, 111}, the reversed sequence corresponds
to {000, 100, 010, 110, 001, 101, 011, 111} or {x[0], x[4], x[6], x[2], x[1], x[5], x[3], x[7]}, and we use this sequence
to perform the computations.

At a typical stage, we obtain

XDFT[k] = Xe[k] + W k
NXo[k] XDFT[k + N

2 ] = Xe[k]−W k
NXo[k] (10.62)
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Its butterfly structure is shown in Figure 10.19.
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Figure 10.19 A typical butterfly for the decimation-in-time FFT algorithm

As with the decimation-in-frequency algorithm, the twiddle factors W t at each stage appear only in the
bottom wing of each butterfly. The exponents t also have a definite (and almost similar) order described by

1. Number P of distinct twiddle factors W t at ith stage: P = 2i−1.

2. Values of t in the twiddle factors W t: t = 2m−iQ with Q = 0, 1, 2, . . . , P − 1.

The DIT algorithm is illustrated in Figure 10.20 for N = 2, N = 4, and N = 8.
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Figure 10.20 The decimation-in-time FFT algorithm for N = 2, 4, 8

In both the DIF algorithm and DIT algorithm, it is possible to use a sequence in natural order and get
DFT results in natural order. This, however, requires more storage, since the computations cannot now be
done in place.

EXAMPLE 10.17 (A 4-Point Decimation-in-Time FFT Algorithm)
For a 4-point DFT, with W4 = e−jπ/2 = −j, we have

XDFT[k] =
3∑

n=0

x[n]Wnk
4 , k = 0, 1, 2, 3

We group by even-indexed and odd-indexed samples of x[n] to obtain

XDFT[k] = Xe[k] + W k
4 Xo[k]

{
Xe[k] = x[0] + x[2]W 2k

4 ,
Xo[k] = x[1] + x[3]W 2k

4 ,
k = 0, 1, 2, 3
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Using periodicity, we simplify this result to

XDFT[k] = Xe[k] + W k
4 Xo[k]

XDFT[k + 1
2N ] = Xe[k]−W k

4 Xo[k]

{
Xe[k] = x[0] + x[2]W 2k

4 ,
Xo[k] = x[1] + x[3]W 2k

4 ,
k = 0, 1

These equations yield XDFT[0] through XDFT[3] as

XDFT[0] = Xe[0] + W 0
4 Xo[0] = x[0] + x[2]W 0

4 + W 0
4 {x[1] + x[3]W 0

4 }
XDFT[1] = Xe[1] + W 1

4 Xo[1] = x[0] + x[2]W 2
4 + W 1

4 {x[1] + x[3]W 2
4 }

XDFT[2] = Xe[0]−W 0
4 Xo[0] = x[0] + x[2]W 0

4 −W 0
4 {x[1] + x[3]W 0

4 }
XDFT[3] = Xe[1]−W 1

4 Xo[1] = x[0] + x[2]W 2
4 −W 1

4 {x[1] + x[3]W 2
4 }

Upon simplification, using W 0
4 = 1, W 1

4 = W4 = 1, and W 2
4 = −1, we obtain

XDFT[0] = x[0] + x[2] + x[1] + x[3] XDFT[1] = x[0]− x[2] + W4{x[1]− x[3]}
XDFT[2] = x[0] + x[2]− {x[1] + x[3]} XDFT[3] = x[0]− x[2]−W4{x[1]− x[3]}

10.14.4 Computational Cost

Both the DIF and DIT N -point FFT algorithms involve m = log2 N stages and 0.5N butterflies per stage.
The FFT computation thus requires 0.5mN = 0.5N log2 N complex multiplications and mN = N log2 N
complex additions. Table 10.7 shows how the FFT stacks up against direct DFT evaluation for N = 2m,
counting all operations. Note, however, that multiplications take the bulk of computing time.

Table 10.7 Computational Cost of the DFT and FFT

Feature N-Point DFT N-Point FFT

Algorithm Solution of N equations
in N unknowns

0.5N butterflies/stage, m stages
Total butterflies = 0.5mN

Multiplications N per equation 1 per butterfly

Additions N − 1 per equation 2 per butterfly

Total multiplications N2 0.5mN = 0.5N log2 N

Total additions N(N − 1) mN = N log2 N

The difference between 0.5 log2 N and N2 may not seem like much for small N . For example, with N = 16,
0.5N log2 N = 64 and N2 = 256. For large N , however, the difference is phenomenal. For N = 1024 = 210,
0.5N log2 N ≈ 5000 and N2 ≈ 106. This is like waiting 1 minute for the FFT result and (more than) 3 hours
for the identical direct DFT result. Note that N log2 N is nearly linear with N for large N , whereas N2

shows a much faster, quadratic growth.
In the DFT relations, since there are N factors that equal W 0 or 1, we require only N2 − N complex

multiplications. In the FFT algorithms, the number of factors that equal 1 doubles (or halves) at each stage
and is given by 1+2+22 + · · ·+2m−1 = 2m−1 = N−1. We thus actually require only 0.5N log2 N−(N−1)
complex multiplications for the FFT. The DFT requires N2 values of W k, but the FFT requires at most
N such values at each stage. Due to the periodicity of W k, only about 3

4N of these values are distinct.

c©Ashok Ambardar, September 1, 2003



10.15 Why Equal Lengths for the DFT and IDFT? 457

Once computed, they can be stored and used again. However, this hardly affects the comparison for large N .
Since computers use real arithmetic, the number of real operations may be found by noting that one complex
addition involves two real additions, and one complex multiplication involves four real multiplications and
three real additions (because (A + jB)(C + jD) = AC −BD + jBC + jAD).

Speed of Fast Convolution

A direct computation of the convolution of two N -sample signals requires N2 complex multiplications.
The FFT method works with sequences of length 2N . The number of complex multiplications involved is
2(N log2 2N) to find the FFT of the two sequences, 2N to form the product sequence, and N log2 N to find
the IFFT sequence that gives the convolution. It thus requires 3N log2 2N + 2N complex multiplications. If
N = 2m, the FFT approach becomes computationally superior only for m > 5 (N > 32) or so.

10.15 Why Equal Lengths for the DFT and IDFT?
The DTFT of an N -sample discrete time signal x[n] is given by

Xp(F ) =
N−1∑
n=0

x[n]e−j2πnF (10.63)

If we sample F at M intervals over one period, the frequency interval F0 equals 1/M and F → kF0 =
k
M , k = 0, 1, . . . ,M − 1, and we get

XDFT[k] =
N−1∑
n=0

x[n]e−j2πnk/M , k = 0, 1, . . . , M − 1 (10.64)

With WM = e−j2π/M , this equation can be written as

XDFT[k] =
N−1∑
n=0

x[n]Wnk
M , k = 0, 1, . . . , M − 1 (10.65)

This is a set of M equations in N unknowns and describes the M-point DFT of the N-sample sequence x[n].
It may be written in matrix form as

X = WMx (10.66)

Here, X is an M × 1 matrix, x is an N × 1 matrix, and WM is an (M ×N) matrix. In full form,




X[0]

X[1]

X[2]
...
X[M − 1]




=




W 0
M W 0

M W 0
M . . . W 0

M

W 0
M W 1

M W 2
M . . . WN−1

M

W 0
M W 2

M W 4
M . . . W

2(N−1)
M

...
...

...
. . .

...
W 0

M WM−1
M W

2(M−1)
M . . . W

(N−1)(M−1)
M







x[0]

x[1]

x[2]
...
x[N − 1]




(10.67)
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EXAMPLE 10.18 (A 4-Point DFT from a 3-Point Sequence)
Let x[n] = {1, 2, 1}. We have N = 3. The DTFT of this signal is

Xp(F ) = 1 + 2e−j2πF + e−j4πF = [2 + 2 cos(2πF )]e−j2πF

If we pick M = 4, we have F = k/4, k = 0, 1, 2, 3, and obtain the DFT as

XDFT[k] = [2 + 2 cos(2πk/4)]e−j2πk/4, k = 0, 1, 2, 3 or XDFT[k] = {4, −j2, 0, j2}

Using matrix notation with WM = e−j2π/4 = −j, we can also find XDFT[k] as



X[0]

X[1]

X[2]

X[3]




=




W 0
M W 0

M W 0
M

W 0
M W 1

M W 2
M

W 0
M W 2

M W 4
M

W 0
M W 3

M W 6
M







x[0]

x[1]

x[2]


 =




1 1 1
1 −j −1
1 −1 1
1 j −1







1
2
3


 =




4
−j2

0
j2




Thus, XDFT[k] = {4, −j2, 0, j2}, as before.

10.15.1 The Inverse DFT

How do we obtain the N -sample sequence x[n] from the M -sample DFT? It would seem that we require the
product of X, an M × 1 matrix with an N × M matrix to give x as an N × 1 matrix. But what is this
(M ×N) matrix, and how is it related to the M ×N matrix WM? To find out, recall that

x[n] =
∫

1

Xp(F )ej2πnF dF (10.68)

Converting this to discrete form with F = kF0 = k
M results in periodicity of x[n] with period 1, and we

obtain N samples of x[n] using

x[n] =
1
M

M−1∑

k=0

XDFT[k]ej2πnk/M , n = 0, 1, . . . , N − 1 (10.69)

For N < M , one period of x[n] is a zero-padded M -sample sequence. For N > M , however, one period of
x[n] is the periodic extension of the N -sample sequence with period M .

The sign of the exponent and the interchange of the indices n and k allow us to set up the matrix
formulation for obtaining x[n] using an N ×M inversion-matrix WI that just equals 1

M times [W∗
M ]T , the

conjugate transpose of the M ×N DFT matrix WM . Its product with the N × 1 matrix corresponding
to X[k] yields the M × 1 matrix for x[n]. We thus have the forward and inverse matrix relations:

X = WMx (DFT) x = WIX =
1
M

[W∗
M ]T X (IDFT) (10.70)

These results are valid for any choice of M and N . An interesting result is that the product of WM with
WI is the N ×N identity matrix.
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EXAMPLE 10.19 (A 3-Point IDFT from a 4-Point DFT)
Let XDFT[k] = {4, −j2, 0, j2} and M = 4.

The IDFT matrix equals

WI =
1
4




1 1 1
1 j −1
1 −1 1
1 −j −1




∗T

=
1
4




1 1 1 1
1 −j −1 j
1 −1 1 −1




We then get the IDFT as

x = WIX =
1
4




1 1 1 1
1 −j −1 j
1 −1 1 −1







4
−j2

0
j2


 =




1
2
1




The important thing to realize is that x[n] is actually periodic with M = 4, and one period of x[n] is the
zero-padded sequence {1, 2, 1, 0}.

10.15.2 How Unequal Lengths Affect the DFT Results

Even though the M -point IDFT of an N -point sequence is valid for any M , the choice of M affects the
nature of x[n] through the IDFT and its inherent periodic extension.

1. If M = N , the IDFT is periodic, with period M , and its one period equals the N -sample x[n]. Both
the DFT matrix and IDFT matrix are square (M ×M), and allow a simple inversion relation to go
back and forth between the two.

2. If M > N , the IDFT is periodic with period M . Its one period is the original N -sample x[n] with
M −N padded zeros. The choice M > N is equivalent to using a zero-padded version of x[n] with a
total of M samples and M ×M square matrices for both the DFT matrix and IDFT matrix.

3. If M < N , the IDFT is periodic with period M < N . Its one period is the periodic extension of the
N -sample x[n] with period M . It thus yields a signal that corresponds to x[n] wrapped around after
M samples and does not recover the original x[n].

EXAMPLE 10.20 (The Importance of Periodic Extension)
Let x[n] = {1, 2, 1}. We have N = 3. The DTFT of this signal is

Xp(F ) = 1 + 2e−j2πF + e−j4πF = [2 + 2 cos(2πF )]e−j2πF

We sample Xp(F ) at M intervals and find the IDFT as y[n]. What do we get?

(a) For M = 3, we should get y[n] = {1, 2, 1} = x[n]. Let us find out.

With M = 3, we have F = k/3 for k = 0, 1, 2, and XDFT[k] becomes

XDFT[k] = [2 + 2 cos(2kπ/3)]e−j2kπ/3 =
{

4, − 1
2 − j

√
3
4 , − 1

2 + j
√

3
4

}
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We also find WI and the IDFT x = WIX as

WI =
1
3




W 0
M W 0

M W 0
M

W 0
M W 1

M W 2
M

W 0
M W 2

M W 4
M




∗T

=
1
3




1 1 1

1 − 1
2 + j

√
3
4 − 1

2 − j
√

3
4

1 − 1
2 − j

√
3
4 − 1

2 + j
√

3
4




x = WIX =
1
3




1 1 1

1 − 1
2 + j

√
3
4 − 1

2 − j
√

3
4

1 − 1
2 − j

√
3
4 − 1

2 + j
√

3
4







4

− 1
2 − j

√
3
4

− 1
2 + j

√
3
4


 =




1
2
1




This result is periodic with M = 3, and one period of this equals x[n].

(b) For M = 4, we should get a new sequence y[n] = {1, 2, 1, 0} that corresponds to a zero-padded
version of x[n].

(c) For M = 2, we should get a new sequence z[n] = {2, 2} that corresponds to the periodic extension of
x[n] with period 2.

With M = 2 and k = 0, 1, we have ZDFT[k] = [2 + 2 cos(πk)]e−jkπ = {4, 0}.
Since e−j2π/M = e−jπ = −1, we can find the IDFT z[n] directly from the definition as

z[0] = 0.5{XDFT[0] + XDFT[1]} = 2 z[1] = 0.5{XDFT[0]−XDFT[1]} = 2

The sequence z[n] = {2, 2} is periodic with M = 2. As expected, this equals one period of the periodic
extension of x[n] = {1, 2, 1} (with wraparound past two samples).
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CHAPTER 10 PROBLEMS

10.1 (DFT from Definition) Compute the DFT and DFS of the following signals.

(a) x[n] = {1, 2, 1, 2} (b) x[n] = {2, 1, 3, 0, 4}
(c) x[n] = {2, 2, 2, 2} (d) x[n] = {1, 0, 0, 0, 0, 0, 0, 0}

[Hints and Suggestions: Compute the DFT only for the indices k ≤ N
2 and use conjugate symmetry

about k = N
2 and XDFT[N − k] = X∗

DFT[k] to find the rest.]

10.2 (DFT from Definition) Use the defining relation to compute the N -point DFT of the following:

(a) x[n] = δ[n], 0 ≤ n ≤ N − 1
(b) x[n] = αn, 0 ≤ n ≤ N − 1
(c) x[n] = ejπn/N , 0 ≤ n ≤ N − 1

10.3 (IDFT from Definition) Compute the IDFT of the following.

(a) XDFT[k] = {2, −j, 0, j} (b) XDFT[k] = {4, −1, 1, 1, −1}
(c) XDFT[k] = {1, 2, 1, 2} (d) XDFT[k] = {1, 0, 0, j, 0, −j, 0, 0}

[Hints and Suggestions: Each DFT has conjugate symmetry about k = N
2 , so x[n] should be real.

For (b)–(c), the DFT is also real, so x[n] has conjugate symmetry about k = N
2 .]

10.4 (Symmetry) For the DFT of each real sequence, compute the boxed quantities.

(a) XDFT[k] =
{

0, X1 , 2 + j, −1, X4 , j
}

(b) XDFT[k] =
{

1, 2, X2 , X3 , 0, 1− j, −2, X7

}

[Hints and Suggestions: The DFT of a real signal shows conjugate symmetry about k = N
2 .]

10.5 (Properties) The DFT of x[n] is XDFT[k] = {1, 2, 3, 4}. Find the DFT of each of the following
sequences, using properties of the DFT.

(a) y[n] = x[n− 2] (b) f [n] = x[n + 6] (c) g[n] = x[n + 1]
(d) h[n] = ejnπ/2x[n] (e) p[n] = x[n] ?©x[n] (f) q[n] = x2[n]
(g) r[n] = x[−n] (h) s[n] = x∗[n] (i) v[n] = x2[−n]

[Hints and Suggestions: In (a)–(c) use the shifting property. In (d), use circular shift of the DFT.
In (e), square the DFT values. In (f), divide the periodic convolution by N . In (g), fold the DFT and
create is periodic extension to get samples starting at k = 0. In (h), conjugate the results of (g).]

10.6 (Properties) Let XDFT[k] be the N -point DFT of a real signal. How many DFT samples will always
be real, and what will be their index k? [Hint: Use the concept of conjugate symmetry and consider
the cases for odd N and even N separately.]

[Hints and Suggestions: Check the DFT at k = 0 and k = N
2 for even N and odd N .]

10.7 (Properties) Let XDFT[k] be the N -point DFT of a (possibly complex) signal x[n]. What can you
say about the symmetry of x[n] for the following XDFT[k]?

(a) Conjugate symmetric
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(b) Real but with no symmetry
(c) Real and even symmetric
(d) Real and odd symmetric
(e) Imaginary and odd symmetric

10.8 (Properties) For each DFT pair shown, compute the values of the boxed quantities.

(a)
{

x0 , 3, −4, 0, 2
}
⇐⇒

{
5, X1 , −1.28− j4.39, X3 , 8.78− j1.4

}

(b)
{

x0 , 3, −4, 2, 0, 1
}
⇐⇒

{
4, X1 , 4− j5.2, X3 , X4 , 4− j1.73

}

[Hints and Suggestions: Use conjugate symmetry. In (a) also use x[0] =
∑

XDFT[k] to find x0. In
(b), also use XDFT[0] =

∑
x[n] (or Parseval’s relation) to find X3.]

10.9 (Properties) Let x[n] = {⇓1, −2, 3, −4, 5, −6}. Without evaluating its DFT XDFT[k], compute
the following quantities:

(a) X[0] (b)
5∑

k=0

X[k] (c) X[3] (d)
5∑

k=0

|X[k]|2 (e)
5∑

k=0

(−1)kX[k]

[Hints and Suggestions: In (a), also use XDFT[0] =
∑

x[n]. In (b), use
∑

XDFT[k] = Nx[0]. In (c),
use XDFT[N

2 ] =
∑

(−1)nx[n]. In (d), use Parseval’s relation. In (e), use
∑

(−1)kXDFT[k] = Nx[N
2 ].]

10.10 (DFT Computation) Find the N -point DFT of each of the following signals.

(a) x[n] = δ[n] (b) x[n] = δ[n−K], K < N
(c) x[n] = δ[n− 0.5N ] (N even) (d) x[n] = δ[n− 0.5(N − 1)] (N odd)
(e) x[n] = 1 (f) x[n] = δ[n− 0.5(N − 1)] + δ[n− 0.5(N + 1)] (N odd)
(g) x[n] = (−1)n (N even) (h) x[n] = ej4nπ/N

(i) x[n] = cos( 4nπ
N ) (j) x[n] = cos( 4nπ

N + 0.25π)

[Hints and Suggestions: In (a), the DFT has N unit samples. Use this result with the shifting
property in (b), (c), (d) and (f). In (e), only XDFT[0] is nonzero. In (g), (−1)n = cos(nπ). In (h),
use frequency shift on the result of (e). In (i) and (j), F0 = 2

N and the DFT is a pair of impulses with
amplitude 0.5Nej±θ at k = ±2.]

10.11 (Properties) The DFT of a signal x[n] is XDFT[k]. If we use its conjugate YDFT[k] = X∗
DFT[k] and

obtain its DFT as y[n], how is y[n] related to x[n]?

[Hints and Suggestions: A typical DFT term is Aejθ. Its IDFT gives terms of the form 1
N Aejθejφ

where φ = 2nkπ
N . Similarly, examine the DFT of the conjugated DFT sequence and compare.]

10.12 (Properties) Let X[k] = {⇓1, −2, 1− j, j2, 0, . . .} be the 8-point DFT of a real signal x[n].
(a) Determine X[k] in its entirety.
(b) What is the DFT Y [k] of the signal y[n] = (−1)nx[n]?
(c) What is the DFT G[k] of the zero-interpolated signal g[n] = x[n/2]?
(d) What is the DFT H[k] of h[n] = {x[n], x[n], x[n]} obtained by threefold replication of x[n]?

[Hints and Suggestions: In (b), (−1)nx[n] ⇔ X[k − N
2 ], so use circular shift. In (c), replicate the

DFT. In (d), zero-interpolate X[k] to 3X[k/3] (with two zeros after each DFT sample).]

10.13 (Replication and Zero Interpolation) The DFT of x[n] is XDFT[k] = {1, 2, 3, 4, 5}.
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(a) What is the DFT of the replicated signal y[n] = {x[n], x[n]}?
(b) What is the DFT of the replicated signal f [n] = {x[n], x[n], x[n]}?
(c) What is the DFT of the zero-interpolated signal g[n] = x[n/2]?
(d) What is the DFT of the zero-interpolated signal h[n] = x[n/3]?

[Hints and Suggestions: In (a), insert a zero after each DFT sample. In (b), insert two zeros after
each DFT sample. In (b) and (c), double or triple the DFT length by replicating it.]

10.14 (DFT of Pure Sinusoids) Determine the DFT of x(t) = sin(2πf0t + π
3 ) (without doing any DFT

computations) if we sample this signal, starting at t = 0, and acquire the following:

(a) 4 samples over 1 period (b) 8 samples over 2 periods
(c) 8 samples over 1 period (d) 18 samples over 3 periods
(e) 8 samples over 5 periods (f) 16 samples over 10 periods

[Hints and Suggestions: The Nyquist rate corresponds to taking two samples per period. Set up
the digital frequency as F0 = k0

N . The N -point DFT of x[n] = A cos(2πF0n + θ), is a pair of nonzero
samples, 0.5Aejθ at k = k0 and 0.5Ae−jθ at k = N − k0 (all other samples are zero).]

10.15 (DFT of Sinusoids) The following signals are sampled starting at t = 0. Identify the indices of the
nonzero DFT components and write out the DFT as a sequence.

(a) x(t) = cos(4πt) sampled at 25 Hz, using the minimum number of samples to prevent leakage
(b) x(t) = cos(20πt) + 2 sin(40πt) sampled at 25 Hz with N = 15
(c) x(t) = sin(10πt) + 2 sin(40πt) sampled at 25 Hz for 1 s
(d) x(t) = sin(40πt) + 2 sin(60πt) sampled at intervals of 0.004 s for four periods

[Hints and Suggestions: Let F0 = k0
N . The N -point DFT of x[n] = A cos(2πF0n + θ), is a pair of

nonzero samples, 0.5Aejθ at k = k0 and 0.5Ae−jθ at k = N − k0 (all other samples are zero).]

10.16 (Aliasing and Leakage) The following signals are sampled and the DFT of the sampled signal
obtained. Which cases show the effects of leakage.

(a) A 100-Hz sinusoid for 2 periods at 400 Hz
(b) A 100-Hz sinusoid for 4 periods at 70 Hz
(c) A 100-Hz sinusoid at 400 Hz, using 10 samples
(d) A 100-Hz sinusoid for 2.5 periods at 70 Hz
(e) A sum of sinusoids at 100 Hz and 150 Hz for 100 ms at 450 Hz
(f) A sum of sinusoids at 100 Hz and 150 Hz for 130 ms period at 450 Hz

[Hints and Suggestions: Leakage occurs if we do not sample for integer periods. If F0 = k
N , where

k is an integer, leakage is avoided if we sample for k full periods (to obtain N samples).]

10.17 (DFT Concepts) The signal x(t) = cos(150πt) + cos(180πt) is to be sampled and analyzed using
the DFT.

(a) What is the minimum sampling Smin rate to prevent aliasing?
(b) With the sampling rate chosen as S = 2Smin, what is the minimum number of samples Nmin

required to prevent leakage?
(c) With the sampling rate chosen as S = 2Smin, and N = 3Nmin, what is the DFT of the sampled

signal?
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(d) With S = 160 Hz and N = 256, at what DFT indices would you expect to see spectral peaks?
Will leakage be present?

[Hints and Suggestions: In (b), Nmin =LCM(N1, N2) where N − 1 and N2 are the individual
periods. In (c), the nonzero DFT samples occur at k1, k2, Nmin − k1, Nmin − k2 where F1 = k1

Nmin
and

F2 = k2
Nmin

. In (d), leakage occurs if any index of the form k = Nfk/S is not an integer.]

10.18 (DFT Concepts) The signal x(t) = cos(50πt) + cos(80πt) is sampled at S = 200 Hz.

(a) What is the minimum number of samples required to prevent leakage?
(b) Find the DFT of the sampled signal if x(t) is sampled for 1 s.
(c) What are the DFT indices of the spectral peaks if N = 128?

[Hints and Suggestions: In (a), Nmin =LCM(N1, N2) where N − 1 and N2 are the individual
periods. In (b), the nonzero DFT samples occur at k1, k2, Nmin − k1, Nmin − k2 where F1 = k1

Nmin
and

F2 = k2
Nmin

. In (c), the peaks occur at the integer indices closest to k = Nfk/S.]

10.19 (DFT Concepts) Let x[n] = cos(2nπF0).

(a) Use the defining relation to compute its N -point DFT.
(b) For what values of F0 would you expect aliasing and/or leakage?
(c) Compute the DFT if N = 8 and F0 = 0.25. Has aliasing occurred? Has leakage occurred?
(d) Compute the DFT if N = 8 and F0 = 1.25. Has aliasing occurred? Has leakage occurred?
(e) Compute the DFT if N = 9 and F0 = 0.2. Has aliasing occurred? Has leakage occurred?

[Hints and Suggestions: There is no aliasing if F0 < 0.5 and no leakage if k = NF0 is an integer.]

10.20 (Spectral Spacing) What is the spectral spacing in the 500-point DFT of a sampled signal obtained
by sampling an analog signal at 1 kHz?

[Hints and Suggestions: The spectral spacing equals S
N .]

10.21 (Spectral Spacing) We wish to sample a signal of 1-s duration, band-limited to 50 Hz, and compute
the DFT of the sampled signal.

(a) Using the minimum sampling rate that avoids aliasing, what is the spectral spacing ∆f , and
how many samples are acquired?

(b) How many padding zeros are needed to reduce the spacing to 0.5∆f , using the minimum sam-
pling rate to avoid aliasing if we use the DFT?

(c) How many padding zeros are needed to reduce the spacing to 0.5∆f , using the minimum sam-
pling rate to avoid aliasing if we use a radix-2 FFT?

[Hints and Suggestions: The spectral spacing is S
N . To reduce it, increase N by zero padding.]

10.22 (Spectral Spacing) We wish to sample the signal x(t) = cos(50πt) + sin(200πt) at 800 Hz and
compute the N -point DFT of the sampled signal x[n].

(a) Let N = 100. At what indices would you expect to see the spectral peaks? Will the peaks occur
at the frequencies of x(t)?

(b) Let N = 128. At what indices would you expect to see the spectral peaks? Will the peaks occur
at the frequencies of x(t)?
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[Hints and Suggestions: Use F0 = k
N to compute k = NF0 = Nf0/S. A peak will occur at the

exact frequency only for integer k.]

10.23 (Spectral Spacing) We wish to sample the signal x(t) = cos(50πt) + sin(80πt) at 100 Hz and
compute the N -point DFT of the sampled signal x[n].
(a) Let N = 100. At what indices would you expect to see the spectral peaks? Will the peaks occur

at the frequencies of x(t)?
(b) Let N = 128. At what indices would you expect to see the spectral peaks? Will the peaks occur

at the frequencies of x(t)?

[Hints and Suggestions: Use F0 = k
N to compute k = NF0 = Nf0/S. A peak will occur at the

exact frequency only for integer k.]

10.24 (Spectral Spacing) We wish to identify the 21-Hz component from the N -sample DFT of a signal.
The sampling rate is 100 Hz, and only 128 signal samples are available.
(a) If N = 128, will there be a DFT component at 21 Hz? If not, what is the frequency closest to

21Hz that can be identified? What DFT index does this correspond to?
(b) Assuming that all signal samples must be used and zero-padding is allowed, what is the smallest

value of N that will result in a DFT component at 21 Hz? How many padding zeros will be
required? At what DFT index will the 21-Hz component appear?

[Hints and Suggestions: Use F0 = k
N to compute k = NF0 = Nf0/S. In (a), the peak will occur

at the exact frequency only if k is an integer. In (b), pick N such that k is an integer.]

10.25 (Sampling Frequency) For each of the following signals, estimate the sampling frequency and
sampling duration by arbitrarily choosing the bandwidth B as the frequency where |H(f)| is 5% of
its maximum and the signal duration D as the time at which x(t) is 1% of its maximum.

(a) x(t) = e−tu(t) (b) x(t) = te−tu(t) (c) x(t) = tri(t)

[Hints and Suggestions: First, set |X(f)| = 0.05|X(f)|max to estimate B and S > 2B. Next,
estimate the time D at which x(t) is 1% of its peak and find N = SD (as an integer). Numerical
estimates give D = 7.64 s for (b) and B ≈ 0.81 Hz for (c).]

10.26 (Sampling Frequency and Spectral Spacing) It is required to find the DFT of the signal
x(t) = e−tu(t) after sampling it for a duration D that contains 95% of the total signal energy E. How
many samples are acquired if the sampling rate S is chosen to ensure that
(a) The aliasing level at f = 0.5S due to the first replica is less than 1% of the peak level?
(b) The energy in the aliased signal past f = 0.5S is less than 1% of the total signal energy?

[Hints and Suggestions: Use Parseval’s relation to set 0.95E =
∫ D

0
e−2t dt and estimate D. In (b),

set |X(f)|f=S/2 = 0.01|X(f)|max to estimate B. In (c), set
∫ S/2

−S/2
|X(f)|2 df = 0.99E to estimate B.

Use S > 2b to compute N = SD (as an integer). Note that E = 0.5 and |X(f)|2 = 1
1+4π2f2 .]

10.27 (Sampling Rate and the DFT) The pulse u(t)− u(t− 1) is replicated every two seconds to get
a periodic signal x(t) with period T = 2. The periodic signal is sampled for one full period to obtain
N samples. The N -point DFT of the samples corresponds to the signal y(t) = A + B sin(πt).
(a) What are the possible values of N for which you could obtain such a result? For each such

choice, compute the values of A and B.
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(b) What are the possible values of N for which you could obtain such a result using the radix-2
FFT? For each such choice, compute the values of A and B.

(c) Is it possible for y(t) to be identical to x(t) for any choice of sampling rate?

[Hints and Suggestions: The DFT contains a nonzero sample at k = 0 and a pair of nonzero
imaginary samples ±j0.5 at the indices ±k corresponding to f0 = 0.5 Hz.]

10.28 (Sampling Rate and the DFT) A periodic signal x(t) with period T = 2 is sampled for one full
period to obtain N samples. The signal reconstructed from the N -point DFT of the samples is y(t).

(a) Will the DFT show the effects of leakage?
(b) Let N = 8. How many harmonics of x(t) can be identified in the DFT? What constraints on

x(t) will ensure that y(t) = x(t)?
(c) Let N = 12. How many harmonics of x(t) can be identified in the DFT? What constraints on

x(t) will ensure that y(t) = x(t)?

[Hints and Suggestions: The number of useful harmonics is N−1
2 − 1. If y(t) = x(t), the periodic

signal x(t) must be bandlimited to N
2 f0.]

10.29 (Frequency Resolution) A signal is sampled at 5 kHz to acquire N samples of x[n].

(a) Let N = 1000. What is the frequency resolution in the DFT of the sampled signal x[n]?
(b) Let N = 1000. What is the frequency resolution in the DFT of the von Hann windowed signal?
(c) Find the smallest value of N for a frequency resolution of 2 Hz with no window.
(d) Find the smallest value of N for a frequency resolution of 2 Hz with a von Hann window.

[Hints and Suggestions: In (a), the frequency resolution is ∆f = S
N . In (b), it is ∆f = S

N where
C = 2. In (c), N = S

∆f . In (d), N = CS
∆f ]

10.30 (Convolution and the DFT) Consider two sequences x[n] and h[n] of length 12 samples and 20
samples, respectively.

(a) How many padding zeros are needed for x[n] and h[n] in order to find their regular convolution
y[n], using the DFT?

(b) If we pad x[n] with eight zeros and find the periodic convolution yp[n] of the resulting 20-point
sequence with h[n], for what indices will the samples of y[n] and yp[n] be identical?

[Hints and Suggestions: Periodic convolution of sequences of equal length N , requires wraparound
of the last N−1 samples of the regular convolution. The last (Nth sample) in the periodic convolution
is not contaminated. If the last L samples of the regular convolution are zero, the last L + 1 samples
of the periodic convolution are not contaminated.]

10.31 (FFT) Write out the DFT sequence that corresponds to the following bit-reversed sequences obtained
using the DIF FFT algorithm.

(a) {1, 2, 3, 4} (b) {0,−1, 2,−3, 4,−5, 6,−7}
10.32 (FFT) Set up a flowchart showing all twiddle factors and values at intermediate nodes to compute

the DFT of x[n] = {1, 2, 2, 2, 1, 0, 0, 0}, using

(a) The 8-point DIF algorithm. (b) The 8-point DIT algorithm.
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10.33 (Spectral Spacing and the FFT) We wish to sample a signal of 1-s duration, and band-limited
to 100 Hz, in order to compute its spectrum. The spectral spacing should not exceed 0.5 Hz. Find
the minimum number N of samples needed and the actual spectral spacing ∆f if we use

(a) The DFT. (b) The radix-2 FFT.

[Hints and Suggestions: The spectral spacing is S
N . For the FFT, N is a power of 2.]

10.34 (Convolution) Find the linear convolution of x[n] = {⇓1, 2, 1} and h[n] = {⇓1, 2, 3}, using
(a) The time-domain convolution operation.
(b) The DFT and zero-padding.
(c) The radix-2 FFT and zero-padding.

Which of these methods yield identical results and why?

[Hints and Suggestions: In (a), the convolution length is N = 5. In (b), zero pad each signal to
N = 5, multiply the DFTs (at each index) and find the 5-point IDFT. In (c), zero-pad to N = 8.]

10.35 (Convolution) Find the periodic convolution of x[n] = {⇓1, 2, 1} and h[n] = {⇓1, 2, 3}, using
(a) The time-domain convolution operation.
(b) The DFT operation. Is this result identical to that of part (a)?
(c) The radix-2 FFT and zero-padding. Is this result identical to that of part (a)? Should it be?

Which of these methods yield identical results and why?

[Hints and Suggestions: In (a), use regular convolution and wraparound. In (b), multiply the
DFTs (at each index) and find the 3-point IDFT. In (c), zero-pad each signal to N = 4, multiply the
DFTs (at each index) and find the 4-point IDFT.]

10.36 (Correlation) Find one period (starting at n = 0) of the periodic correlation rxh of x[n] = {⇓1, 2, 1}
and h[n] = {⇓1, 2, 3}, using
(a) The time-domain correlation operation.
(b) The DFT.

[Hints and Suggestions: In (a), use circular folding and replication to get samples of h[−n] starting
at the origin, compute x[n] ? h[−n] and wraparound. In (b), multiply the DFTs (at each index) and
find the 3-point IDFT. In (b), multiply XDFT[k] and H∗

DFT[k] (at each index) and find the IDFT.]

10.37 (Convolution of Long Signals) Let x[n] = {⇓1, 2, 1} and h[n] = {⇓1, 2, 1, 3, 2, 2, 3, 0, 1, 0, 2, 2}.

(a) Find their convolution using the overlap-add method.
(b) Find their convolution using the overlap-save method.
(c) Are the results identical to the time-domain convolution of x[n] and h[n]?

[Hints and Suggestions: In (a), split h[n] into 3-sample segments, find their convolution with x[n],
shift (by 0, 3, 6 and 9 samples) and add. In (b), generate 5-sample segments from h[n] with the first
as {0, 0, 1, 2, 1}, the second as {2, 1, 3, 2, 2} etc with a 2 sample overlap in each segment (zero pad the
last segment to five samples, if required). Find their periodic convolutions with {x[n], 0, 0}, discard
the first 2 samples of each convolution and concatenate (string together).]
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COMPUTATION AND DESIGN

10.38 (DFT Properties) Consider the signal x[n] = n+1, 0 ≤ n ≤ 7. Use Matlab to compute its DFT.
Confirm the following properties by computing the DFT.
(a) The DFT of y[n] = x[−n] to confirm the (circular) folding property
(b) The DFT of f [n] = x[n− 2] to confirm the (circular) shift property
(c) The DFT of g[n] = x[n/2] to confirm the zero-interpolation property
(d) The DFT of h[n] = {x[n], x[n]} to confirm the signal-replication property
(e) The DFT of p[n] = x[n] cos(0.5nπ) to confirm the modulation property
(f) the DFT of r[n] = x2[n] to confirm the multiplication property
(g) The DFT of s[n] = x[n] ?©x[n] to confirm the periodic convolution property

10.39 (IDFT from DFT) Consider the signal x[n] = (1 + j)n, 0 ≤ n ≤ 9.
(a) Find its DFT X[k]. Find the DFT of the sequence 0.1X[k]. Does this appear to be related to

the signal x[n]?
(b) Find the DFT of the sequence 0.1X∗[k]. Does this appear to be related to x[n]?
(c) Use your results to explain how you might find the IDFT of a sequence by using the forward

DFT algorithm alone.

10.40 (Resolution) We wish to compute the radix-2 FFT of the signal samples acquired from the signal
x(t) = A cos(2πf0t)+B cos[2π(f0 +∆f)t], where f0 = 100 Hz. The sampling frequency is S = 480Hz.

(a) Let A = B = 1. What is the smallest number of signal samples Nmin required for a frequency
resolution of ∆f = 2 Hz if no window is used? How does this change if we wish to use a
von Hann window? What about a Blackman window? Plot the FFT magnitude for each case
to confirm your expectations.

(b) Let A = 1 and B = 0.02. Argue that we cannot obtain a frequency resolution of ∆f = 2 Hz if
no window is used. Plot the FFT magnitude for various lengths to justify your argument. Of
the Bartlett, Hamming, von Hann, and Blackman windows, which ones can we use to obtain a
resolution of ∆f = 2 Hz? Which one will require the minimum number of samples, and why?
Plot the FFT magnitude for each applicable window to confirm your expectations.

10.41 (Convolution) Consider the sequences x[n] = {1, 2, 1, 2, 1} and h[n] = {1, 2, 3, 3, 5}.
(a) Find their regular convolution using three methods: the convolution operation; zero-padding

and the DFT; and zero-padding to length 16 and the DFT. How are the results of each operation
related? What is the effect of zero-padding?

(b) Find their periodic convolution using three methods: regular convolution and wraparound; the
DFT; and zero-padding to length 16 and the DFT. How are the results of each operation related?
What is the effect of zero-padding?

10.42 (Convolution) Consider the signals x[n] = 4(0.5)n, 0 ≤ n ≤ 4, and h[n] = n, 0 ≤ n ≤ 10.
(a) Find their regular convolution y[n] = x[n] ? h[n], using the Matlab routine conv.
(b) Use the FFT and IFFT to obtain the regular convolution, assuming the minimum length N

(that each sequence must be zero-padded to) for correct results.
(c) How do the results change if each sequence is zero-padded to length N + 2?
(d) How do the results change if each sequence is zero-padded to length N − 2?
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10.43 (FFT of Noisy Data) Sample the sinusoid x(t) = cos(2πf0t) with f0 = 8 Hz at S = 64 Hz for 4 s
to obtain a 256-point sampled signal x[n]. Also generate 256 samples of a uniformly distributed noise
sequence s[n] with zero mean.

(a) Display the first 32 samples of x[n]. Can you identify the period from the plot? Compute and
plot the DFT of x[n]. Does the spectrum match your expectations?

(b) Generate the noisy signal y[n] = x[n] + s[n] and display the first 32 samples of y[n]. Do you
detect any periodicity in the data? Compute and plot the DFT of the noisy signal y[n]. Can
you identify the frequency and magnitude of the periodic component from the spectrum? Do
they match your expectations?

(c) Generate the noisy signal z[n] = x[n]s[n] (by element-wise multiplication) and display the first
32 samples of z[n]. Do you detect any periodicity in the data? Compute and plot the DFT of the
noisy signal z[n]. Can you identify the frequency the periodic component from the spectrum?

10.44 (Filtering a Noisy ECG Signal: I) During recording, an electrocardiogram (ECG) signal, sampled
at 300 Hz, gets contaminated by 60-Hz hum. Two beats of the original and contaminated signal (600
samples) are provided on the author’s website as ecgo.mat and ecg.mat. Load these signals into
Matlab (for example, use the command load ecgo). In an effort to remove the 60-Hz hum, use the
DFT as a filter to implement the following steps.
(a) Compute (but do not plot) the 600-point DFT of the contaminated ECG signal.
(b) By hand, compute the DFT indices that correspond to the 60-Hz signal.
(c) Zero out the DFT components corresponding the 60-Hz signal.
(d) Take the IDFT to obtain the filtered ECG and display the original and filtered signal.
(e) Display the DFT of the original and filtered ECG signal and comment on the differences.
(f) Is the DFT effective in removing the 60-Hz interference?

10.45 (Filtering a Noisy ECG Signal: II) Continuing with Problem 16.44, load the original and
contaminated ECG signal sampled at 300 Hz with 600 samples provided on the author’s website as
ecgo.mat and ecg.mat (for example, use the command load ecgo). Truncate each signal to 512
samples. In an effort to remove the 60-Hz hum, use the DFT as a filter to implement the following
steps.
(a) Compute (but do not plot) the 512-point DFT of the contaminated ECG signal.
(b) Compute the DFT indices closest to 60 Hz and zero out the DFT at these indices.
(c) Take the IDFT to obtain the filtered ECG and display the original and filtered signal.
(d) Display the DFT of the original and filtered ECG signal and comment on the differences.
(e) The DFT is not effective in removing the 60-Hz interference. Why?
(f) From the DFT plots, suggest and implement a method for improving the results (by zeroing

out a larger portion of the DFT around 60 Hz, for example).

10.46 (Decoding a Mystery Message) During transmission, a message signal gets contaminated by a
low-frequency signal and high-frequency noise. The message can be decoded only by displaying it
in the time domain. The contaminated signal is provided on the author’s website as mystery1.mat.
Load this signal into Matlab (use the command load mystery1). In an effort to decode the message,
use the DFT as a filter to implement the following steps and determine what the decoded message
says.
(a) Display the contaminated signal. Can you “read” the message?
(b) Take the DFT of the signal to identify the range of the message spectrum.
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(c) Zero out the DFT component corresponding to the low-frequency signal.
(d) Zero out the DFT components corresponding to the high-frequency noise.
(e) Take the IDFT to obtain the filtered signal and display it to decode the message.

10.47 (Spectrum Estimation) The FFT is extensively used in estimating the spectrum of various signals,
detecting periodic components buried in noise, or detecting long-term trends. The monthly rainfall
data, for example, tends to show periodicity (an annual cycle). However, long-term trends may also
be present due to factors such as deforestation and soil erosion that tend to reduce rainfall amounts
over time. Such long-term trends are often masked by the periodicity in the data and can be observed
only if the periodic components are first removed (filtered).
(a) Generate a signal x[n] = 0.01n + sin(nπ/6), 0 ≤ n ≤ 500, and add some random noise to

simulate monthly rainfall data. Can you observe any periodicity or long-term trend from a plot
of the data?

(b) Find the FFT of the rainfall data. Can you identify the periodic component from the FFT
magnitude spectrum?

(c) Design a notch filter to remove the periodic component from the rainfall data. You may identify
the frequency to be removed from x[n] (if you have not been able to identify it from the FFT).
Filter the rainfall data through your filter and plot the filtered data. Do you observe any
periodicity in the filtered data? Can you detect any long-term trends from the plot?

(d) To detect the long-term trend, pass the filtered data through a moving average filter. Experiment
with different lengths. Does averaging of the filtered data reveal the long-term trend? Explain
how you might go about quantifying the trend.

10.48 (The FFT as a Filter) We wish to filter out the 60-Hz interference from the signal

x(t) = cos(100πt) + cos(120πt)

by sampling x(t) at S = 500 Hz and passing the sampled signal x[n] through a lowpass filter with a
cutoff frequency of fC = 55 Hz. The N -point FFT of the filtered signal may be obtained by simply
zeroing out the FFT X[k] of the sampled signal between the indices M = int(NfC/S) and N −M
(corresponding to the frequencies between fC and S − fC). This is entirely equivalent to multiplying
X[k] by a filter function H[k] of the form

H[k] = { 1, (M ones), (N − 2M − 1 zeros), (M ones) }
The FFT of the filtered signal equals Y [k] = H[k]X[k], and the filtered signal y[n] is obtained by
computing its IFFT.
(a) Start with the smallest value of N you need to resolve the two frequencies and successively

generate the sampled signal x[n], its FFT X[k], the filter function H[k], the FFT Y [k] of the
filtered signal as Y [k] = H[k]X[k], and its IFFT y[n]. Plot X[k] and Y [k] on the same plot and
x[n] and y[n] on the same plot. Is the 60-Hz signal completely blocked? Is the filtering effective?

(b) Double the value of N several times and, for each case, repeat the computations and plot
requested in part (a). Is there a noticeable improvement in the filtering?

(c) The filter described by h[n] = IFFT{H[k]} is not very useful because its true frequency response
H(F ) matches the N -point FFT H[k] only at N points and varies considerably in between. To
see this, pick the value of N from part (a), use the Matlab routine freqz to compute the DTFT
H(F ) of h[n] at N points over 0 ≤ F ≤ 1, and superimpose plots of |H(F )| and H[k]|. How does
H(F ) differ from H[k]? Compute H(F ) at 4N points over 0 ≤ F ≤ 1 and superimpose plots
of |H(F )| and H[k]|. How does H(F ) differ from H[k]? What is the reason for this difference?
Can a larger N reduce the differences? If not, how can the differences be minimized? (This
forms the subject of frequency sampling filters.)
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10.49 (Band-Limited Interpolation) Consider the band-limited signal x(t) = sin(200πt).
(a) Sample x(t) at S = 400 Hz to obtain the sampled signal x[n] with N = 4 samples. Compute and

plot the DFT X[k] of x[n]. Can you identify the frequency and magnitude from the spectrum?
(b) Zero-interpolate the signal G[k] = 8X[k] by inserting 28 zeros about the middle (about index

k = 0.5N) to obtain the interpolated 32-point spectrum Y [k]. Compute the IDFT of Y [k] to
obtain the signal y[n]. Sample x(t) again, but at 8S Hz, to obtain the sampled signal y1[n].
Plot e[n] = y[n]−y1[n]. Are y[n] and y1[n] identical (to within machine roundoff)? Should they
be?

(c) Sample x(t) at S = 800 Hz to obtain the sampled signal x[n] with N = 4 samples. Compute its
DFT X[k] and zero-interpolate the signal G[k] = 8X[k] by inserting 28 zeros about the middle
(about index k = 0.5N) to obtain the interpolated 32-point spectrum Y [k]. Compute the IDFT
of Y [k] to obtain the signal y[n]. Sample x(t) again, but at 8S Hz, to obtain the sampled signal
y1[n]. Plot e[n] = y[n]− y1[n]. Are y[n] and y1[n] identical? Should they be?

(d) Explain the differences in the results of parts (a) and (b).

10.50 (Decimation) To decimate a signal x[n] by N , we use a lowpass filter (to band-limit the signal
to F = 0.5/N), followed by a down-sampler (that retains only every Nth sample). In this problem,
ignore the lowpass filter.
(a) Generate the test signal x[n] = cos(0.2nπ) + cos(0.3nπ), 0 ≤ n ≤ 59. Plot its DFT. Can you

identify the frequencies present?
(b) Decimate x[n] by N = 2 to obtain the signal x2[n]. Is the signal x[n] sufficiently band-limited

in this case? Plot the DFT of x2[n]. Can you identify the frequencies present? Do the results
match your expectations? Would you be able to recover x[n] from band-limited interpolation
(by N = 2) of x2[n]?

(c) Decimate x[n] by N = 4 to obtain the signal x4[n]. Is the signal x[n] sufficiently band-limited in
this case? Plot the DFT of x4[n]. Can you identify the frequencies present? If not, explain how
the result differs from that of part (b). Would you be able to recover x[n] from band-limited
interpolation (by N = 4) of x4[n]?

10.51 (DFT of Large Data Sets) The DFT of a large N -point data set may be obtained from the DFT
of smaller subsets of the data. In particular, if N = RC, we arrange the data as an R × C matrix
(by filling along columns), find the DFT of each row, multiply each result at the location (r, c) by
Wrc = e−j2πrc/N , where r = 0, 1, . . . , R− 1 and c = 0, 1, . . . , C− 1, find the DFT of each column, and
reshape the result (by rows) into the required N -point DFT. Let x[n] = n + 1, 0 ≤ n ≤ 11.
(a) Find the DFT of x[n] by using this method with R = 3, C = 4.
(b) Find the DFT of x[n] by using this method with R = 4, C = 3.
(c) Find the DFT of x[n] using the Matlab command fft.
(d) Do all methods yield identical results? Can you justify your answer?

10.52 (Time-Frequency Plots) This problem deals with time-frequency plots of a sum of sinusoids.
(a) Generate 600 samples of the signal x[n] = cos(0.1nπ) + cos(0.4nπ) + cos(0.7nπ), the sum of

three pure cosines at F = 0.05, 0.2, 0.35. Use the Matlab command fft to plot its DFT
magnitude. Use the Matlab based routine timefreq (from the author’s website) to display its
time-frequency plot. What do the plots reveal?

(b) Generate 200 samples each of the three signals y1[n] = cos(0.1nπ), y2[n] = cos(0.4nπ), and
y3[n] = cos(0.7nπ). Concatenate them to form the 600-sample signal y[n] = {y1[n], y2[n], y3[n]}.
Plot its DFT magnitude and display its time-frequency plot. What do the plots reveal?
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(c) Compare the DFT magnitude and time-frequency plots of x[n] and y[n] How do they differ?

10.53 (Deconvolution) The FFT is a useful tool for deconvolution. Given an input signal x[n] and the
system response y[n], the system impulse response h[n] may be found from the IDFT of the ratio
HDFT[k] = YDFT[k]/XDFT[k]. Let x[n] = {1, 2, 3, 4} and h[n] = {1, 2, 3}.
(a) Obtain the convolution y[n] = x[n] ? h[n]. Now zero-pad x[n] to the length of y[n] and find the

DFT of the two sequences and their ratio HDFT[k]. Does the IDFT of HDFT[k] equal h[n] (to
within machine roundoff)? Should it?

(b) Repeat part (a) with x[n] = {1, 2, 3, 4} and h[n] = {1, 2, −3}. Does the method work for
this choice? Does the IDFT of HDFT[k] equal h[n] (to within machine roundoff)?

(c) Repeat part (a) with x[n] = {1, 2, −3} and h[n] = {1, 2, 3, 4}. Show that the method does
not work because the division yields infinite or indeterminate results (such as 1

0 or 0
0 ). Does the

method work if you replace zeros by very small quantities (for example, 10−10)? Should it?

10.54 (FFT of Two Real Signals in One Step) Show that it is possible to find the FFT of two real
sequences x[n] and y[n] from a single FFT operation on the complex signal g[n] = x[n] + jy[n] as

XDFT[k] = 0.5(G∗DFT[N − k] + GDFT[k]) YDFT[k] = j0.5(G∗DFT[N − k]−GDFT[k])

Use this result to find the FFT of x[n] = {1, 2, 3, 4} and y[n] = {5, 6, 7, 8} and compare the results
with their FFT computed individually.

10.55 (Quantization Error) Quantization leads to noisy spectra. Its effects can be studied only in
statistical terms. Let x(t) = cos(20πt) be sampled at 50 Hz to obtain the 256-point sampled signal
x[n].
(a) Plot the linear and decibel magnitude of the DFT of x[n].
(b) Quantize x[n] by rounding to B bits to generate the quantized signal y[n]. Plot the linear

and decibel magnitude of the DFT of y[n]. Compare the DFT spectra of x[n] and y[n] for
B = 8, 4, 2, and 1. What is the effect of decreasing the number of bits on the DFT spectrum
of y[n]?

(c) Repeat parts (a) and (b), using quantization by truncation. How do the spectra differ in this
case?

(d) Repeat parts (a)–(c) after windowing x[n] by a von Hann window. What is the effect of win-
dowing?

10.56 (Sampling Jitter) During the sampling operation, the phase noise on the sampling clock can result
in jitter, or random variations in the time of occurrence of the true sampling instant. Jitter leads
to a noisy spectral and its effects can be studied only in statistical terms. Consider the analog signal
x(t) = cos(2πf0t) sampled at a rate S that equals three times the Nyquist rate.
(a) Generate a time array tn of 256 samples at intervals of ts = 1/S. Generate the sampled signal

x[n] from values of x(t) at the time instants in tn. Plot the DFT magnitude of x[n].
(b) Add some uniformly distributed random noise with a mean of zero and a noise amplitude of

Ats to tn to form the new time array tnn. Generate the sampled signal y[n] from values of
x(t) at the time instants in tnn. Plot the DFT magnitude of y[n] and compare with the DFT
magnitude of x[n] for A = 0.01, 0.1, 1, 10. What is the effect of increasing the noise amplitude
on the DFT spectrum of y[n]? What is the largest value of A for which you can still identify
the signal frequency from the DFT of y[n]?

(c) Repeat parts (a) and (b) after windowing x[n] and y[n] by a von Hann window. What is the
effect of windowing?
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USEFUL CONCEPTS FROM
ANALOG THEORY

A.0 Scope and Objectives
This appendix collects useful concepts and results from the area of analog signals and systems that are
relevant to the study of digital signal processing. It includes short descriptions of signals and systems,
convolution, Fourier series, Fourier transforms, Laplace transforms and analog filters. The material presented
in this appendix should lead to a better understanding of some of the techniques of digital signal processing
described in the text.

A.1 Signals
An analog signal x(t) is a continuous function of the time variable t. The signal energy is defined as

E =
∫ ∞

−∞
pi(t) dt =

∫ ∞

−∞
|x(t)|2 dt (A.1)

The absolute value |x(t)| is required only for complex-valued signals. Signals of finite duration and amplitude
have finite energy.

A periodic signal xp(t) is characterized by several measures. Its duty ratio equals the ratio of its pulse
width and period. Its average value xav equals the average area per period. Its signal power P equals the
average energy per period. Its rms value xrms equals

√
P .

xav =
1
T

∫

T

x(t) dt P =
1
T

∫

T

|x(t)|2 dt xrms =
√

P (A.2)

Signal Operations and Symmetry

A time shift displaces a signal x(t) in time without changing its shape. The signal y(t) = x(t − α) is a
delayed (shifted right by α) replica of x(t). A time scaling results in signal compression or stretching.
The signal f(t) = x(2t) describes a two-fold compression, g(t) = x(t/2) describes a two-fold stretching, and
p(t) = x(−t) describes a reflection about the vertical axis. Shifting or folding a signal x(t) will not change
its area or energy, but time scaling x(t) to x(αt) will reduce both its area and energy by |α|.

A signal possesses even symmetry if x(t) = x(−t), and odd symmetry if x(t) = −x(−t). The area of
an odd symmetric signal is always zero.
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Sinusoids and Complex Harmonics

An analog sinusoid or harmonic signal is always periodic and unique for any choice of period or frequency.
For the sinusoid xp(t) = A cos(ω0t + θ) = A cos[ω0(t − tp)], the quantity tp = −θ/ω0 is called the phase
delay and describes the time delay in the signal caused by a phase shift of θ. The various time and frequency
measures are related by

f0 =
1
T

ω0 =
2π

T
= 2πf0 θ = ω0tp = 2πf0tp = 2π

tp
T

(A.3)

If x(t) = A cos(2πf0t+θ), then P = 0.5A2 and xrms = A
√

2 = 0.707A. If x(t) = Ae±j(2πf0t+θ), then P = A2.
The common period or time period T of a combination of sinusoids is given by the LCM (least common
multiple) of the individual periods. The fundamental frequency f0 is the reciprocal of T and also equals
the GCD (greatest common divisor) of the individual frequencies. For a combination of sinusoids at different
frequencies, say y(t) = x1(t) + x2(t) + · · ·, the signal power Py equals the sum of the individual powers and
the rms value equals

√
P y.

Useful Signals

The unit step u(t), unit ramp r(t), and signum function sgn(t) are piecewise linear. The unit step is
discontinuous at t = 0, where its value is undefined (sometimes chosen as 0.5). The value of the signum
function is also undefined at t = 0 and chosen as zero. The unit ramp may also be written as r(t) = tu(t).

REVIEW PANEL A.1
The Step, Ramp, and Signum Functions Are Piecewise Linear

(t)sgnu(t)

t

t

t

r(t)

−1

1 1
1

1

The rectangular pulse rect(t) and triangular pulse tri(t) are even symmetric and possess unit area and
unit height as shown in the following review panel. The signal f(t) = rect( t−β

α ) is a rectangular pulse of
width α, centered at t = β. The signal g(t) = tri( t−β

α ) is a triangular pulse of width 2α centered at t = β.

REVIEW PANEL A.2
The Signals rect(t) and tri(t) Have Even Symmetry, Unit Area, and Unit Height

Width = 1
Area = 1

Height = 1
rect(t)

Width = 2
Area = 1

Height = 1
tri(t)

t t
−0.5 0.5 −1 1

11

EXAMPLE A.1 (Signal Representation)

Consider the following signals
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f(t) = u(1− t), g(λ) = u(t− λ) (vs. λ), x(t) = rect[0.5(t− 1)], y(t) = tri[ 13 (t− 1)]
These signals are sketched as follows:
The signal f(t) = u(1− t) is a folded step, delayed by 1 unit.
The signal g(λ) = u(t− λ) versus λ is a folded step, shifted t units to the right. Pay particular attention to
this form, which will rear its head again when we study convolution.
The signal x(t) = rect[0.5(t− 1)] is a stretched rectangular pulse (of width 2 units) delayed by (or centered
at) 1 unit. It may also be expressed as x(t) = u(t)− u(t− 2).
The signal y(t) = tri[ 13 (t− 1)] is a stretched triangular pulse (of width 6 units) delayed by (or centered at)
1 unit. We may also write y(t) = 1

3 [r(t + 2)− r(t− 1) + r(t− 4)]

u(1− t) u(t −λ)

t λ t

x(t)

t

y(t)

−2 1 421

1 1
1 1

t

Figure EA.1 The signals for Example A.1

The Sinc Function

The sinc function sinc(t), shown in Figure A.1 is defined as

sinc(t) =
sin(πt)

πt
(A.4)

It is an even symmetric function with unit area. It has unit height at the origin, zero crossings, which
occur at t = ±1, ±2, ±3, . . . , a central mainlobe between the first zero on either side of the origin and
progressively decaying negative and positive sidelobes. The minimum peak equals −0.2178, and the next
positive peak equals 0.1284. The signal sinc2(t) also has unit area with zeros at unit intervals but is entirely
positive. The area of any sinc or sinc-squared function equals the area of the triangle inscribed within its
central lobe as shown.

−3 −2 −1 0 1 2 3

−0.22

0
0.13

1

sinc(t) (light) and  sinc2(t)  (dark) 

Area of any sinc or sinc2 equals
 area of triangle ABC inscribed
       within the main lobe.

B C

A

Time  t   [seconds]

A
m

pl
itu

de

sinc            
sinc squared    

Figure A.1 The sinc function and the sinc-squared function
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The Impulse Function

The unit impulse is a tall, narrow spike with unit area defined by
∫ ∞

−∞
δ(τ) dτ = 1 δ(t) =

{
0, t 6= 0
∞, t = 0

The function Aδ(t) is shown as an arrow with its area (or strength) A labeled next to the tip. For visual
appeal, we make its height proportional to A. Signals such as the rect pulse 1

τ rect(t/τ), tri pulse 1
τ tri(t/τ),

the exponential 1
τ e−t/τu(t), and the sinc 1

τ sinc(t/τ) all possess unit area, and give rise to the unit impulse
δ(t) as τ → 0. The unit impulse δ(t) may also be regarded as the derivative of u(t).

δ(t) =
d u(t)

dt
u(t) =

∫ t

−∞
δ(t) dt

Three useful properties of the impulse function relate to scaling, products and sifting.

Scaling Product Sifting

δ(αt) =
1
|α|δ(t) x(t)δ(t− α) = x(α)δ(t− α)

∫ ∞

−∞
x(t)δ(t− α) dt = x(α)

Time-scaling implies that since δ(t) has unit area, δ(αt), its compressed version, has an area of 1
|α| . The

product property says that an arbitrary signal x(t) multiplied by the impulse δ(t − α) is still an impulse
(whose strength equals x(α). The sifting property says that the area of the product x(t)δ(t−α) is just x(α).

EXAMPLE A.2 (Properties of the Impulse Function)
(a) Consider the signal x(t) = 2r(t)−2r(t−2)−4u(t−3). Sketch x(t), f(t) = x(t)δ(t−1), and g(t) = x′(t).

Also evaluate I =
∫ ∞

−∞
x(t)δ(t− 2) dt.

Refer to the figure for the sketches.

x (t)

t
2 3

4
x(t)

t
2

3

2

t

x(t) δ

1

(2)

(−4)

(t −1)

Figure EA.2A The signals for Example A.2(a)

From the product property, f(t) = x(t)δ(t − 1) = x(1)δ(t − 1). This is an impulse function with
strength x(1) = 2.

The derivative g(t) = x′(t) includes the ordinary derivative (slopes) of x(t) and an impulse function of
strength −4 at t = 3.

By the sifting property, I =
∫ ∞

−∞
x(t)δ(t− 2) dt = x(2) = 4.

(b) Evaluate I =
∫ ∞

0

4t2δ(t− 3) dt.

Using the sifting property, we get I = 4(3)2 = 36.
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Signal Approximation by Impulses

A signal x(t) multiplied by a periodic unit impulse train with period ts yields the ideally sampled signal,
xI(t), as shown in Figure A.2. The ideally sampled signal is an impulse train described by

xI(t) = x(t)
∞∑

k=−∞
δ(t− kts) =

∞∑

k=−∞
x(kts)δ(t− kts) (A.5)

Note that xI(t) is non-periodic and the strength of each impulse equals the signal value x(kts). This form
actually provides a link between analog and digital signals.

st st

Section signal into narrow rectangular strips

t

Replace each strip by an impulse

t

Figure A.2 Signal approximation by impulses

Moments

Moments are general measures of signal “size” based on area and are defined as shown.

nth moment Mean Central moment

mn =
∫ ∞

−∞
tnx(t) dt mx(mean) =

m1

m0
µn =

∫ ∞

−∞
(t−mx)nx(t) dt

The zeroth moment m0 =
∫

x(t) dt is the area of x(t). The normalized first moment mx = m1/m0 is the
mean. Moments about the mean are called central moments. The second central moment µ2 is called the
variance. It is denoted σ2 and its square root σ is called the standard deviation.

µ2 = σ2 =
m2

m0
−m2

x (A.6)

A.2 System Analysis
Analog LTI (linear, time-invariant) systems may be described by differential equations with constant coeffi-
cients. An nth-order differential has the general form

y(n)(t)+a1y
(n−1)(t)+ · · ·+an−1y

(1)(t)+any(t) = b0x
(m)(t)+b1x

(m−1)(t)+ · · ·+bm−1x
(1)(t)+bmx(t) (A.7)

To solve for the output y(t) for t > 0, we require the n initial conditions y(0), y(1)(0), . . . , y(n−1)(0) (the
response and its n− 1 successive derivatives at t = 0). A convenient technique for solving a linear constant-
coefficient differential equation (LCCDE) is the method of undetermined coefficients, which yields the
total response as the sum of the forced response yF (t) and the natural response yN (t).

The forced response is determined by the input terms (left-hand side of the differential equation) and
has the same form as the input as summarized in Table A.1. The constants are found by satisfying the given
differential equation.
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Table A.1 Form of the Forced Response for Analog LTI Systems

Note: If the right-hand side (RHS) is eαt, where α is also a root of the characteristic
equation repeated r times, the forced response form must be multiplied by tr.

Entry Forcing Function (RHS) Form of Forced Response

1 C0 (constant) C1 (another constant)

2 eαt (see note above) Ceαt

3 cos(ωt + β) C1 cos(ωt) + C2 sin(ωt) or C cos(ωt + θ)

4 eαt cos(ωt + β) (see note above) eαt[C1 cos(ωt) + C2 sin(ωt)]

5 t C0 + C1t

6 teαt (see note above) eαt(C0 + C1t)

Table A.2 Form of the Natural Response for Analog LTI Systems

Entry Root of Characteristic Equation Form of Natural Response

1 Real and distinct: r Kert

2 Complex conjugate: β ± jω eβt[K1 cos(ωt) + K2 sin(ωt)]

3 Real, repeated: rp+1 ert(K0 + K1t + K2t
2 + · · ·+ Kpt

p)

4 Complex, repeated: (β ± jω)p+1
eβt cos(ωt)(A0 + A1t + A2t

2 + · · ·+ Apt
p)

+ eβt sin(ωt)(B0 + B1t + B2t
2 + · · ·+ Bpt

p)

The form of the natural response depends only on the system details and is independent of the nature
of the input. It is a sum of exponentials whose exponents are the roots (real or complex) of the so-called
characteristic equation or characteristic polynomial defined by

a0s
n + a1s

n−1 + a2s
n−2 + · · ·+ an−2s

2 + an−1s + an = 0 (A.8)

Its n roots, s1, s2, . . . , sn, define the form of the natural response as summarized in Table A.2. The constants
are evaluated after setting up the total response) using the specified initial conditions.

EXAMPLE A.3 (Natural and Forced Response)

Consider the first-order system y′(t) + 2y(t) = x(t). Find its response if
(a) x(t) = 6, y(0) = 8 (b) x(t) = cos(2t), y(0) = 2 (c) x(t) = e−2t, y(0) = 3

The characteristic equation s + 2 = 0 has the root s = −2.
The natural response is thus yN (t) = Ke−2t.
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(a) Since x(t) = 6 is a constant, we choose yF (t) = C.

Then y′F (t) = 0 and y′F (t) + 2yF (t) = 2C = 6, and thus yF (t) = C = 3.

The total response is y(t) = yN (t) + yF (t) = Ke−2t + 3.

With y(0) = 8, we find 8 = K + 3 (or K = 5) and y(t) = 5e−2t + 3, t ≥ 0 or y(t) = (5e−2t + 3)u(t).

(b) Since x(t) = cos(2t), we choose yF (t) = A cos(2t) + B sin(2t).

Then y′F (t) = −2A sin(2t) + 2B cos(2t), and

y′F (t) + 2yF (t) = (2A + 2B)cos(2t) + (2B − 2A)sin(2t) = cos(2t).

Comparing the coefficients of the sine and cosine terms on either side, we obtain

2A + 2B = 1, 2B − 2A = 0 or A = 0.25, B = 0.25. This gives

yF (t) = 0.25 cos(2t) + 0.25 sin(2t).

The total response is y(t) = yN (t) + yF (t) = Ke−2t + 0.25 cos(2t) + 0.25 sin(2t).

With y(0) = 2, we find 2 = K + 0.25 (or K = 1.75) and
y(t) = [1.75e−2t + 0.25 cos(2t) + 0.25 sin(2t)]u(t)

The steady-state response is yss(t) = 0.25 cos(2t) + 0.25 sin(2t), a sinusoid at the input frequency.

(c) Since x(t) = e−2t has the same form as yN (t), we must choose yF (t) = Cte−2t.

Then y′F (t) = Ce−2t − 2Cte−2t, and y′F (t) + 2yF (t) = Ce−2t − 2Cte−2t + 2Cte−2t = e−2t.

This gives C = 1, and thus yF (t) = te−2t and y(t) = yN (t) + yF (t) = Ke−2t + te−2t.

With y(0) = 3, we find 3 = K + 0 and y(t) = (3e−2t + te−2t)u(t).

A.2.1 The Zero-State Response and Zero-Input Response

It is often more convenient to describe the response y(t) of an LTI system as the sum of its zero-state
response (ZSR) yzs(t) (assuming zero initial conditions) and zero-input response (ZIR) yzi(t) (assuming zero
input). Each component is found using the method of undetermined coefficients. Note that the natural and
forced components yN (t) and yF (t) do not, in general, correspond to the zero-input and zero-state response,
respectively, even though each pair adds up to the total response.

EXAMPLE A.4 (Zero-Input and Zero-State Response for the Single-Input Case)
Let y′′(t) + 3y′(t) + 2y(t) = x(t) with x(t) = 4e−3t and initial conditions y(0) = 3 and y′(0) = 4.
Find its zero-input response and zero-state response.

The characteristic equation is s2 + 3s + 2 = 0 with roots s1 = −1 and s2 = −2.
Its natural response is yN (t) = K1e

s1t + K2e
s2t = K1e

−t + K2e
−2t.

1. The zero-input response is found from yN (t) and the prescribed initial conditions:

yzi(t) = K1e
−t + K2e

−2t yzi(0) = K1 + K2 = 3 y′zi(0) = −K1 − 2K2 = 4

This yields K2 = −7, K1 = 10, and yzi(t) = 10e−t − 7e−2t.
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2. Similarly, yzs(t) is found from the general form of y(t) but with zero initial conditions.

Since x(t) = 4e−3t, we select the forced response as yF (t) = Ce−3t.

Then, y′F (t) = −3Ce−3t, y′′F (t) = 9Ce−3t, and y′′F (t)+ 3y′F (t)+ 2yF (t) = (9C − 9C +2C)e−3t = 4e−3t.

Thus, C = 2, yF (t) = 2e−3t, and yzs(t) = K1e
−t + K2e

−2t + 2e−3t.

With zero initial conditions, we obtain

yzs(0) = K1 + K2 + 2 = 0 y′zs(0) = −K1 − 2K2 − 6 = 0

This yields K2 = −4, K1 = 2, and yzs(t) = 2e−t − 4e−2t + 2e−3t.

3. The total response is the sum of yzs(t) and yzi(t):

y(t) = yzi(t) + yzs(t) = 12e−t − 11e−2t + 2e−3t, t ≥ 0

A.2.2 Step Response and Impulse Response

The step response, s(t) is the response of a relaxed LTI system to a unit step u(t). The impulse response
h(t) is the response to a unit impulse δ(t) and also equals s′(t). The differential equation for the RC lowpass
filter sketched in the following review panel is

y′(t) +
1
τ

y(t) =
1
τ

x(t) (A.9)

where τ = RC defines the time constant. The characteristic equation s+ 1
τ = 0 yields the natural response

yN (t) = Ke−t/τ . To find the step response, we let x(t) = u(t) = 1, t ≥ 0. So the forced response, yF (t) = B,
is a constant. Then, with y′F (t) = 0, we obtain

y′F (t) +
1
τ

yF (t) =
1
τ

= 0 + B or B = 1

Thus, y(t) = yF (t) + yN (t) = 1 + Ke−t/τ . With y(0) = 0, we get 0 = 1 + K and

s(t) = y(t) = (1− e−t/τ )u(t) (step response) (A.10)

The impulse response h(t) equals the derivative of the step response. Thus,

h(t) = s′(t) =
1
τ

e−t/τu(t) (impulse response) (A.11)

REVIEW PANEL A.3
Unit Step Response and Unit Impulse Response of an RC Lowpass Filter
The output is the capacitor voltage. The time constant is τ = RC.

t /τ-e1−
t

1
s(t)

t

(1)
1

t

R

C

++

− −

A

τ
1

t /τ-
τ
1 e

h(t)

t

R

C

++

− −
Step response: s(t) = (1− e−t/τ )u(t) Impulse response: h(t) = s′(t) = 1

τ e−t/τu(t)
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A.3 Convolution
Convolution finds the zero-state response y(t) of an LTI system to an input x(t) and is defined by

y(t) = x(t) ? h(t) =
∫ ∞

−∞
x(λ)h(t− λ) dλ (A.12)

The shorthand notation x(t) ? h(t) describes the convolution of the signals x(t) and h(t).

Useful Convolution Properties

The starting time of the convolution equals the sum of the starting times of x(t) and h(t). The ending time
of the convolution equals the sum of the ending times of x(t) and h(t). The convolution duration equals the
sum of the durations of x(t) and h(t). The area of the convolution equals the product of the areas of x(t)
and h(t). The convolution of an odd symmetric and an even symmetric signal is odd symmetric, whereas
the convolution of two even symmetric (or two odd symmetric) signals is even symmetric. Interestingly,
the convolution of x(t) with its folded version x(−t) is also even symmetric, with a maximum at t = 0.
The convolution x(t) ? x(−t) is called the autocorrelation of x(t). The convolution of a large number of
functions approaches a Gaussian form. This is the central limit theorem.

A.3.1 Useful Convolution Results

The convolution of any signal x(t) with the impulse δ(t) reproduces the signal x(t). If the impulse is shifted,
so is convolution.

x(t) ? δ(t) = x(t) x(t) ? δ(t− α) = x(t− α)

Other useful convolution results are illustrated in Figure A.3. By way of an example,

e−αtu(t) ? e−αtu(t) =
∫ ∞

−∞
e−αλe−α(t−λ)u(λ)u(t− λ) dλ = e−αt

∫ t

0

dλ = te−αtu(t)

A.4 The Laplace Transform
The Laplace transform X(s) of a causal signal x(t) is defined as

X(s) =
∫ ∞

0−
x(t)e−(σ+jω)t dt =

∫ ∞

0−
x(t)e−st dt (A.13)

The complex quantity s = σ + jω generalizes the concept of frequency to the complex domain. Some useful
transform pairs and properties are listed in Table A.3 and Table A.4.

A.4.1 The Inverse Laplace Transform

The inverse transform of H(s) may be found by resorting to partial fraction expansion and a table look-up. If
H(s) = P (s)/Q(s), the form of the expansion depends on the nature of the factors in Q(s) and summarized
below. Once the partial fraction expansion is established, the inverse transform for each term can be found
with the help of Table A.5.
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Table A.3 A Short Table of Laplace Transforms

Entry x(t) X(s) Entry x(t) X(s)

1 δ(t) 1 2 u(t)
1
s

3 e−αtu(t)
1

s + α
4 e−αt sin(βt)u(t)

β

(s + α)2 + β2

5 te−αtu(t)
1

(s + α)2
6 e−αt cos(βt)u(t)

s + α

(s + α)2 + β2

7 cos(βt)u(t)
s

s2 + β2
8 sin(βt)u(t)

β

s2 + β2

Table A.4 Operational Properties of the Laplace Transform

Note: x(t) is to be regarded as the causal signal x(t)u(t).

Entry Property x(t) X(s)

1 Superposition αx1(t) + βx2(t) αX1(s) + βX2(s)

2 Times-exp e−αtx(t) X(s + α)

3 Time Scaling x(αt), α > 0 1
α

X
( s

α

)

4 Time Shift x(t− α)u(t− α), α > 0 e−αsX(s)

5 Times-t tx(t) −dX(s)
ds

6 Derivative x′(t) sX(s)− x(0−)

7 x(n)(t) snX(s)− sn−1x(0−)− · · · − xn−1(0−)

8 Convolution x(t) ? h(t) X(s)H(s)
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(t)δ (t)δ (t)δ
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Figure A.3 The convolution of some useful signals

REVIEW PANEL A.4
Inverse Transformation of X(s) Relies on Partial Fractions and Table Look-Up

Distinct roots: X(s) =
N∏

m=1

Km

s + pm
=

N∑
m=1

P (s)
s + pm

, where Km = (s + pm)X(s)|s=−pm

Repeated: 1

(s + r)k

N∏
m=1

P (s)

s + pm
=

N∑
m=1

Km

s + pm
+

k−1∑
n=0

An

(s + r)k−n
An =

1

n!

dn

dsn
[(s + r)kX(s)]

∣∣∣
s=−r

Table A.5 Inverse Laplace Transforms of Partial Fraction Expansion Terms

Entry Partial Fraction Expansion Term Inverse Transform

1
K

s + α
Ke−αtu(t)

2
K

(s + α)n

K

(n− 1)!
tn−1e−αtu(t)

3
Cs + D

(s + α)2 + β2
e−αt

[
C cos(βt) +

D − αC

β
sin(βt)

]
u(t)

4
M 6 θ

s + α + jβ
+

M 6 − θ

s + α− jβ
2Me−αt cos(βt− θ)u(t)
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EXAMPLE A.5 (Partial Fraction Expansion)

(a) (Non-Repeated Poles) Let X(s) =
2s3 + 8s2 + 4s + 8

s(s + 1)(s2 + 4s + 8)
. This can be factored as

X(s) =
K1

s
+

K2

s + 1
+

A

s + 2 + j2
+

A∗

s + 2− j2

We successively evaluate

K1 = sX(s)
∣∣∣
s=0

=
2s3 + 8s2 + 4s + 8
(s + 1)(s2 + 4s + 8)

∣∣∣
s=0

=
8
8

= 1

K2 = (s + 1)X(s)
∣∣∣
s=−1

=
2s3 + 8s2 + 4s + 8

s(s2 + 4s + 8)

∣∣∣
s=−1

=
10
−5

= −2

A = (s + 2 + j2)X(s)
∣∣∣
s=−2−j2

=
2s3 + 8s2 + 4s + 8
s(s + 1)(s + 2− j2)

∣∣∣
s=−2−j2

= 1.5 + j0.5

The partial fraction expansion thus becomes

X(s) =
1
s
− 2

s + 1
+

1.5 + j0.5
s + 2 + j2

+
1.5− j0.5
s + 2− j2

With 1.5 + j0.5 = 1.5816 18.4◦ = 1.5816 0.1024π = M 6 θ, we find x(t) as

x(t) = u(t)− 2e−tu(t) + 3.162e−2t cos(2t− 0.1024π)u(t)

(b) (Repeated Poles) Let X(s) =
4

(s + 1)(s + 2)3
. Its partial fraction expansion is

X(s) =
K1

s + 1
+

A0

(s + 2)3
+

A1

(s + 2)2
+

A2

(s + 2)

We compute K1 = (s + 1)X(s)
∣∣∣
s=−1

=
4

(s + 2)3

∣∣∣
s=−1

= 4.

Since (s + 2)3X(s) =
4

s + 1
, we also successively compute

A0 =
4

s + 1

∣∣∣
s=−2

= −4

A1 =
d

ds

[
4

s + 1

]∣∣∣
s=−2

= − 4
(s + 1)2

∣∣∣
s=−2

= −4

A2 = 1
2

d2

ds2

[
4

s + 1

]∣∣∣
s=−2

=
4

(s + 1)3

∣∣∣
s=−2

= −4

This gives the result

X(s) =
4

s + 1
− 4

(s + 2)3
− 4

(s + 2)2
− 4

s + 2

We then find x(t) = 4e−tu(t)− 2t2e−2tu(t)− 4te−2tu(t)− 4e−2tu(t).
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A.4.2 Interconnected Systems

The impulse response h(t) of cascaded LTI systems is the convolution of the individual impulse responses.The
impulse response of systems in parallel equals the sum of the individual impulse responses.

hC(t) = h1(t) ? h2(t) ? · · · ? hN (t) (cascade) hP (t) = h1(t) + h2(t) + · · ·+ hN (t) (parallel)

The overall transfer function of cascaded systems is the product of the individual transfer functions (assuming
ideal cascading and no loading effects). The overall transfer function of systems in parallel is the algebraic
sum of the individual transfer functions.

HC(s) = H1(s)H2(s) · · ·HN (s) (cascade) HP (s) = H1(s) + H2(s) + · · ·+ HN (s) (parallel)

A.4.3 Stability

In the time domain, BIBO (bounded-input, bounded-output) stability of an LTI system requires a differential
equation in which the highest derivative of the input never exceeds the highest derivative of the output and
a characteristic equation whose roots have negative real parts. Equivalently, we require the impulse response
h(t) to be absolutely integrable. In the s-domain, we require a proper transfer function H(s) (with common
factors canceled) whose poles lie in the left half of the s-plane (excluding the jω-axis).

REVIEW PANEL A.5
BIBO Stability from the Transfer Function or Impulse Response
From transfer function: H(s) must be strictly proper and its poles must lie inside the LHP.
From impulse response: h(t) must be absolutely integrable (

∫ |h(λ)| dλ < ∞).

Minimum-Phase Filters

A minimum-phase system has all its poles and zeros in the left half-plane of the s-plane. It has the smallest
group delay and smallest deviation from zero phase, at every frequency, among all transfer functions with
the same magnitude spectrum |H(ω)|.

A.4.4 The Laplace Transform and System Analysis

The Laplace transform is a useful tool for the analysis of LTI systems. To find the zero state response of
an electric circuit, we transform a circuit to the s-domain by replacing the elements R,L, and C by their
impedances ZR, ZL, and ZC and replacing sources by their Laplace transforms. We may also transform the
system differential equation. For a relaxed LTI system, the zero-state response Y (s) to an input X(s) is
H(s)X(s). If the system is not relaxed, the effect of initial conditions is easy to include.

EXAMPLE A.6 (Solving Differential Equations)
Let y′′(t) + 3y′(t) + 2y(t) = 4e−2t, with y(0) = 3 and y′(0) = 4.

Transformation to the s-domain, using the derivative property, yields

s2Y (s)− sy(0)− y′(0) + 3[sY (s)− y(0)] + 2Y (s) =
4

s + 2
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(a) (Total Response) Substitute for the initial conditions and rearrange:

(s2 + 3s + 2)Y (s) = 3s + 4 + 9 +
4

s + 2
=

3s2 + 19s + 30
s + 2

Upon simplification, we obtain Y (s) and its partial fraction form as

Y (s) =
3s2 + 19s + 30
(s + 1)(s + 2)2

=
K1

s + 1
+

A0

(s + 2)2
+

A1

s + 2

Solving for the constants, we obtain

K1 =
3s2 + 19s + 30

(s + 2)2

∣∣∣
s=−1

= 14

A0 =
3s2 + 19s + 30

s + 1

∣∣∣
s=−2

= −4

A1 =
d

ds

[
3s2 + 19s + 30

s + 1

]∣∣∣∣
s=−2

= −11

Upon inverse transformation, y(t) = (14e−t − 4te−2t − 11e−2t)u(t).

As a check, we confirm that y(0) = 3 and y′(0) = −14 + 22− 4 = 4.

(b) (Zero-State Response) For the zero-state response, we assume zero initial conditions to obtain

(s2 + 3s + 2)Yzs(s) =
4

s + 2

This gives

Yzs(s) =
4

(s + 2)(s2 + 3s + 2)
=

4
s + 1

− 4
(s + 2)2

− 4
s + 2

Inverse transformation gives yzs(t) = (4e−t − 4te−2t − 4e−2t)u(t).

(c) (Zero-Input Response) For the zero-input response, we assume zero input to obtain

(s2 + 3s + 2)Yzi(s) = 3s + 13 Yzi(s) =
3s + 13

s2 + 3s + 2
=

10
s + 1

− 7
s + 2

Upon inverse transformation, yzi(t) = (10e−t − 7e−2t)u(t). The total response equals

y(t) = yzs(t) + yzi(t) = (14e−t − 4te−2t − 11e−2t)u(t)

This matches the result found from the direct solution.
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A.4.5 The Steady-State Response to Harmonic Inputs

The steady-state response of an LTI system to a sinusoid or harmonic input is also a harmonic at the input
frequency. To find the steady-state response yss(t) to the sinusoidal input x(t) = A cos(ω0t + θ), we first
evaluate the transfer function at the input frequency ω0 to obtain H(ω0) = K 6 φ. The output is then given
by yss(t) = KA cos(ω0t + θ + φ).

EXAMPLE A.7 (Steady-State Response to Harmonic Inputs)

Let H(s) =
s− 2

s2 + 4s + 4
. Find the steady-state response yss(t) if x(t) = 8 cos(2t) + 4.

Let x1(t) = 8 cos(2t). Then, ω = 2, and H(2) =
2j − 2

−4 + j8 + 4
= 0.35366 45◦.

So, its steady state output is y1(t) = 8(0.3536)cos(2t + 45◦) = 2.8284 cos(2t + 45◦)

Let x2(t) = 4. Then, ω = 0 and H(0) = −0.5. So, its steady state output is y2(t) = (4)(−0.5) = −2.

By superposition yss(t) = y1(t) + y2(t) = 2.8284 cos(2t + 60◦)− 2.

A.5 Fourier Series
The Fourier series is the best least squares fit to a periodic signal xp(t). It describes xp(t) as a sum of
sinusoids at its fundamental frequency f0 = 1/T and multiples kf0 whose weights (magnitude and phase)
are selected to minimize the mean square error. The trigonometric, polar and exponential forms of the
Fourier series are listed in the following review panel.

REVIEW PANEL A.6
Three Forms of the Fourier Series for a Periodic Signal xp(t)

Trigonometric Polar Exponential

a0 +
∞∑

k=1

ak cos(2πkf0t) + bk sin(2πkf0t) c0 +
∞∑

k=1

ck cos(2πkf0t + θk)
∞∑

k=−∞
X[k]ej2πkf0t

REVIEW PANEL A.7
The Exponential Fourier Series Coefficients Display Conjugate Symmetry

X[0] =
1
T

∫

T

x(t) dt X[k] =
1
T

∫

T

x(t)e−j2πkf0tdt X[−k] = X∗[k]

The connection between the three forms of the coefficients is given by

X[0] = a0 = c0 and X[k] = 0.5(ak − jbk) = 0.5ck 6 θk, k ≥ 1 (A.14)

The magnitude spectrum and phase spectrum describe plots of the magnitude and phase of each
harmonic. They are plotted as discrete signals and sometimes called line spectra. For real periodic signals,
the X[k] display conjugate symmetry.
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EXAMPLE A.8 (Some Fourier Series Results)

(a) (A Pure Sinusoid) If x(t) = cos(2πf0t), its exponential Fourier series coefficients are X[1] =
0.5, X[−1] = 0.5. Its two-sided magnitude spectrum shows sample values of 0.5 at f = ±f0.

If x(t) = cos(2πf0t + θ), its exponential coefficients are X[1] = 0.5ejθ, X[−1] = 0.5e−jθ. So, Its
two-sided magnitude spectrum has sample values of 0.5 at f = ±f0 and its phase spectrum shows a
phase of θ at f0 and −θ at −f0.

(b) (An Impulse Train) From Figure EA.8B, and by the sifting property of impulses, we get

X[k] =
1
T

∫ T/2

−T/2

δ(t)e−j2kπf0t dt =
1
T

All the coefficients of an impulse train are constant!

T

(1) (1) (1) (1) (1) (1)

t

⇐⇒ X[k] =
1
T

(all k)

Figure EA.8B Impulse train and its Fourier series coefficients for Example A.8(b)

(c) (A Rectangular Pulse Train) The coefficients X[k] of a train of the rectangular pulse train shown
in Figure EA.8C are

X[k] =
At0
T

sinc(kf0t0)

t0/2t0− /2

px (t)

t0/2t0− /2T
t

A A

t

x(t)

Figure EA.8C Rectangular pulse train and its one period for Example A.8(c)

A.5.1 Some Useful Results

A time shift changes xp(t) to yp(t) = xp(t ± α) changes the Fourier series coefficients from X[k] to Y [k] =
X[k]e−j2πkf0α. So, the magnitude spectrum shows no change.

Zero Interpolation of the Spectrum

A zero interpolation of the spectral coefficients X[k] to X[k/N ] leads to an N -fold signal compression (with
N compressed copies) within one time-period. Figure A.4 illustrates this result for compression by 2.

The signal power may be found in the time domain from xp(t) or in the frequency domain from |X[k]|
(its magnitude spectrum). This is Parseval’s theorem for periodic signals.
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f0 = 1/ T

f0 = 1/ T

f0

f0

X[k /2 ]Y[k] =

T2

T2

x( 2 t)y(t) =
Compression by 2

Periodic signal Fourier series spectrum

Zero interpolation by 2

T
t

x(t)

T
t

X[k]

f

f

Figure A.4 Signal compression leads to zero interpolation of the spectrum

P =
1
T

∫

T

x2
p(t) dt =

∞∑

k=−∞
|X[k]|2 (A.15)

The Gibbs Effect

The Gibbs effect states that perfect reconstruction from harmonics is impossible for signals with jumps.
The reconstructed signal shows overshoot and undershoot (about 9% of jump) near each jump location the
reconstructed value equals the midpoint value of the jump at each jump location.

A.6 The Fourier Transform
The Fourier transform provides a frequency-domain representation of a signal x(t) and is defined by

X(f) =
∫ ∞

−∞
x(t)e−j2πft dt (the f -form) X(ω) =

∫ ∞

−∞
x(t)e−jωt dt (the ω-form)

The inverse Fourier transform allows us to obtain x(t) from its spectrum and is defined by

x(t) =
∫ ∞

−∞
X(f)ej2πft df (the f -form) x(t) =

1
2π

∫ ∞

−∞
X(ω)ejωt dω (the ω-form)

The Fourier transform is, in general, complex. For real signals, X(f) is conjugate symmetric with X(−f) =
X∗(f). This means that the magnitude |X(f)| or Re{X(f)} displays even symmetry and the phase φ(f) or
Im{X(f)} displays odd symmetry. It is customary to plot the magnitude and phase of X(f) as two-sided
functions. The effect of signal symmetry on the Fourier transform are summarized.

REVIEW PANEL A.8
Effect of Signal Symmetry on the Fourier Transform of Real-Valued Signals
Even symmetry in x(t): The Fourier transform X(f) is real and even symmetric.
Odd symmetry in x(t): The Fourier transform X(f) is imaginary and odd symmetric.
No symmetry in x(t): Re{X(f)} is even symmetric, and Im{X(f)} is odd symmetric.
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The three most useful transform pairs are listed in the following review panel.

REVIEW PANEL A.9
Three Basic Fourier Transform Pairs

(t)δ

(f)sinc

rect(t)

−α te
2πj fα + 

(1) 1
t

-0.5 0.5

1

t t

1

Table A.6 lists the Fourier transform of various signals while Table A.7 lists various properties and theorems
useful in problem solving.

A.6.1 Connections between Laplace and Fourier Transforms

The following review panel shows the connection between the Fourier and Laplace transform. We can always
find the Laplace transform of causal signals from their Fourier transform, but not the other way around.

REVIEW PANEL A.10
Relating the Laplace Transform and the Fourier Transform
From X(s) to X(f): If x(t) is causal and absolutely integrable, simply replace s by j2πf .
From X(f) to X(s): If x(t) is causal, delete impulsive terms in X(f) and replace j2πf by s.

Some Useful Properties

Scaling of x(t) to x(αt) leads to a stretching of X(f) by α and an amplitude reduction by |α|. If a signal
x(t) is modulated (multiplied) by the high-frequency sinusoid cos(2πf0t), its spectrum X(f) gets halved and
centered at f = ±f0. This modulation property shifts the spectrum of x(t) to higher frequencies.

x(t)cos(2πf0t) ⇐ ft ⇒ 0.5[X(f + f0) + X(f − f0)] (A.16)

Parseval’s Theorem says that the Fourier transform is an energy-conserving relation, and the energy may
be found from the time signal x(t) or its magnitude spectrum |X(f)|.

E =
∫ ∞

−∞
x2(t) dt =

∫ ∞

−∞
|X(f)|2 df (A.17)

EXAMPLE A.9 (Some Transform Pairs Using Properties)
(a) For x(t) = tri(t) = rect(t) ? rect(t), use rect(t) ⇐ ft ⇒ sinc(f) and convolution (see Figure EA.9A):

tri(t) = rect(t) ? rect(t) ⇐ ft ⇒ sinc(f)sinc(f) = sinc2(f)

−α te −α te −α tet* =
t t t

rect(t) rect(t) tri(t)

=*
-0.5 0.5

1

t
-0.5 0.5

1

t t
-1 1

1

Figure EA.9A The signals for Example A.9(a and b)
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Table A.6 Some Useful Fourier Transform Pairs

Entry x(t) X(f) X(ω)

1 δ(t) 1 1

2 rect(t) sinc(f) sinc
( ω

2π

)

3 tri(t) sinc2(f) sinc2
( ω

2π

)

4 sinc(t) rect(f) rect
( ω

2π

)

5 cos(2παt) 0.5[δ(f + α) + δ(f − α)] π[δ(ω + 2πα) + δ(ω − 2πα)]

6 sin(2παt) j0.5[δ(f + α)− δ(f − α)] jπ[δ(ω + 2πα)− δ(ω − 2πα)]

7 e−αtu(t)
1

α + j2πf

1
α + jω

8 te−αtu(t)
1

(α + j2πf)2
1

(α + jω)2

9 e−α|t| 2α

α2 + 4π2f2

2α

α2 + ω2

10 e−πt2 e−πf2
e−ω2/4π

11 sgn(t)
1

jπf

2
jω

12 u(t) 0.5δ(f) +
1

j2πf
πδ(ω) +

1
jω

13 e−αt cos(2πβt)u(t)
α + j2πf

(α + j2πf)2 + (2πβ)2
α + jω

(α + jω)2 + (2πβ)2

14 e−αt sin(2πβt)u(t)
2πβ

(α + j2πf)2 + (2πβ)2
2πβ

(α + jω)2 + (2πβ)2

15
∞∑

n=−∞
δ(t− nT )

1
T

∞∑

k=−∞
δ

(
f − k

T

)
2π

T

∞∑

k=−∞
δ

(
ω − 2πk

T

)

16 xp(t) =
∞∑

k=−∞
X[k]ej2πkf0t

∞∑

k=−∞
X[k]δ(f − kf0)

∞∑

k=−∞
2πX[k]δ(ω − kω0)
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Table A.7 Operational Properties of the Fourier Transform

Property x(t) X(f) X(ω)

Similarity X(t) x(−f) 2πx(−ω)

Time Scaling x(αt) 1
|α|X

(f

α

) 1
|α|X

(ω

α

)

Folding x(−t) X(−f) X(−ω)

Time Shift x(t− α) e−j2πfαX(f) e−jωαX(ω)

Frequency Shift ej2παtx(t) X(f − α) X(ω − 2πα)

Convolution x(t) ? h(t) X(f)H(f) X(ω)H(ω)

Multiplication x(t)h(t) X(f) ? H(f) 1
2π

X(ω) ? H(ω)

Modulation x(t)cos(2παt) 0.5[X(f + α) + X(f − α)] 0.5[X(ω + 2πα) + X(ω − 2πα)]

Times-t −j2πtx(t) X ′(f) 2πX ′(ω)

Conjugation x∗(t) X∗(−f) X∗(−ω)

Correlation x(t) ?? y(t) X(f)Y ∗(f) X(ω)Y ∗(ω)

Autocorrelation x(t) ?? x(t) X(f)X∗(f) = |X(f)|2 X(ω)X∗(ω) = |X(ω)|2

Fourier Transform Theorems

Central

ordinates
x(0) =

∫ ∞

−∞
X(f) df =

1
2π

∫ ∞

−∞
X(ω) dω X(0) =

∫ ∞

−∞
x(t) dt

Parseval’s

theorem
E =

∫ ∞

−∞
x2(t) dt =

∫ ∞

−∞
|X(f)|2 df =

1
2π

∫ ∞

−∞
|X(ω)|2 dω

Plancherel’s

theorem

∫ ∞

−∞
x(t)y∗(t) dt =

∫ ∞

−∞
X(f)Y ∗(f) df =

1
2π

∫ ∞

−∞
X(ω)Y ∗(ω) dω
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(b) For x(t) = te−αtu(t), start with e−αt ⇐ ft ⇒ 1
α+j2πf and use convolution (see Figure EA.9A):

te−αtu(t) = e−αtu(t) ? e−αtu(t) ⇐ ft ⇒ 1
(α + j2πf)2

(c) For x(t) = e−α|t| = eαtu(−t) + e−αtu(t), start with e−αtu(t) ⇐ ft ⇒ 1
α + j2πf

and use the folding

property and superposition:

e−α|t| ⇐ ft ⇒ 1
α + j2πf

+
1

α− j2πf
=

2α

α2 + 4π2f2

(d) For x(t) = sgn(t), use the limiting form for y(t) = e−αtu(t)− eαtu(−t) as α → 0 to give

e−αtu(t)− eαtu(−t) ⇐ ft ⇒ 1
α + j2πf

− 1
α− j2πf

=
−4jπf

α2 + 4π2f2
sgn(t) ⇐ ft ⇒ 1

jπf

(e) For x(t) = cos(2παt) = 0.5ej2παt + 0.5e−j2παt, start with 1 ⇐ ft ⇒ δ(f) and use the dual of the
time-shift property:

cos(2παt) = 0.5ej2παt + 0.5e−j2παt ⇐ ft ⇒ 0.5δ(f − α) + 0.5δ(f + α)

Its magnitude spectrum (see Figure EA.9H(a)) is an impulse pair at f = ±α, with strengths of 0.5.

(f) For x(t) = cos(2παt+ θ), start with cos(2παt) ⇐ ft ⇒ 0.5δ(f −α)+0.5δ(f +α), and use the shifting
property with t → t + θ/2πα (and the product property of impulses) to get

cos(2παt + θ) ⇐ ft ⇒ 0.5ejθf/α[δ(f − α) + δ(f + α)] = 0.5ejθδ(f − α) + 0.5e−jθδ(f − α)

Its magnitude spectrum is an impulse pair at f = ±α with strengths of 0.5. Its phase spectrum shows
a phase of θ at f = α and −θ at f = −α. The spectra are shown in Figure EA.9H(b).

cos(2πα t)Transform of cos(2πα t+θ)Transform of (b)(a)

f

−α α

(0.5)(0.5)

Phase (rad)Magnitude

f

−α α

(0.5)(0.5)
f

α
−α

−θ

θ

Figure EA.9F The Fourier transforms of cos(2παt) and cos(2παt + θ)

A.6.2 Amplitude Modulation

Communication of information often requires transmission of signals, or messages, through space by convert-
ing electrical signals to electromagnetic waves using antennas. Efficient radiation requires antenna dimensions
comparable to the wavelength of the signal. The wavelength λ of a radiated signal equals c/f , where c is
the speed of light (at which electromagnetic waves travel) and f is the signal frequency. Transmission of
low-frequency messages, such as speech and music, would require huge antenna sizes measured in kilometers.
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A practical approach is to shift low-frequency messages to a much higher frequency using modulation and
to transmit the modulated signal instead. In turn, this requires a means of recovering the original message
at the receiving end, a process called demodulation. Amplitude modulation schemes typically modulate
the amplitude of a high-frequency carrier xC(t) = cos(2πfCt) by a message signal xS(t) band-limited to a
frequency B ¿ fC . In DSBSC (double-sideband suppressed-carrier) AM, the carrier xC(t) is multiplied by
the message xS(t). The modulated signal xM (t) and its spectrum XM (f) are given by

xM (t) = xS(t)xC(t) = xS(t)cos(2πfCt) XM (f) = 0.5[X(f + fC) + X(f − fC)] (A.18)

The message spectrum is centered about ±fC as illustrated in Figure A.5. It exhibits symmetry about ±fC .
The portion for f > |fC | is called the upper sideband (USB) and that for f < |fC |, the lower sideband
(LSB). Since xS(t) is band-limited to B, the spectrum occupies a band of 2B (centered about ±fC).

f
C

f-
C

f-
C

f
CCarrier spectrum

Multiplier

Message spectrum
DSBSC  AM  spectrum (LSB shown shaded).

(0.5) (0.5)
f

f
f

Figure A.5 DSBSC amplitude modulation

Detection

At the receiver, the message xS(t) may be recovered using demodulation or detection. In synchronous
or coherent detection, the AM signal is multiplied by cos(2πfCt) and then lowpass filtered, as shown in
Figure A.6.

B−B

f-
C

f
C

f-
C

f
C

B−B

0.5X(f)

C
f−2 f

C2

Multiplier

Lowpass

DSBSC AM spectrum

filter

Spectrum of demodulated signal

Carrier spectrum
(0.5) (0.5)

Message spectrum

f

f f

f

Figure A.6 Synchronous demodulation of DSBSC AM

With xM (t) = xS(t)cos(2πfCt), the demodulated signal equals

xD(t) = xM (t)cos(2πfCt) = xS(t)cos(2πfCt)cos(2πfCt) (A.19)
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Using the identity cos2(α) = 0.5(1 + cos 2α), we obtain

xD(t) = 0.5xS(t) + 0.5xS(t)cos(4πfCt) (A.20)

If xD(t) is passed through a lowpass filter with a gain of 2 and a bandwidth of B, the high-frequency
component (centered at ±2fC) is blocked and we recover the message xS(t).

This method is called synchronous or coherent because it requires a signal whose frequency and phase (but
not amplitude) matches the carrier. For DSBSC AM, this coherent signal may be obtained by transmitting
a small fraction of the carrier (a pilot signal) along with xM (t).

A.6.3 Fourier Transform of Periodic Signals

The Fourier transform of a periodic signal is an impulse train described by

xp(t) =
∞∑

k=−∞
X[k]ej2πkf0t ⇐ ft ⇒

∞∑

k=−∞
X[k]δ(f − kf0) (A.21)

The impulses are located at the harmonic frequencies kf0, and the impulse strengths are given by the Fourier
series coefficients X[k]. The impulse train is periodic only if X[k] = C (i.e. has the same value for every k).

EXAMPLE A.10 (Fourier Transform of an Impulse Train)

For a unit impulse train with period T , as shown in Figure EA.10, we get

X[k] =
1
T

∫ T/2

−T/2

δ(t)e−j2kπf0t dt =
1
T

T

(1) (1) (1) (1) (1) (1)

t

⇐⇒ X[k] =
1
T

(all k)

Figure EA.10 Impulse train and its Fourier series coefficients for Example A.10

The Fourier transform of this function is

X(f) =
∞∑

k=−∞
X[k]δ(f − kf0) =

1
T

∞∑

k=−∞
δ(f − kf0), f0 =

1
T

The Fourier transform of a periodic impulse train is also a periodic impulse train. For other periodic signals,
the Fourier transform will is not periodic (even though it is an impulse train).

A.6.4 Spectral Density

The spectral density is the Fourier transform of the autocorrelation function.

(autocorrelation) rxx(t) ⇐ ft ⇒ Rxx(f) (spectral density) (A.22)

This is the celebrated Wiener-Khintchine theorem. For power signals (and periodic signals), we must
use averaged measures consistent with power (and not energy). This leads to the concept of power spectral
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density (PSD). The PSD of a periodic signal is a train of impulses at f = kf0 with strengths |X[k]|2 whose
sum equals the total signal power.

Rxx(f) =
∞∑

k=−∞
|X[k]|2δ(f − kf0) (A.23)

White Noise and Colored Noise

A signal with zero mean whose PSD is constant (with frequency) is called white noise. The autocorrelation
function of such a signal is an impulse. A signal whose PSD is constant only over a finite frequency range is
called band-limited white noise.

A.6.5 Ideal Filters

The transfer function HLP(f) and impulse response hLP(t) of an ideal lowpass filter (LPF) with unit gain,
zero phase, and cutoff frequency fC may be written as

HLP(f) = rect(f/2fC) hLP(t) = 2fC sinc(2fCt) (ideal LPF) (A.24)

Ideal filters are impractical for the reasons summarized in the following review panel. Even though ideal
filters are unrealizable, they form the yardstick by which the design of practical filters is measured.

REVIEW PANEL A.11
Ideal Filters Are Noncausal, Unstable, and Physically Unrealizable
1. Ideal filters possess constant gain and linear phase in the passband.
2. Their impulse response (with a sinc form) makes them noncausal and unstable.
3. The step response of ideal filters cannot be monotonic and shows overshoot and ringing.

A.6.6 Measures for Real Filters

The phase delay and group delay of a system whose transfer function is H(ω) = |H(ω)|6 θ(ω) are defined
as

tp = −θ(ω)
ω

(phase delay) tg = −d θ(ω)
dω

(group delay) (A.25)

If θ(ω) varies linearly with frequency, tp and tg are not only constant but also equal. For LTI systems (with
rational transfer functions), the phase θ(ω) is a transcendental function but the group delay is always a
rational function of ω2 and is much easier to work with in many filter applications.

The time-limited/band-limited theorem asserts that no signal can be both time-limited and band-
limited simultaneously. In other words, the spectrum of a finite-duration signal is always of infinite extent.
The narrower a time signal, the more spread out its spectrum. Measures of duration in the time domain
are inversely related to measures of bandwidth in the frequency domain and their product is a constant. A
sharper frequency response |H(ω)| can be achieved only at the expense of a slower time response. Typical
time-domain and frequency domain measures are listed in Table A.8.

A.6.7 A First Order Lowpass Filter

Consider the RC circuit shown in Figure A.7. If we assume that the output is the capacitor voltage, its
transfer function may be written as

H(f) =
Y (f)
X(f)

=
1/j2πfC

R + (1/j2πfC)
=

1
1 + j2πfRC

=
1

1 + j2πfτ
(A.26)
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Table A.8 Typical Measures for Real Filters

Measure Explanation
Time delay Time between application of input and appearance of response

Typical measure: Time to reach 50% of final value
Rise time Measure of the steepness of initial slope of response

Typical measure: Time to rise from 10% to 90% of final value
Overshoot Deviation (if any) beyond the final value

Typical measure: Peak overshoot
Settling time Time for oscillations to settle to within a specified value

Typical measure: Time to settle to within 5% or 2% of final value
Speed of Response Depends on the largest time constant τmax in h(t).

Typical measure: Steady state is reached in about 5τmax.
Damping Rate of change toward final value

Typical measure: Damping factor ζ or quality factor Q
Bandwidth Frequency range over which gain exceeds a given value.

Typical measure: B3dB for which |H(f)| ≥ 0.707|H(f)|max.

X(ω) Y(ω)
jω CR1 + x(t) y(t)

R ++

− −

R

C

++

− −

(ω) = H
jωC

1 1

Figure A.7 An RC lowpass filter

The quantity τ = RC is the circuit time constant. The magnitude |H(f)| and phase θ(f) of the transfer
function are sketched in Figure A.8 and given by

|H(f)| = 1√
1 + 4π2f2τ2

θ(f) = − tan−1(2πfτ) (A.27)

1 Ω

1F

++

− −

of H(f)of H(f)

1/ 2πτ

1/ 2πτ

Magnitude Phase

f

f

Figure A.8 Frequency response of the RC lowpass filter

The system is called a lowpass filter because |H(f)| decays monotonically with positive f , leading to a
reduced output amplitude at higher frequencies. At f = 1

2πτ , the magnitude equals 1/
√

2 (or 0.707) and the
phase equals −45◦. The frequency f = 1

2πτ is called the half-power frequency because the output power
of a sinusoid at this frequency is only half the input power. The frequency range 0 ≤ f ≤ 1

2πτ defines the
half-power bandwidth over which the gain exceeds 0.707 times the peak gain.
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The time-domain performance of this system is measured by its impulse response h(t) = e−t/τu(t), or by
its step response s(t), plotted in Figure A.9, and described by

h(t) = e−t/τu(t) s(t) = (1− e−t/τ )u(t) (A.28)

The step response rises smoothly to unity and is within 1% of the final value in about 5τ . A smaller τmax

implies a faster response, a shorter time to reach steady state. Other performance measures include the rise
time tr (the time taken to rise from 10% to 90% of the final value).The 10%–90% rise time Tr is computed
by finding

s(t10) = 1− e−t10/τ = 0.1 s(t90) = 1− e−t90/τ = 0.9

We obtain t10 = τ ln(10/9), t90 = τ ln 10, and Tr = t90 − t10 = τ ln 9.
With B3dB = 1

2πτ , the time-bandwidth product gives

TrB3dB =
τ ln 9
2πτ

≈ 0.35

This result is often used as an approximation for higher-order systems also.

t /τ-e1−
t

1
s(t)

1

t

R

C

++

− −

A

t

(1) τ
1

t /τ-
τ
1 e

h(t)

t

R

C

++

− −

Figure A.9 Impulse response h(t) and step response s(t) of the RC lowpass filter

The delay time td (the time taken to rise to 50% of the final value), and the settling time tP% (the time
taken to settle to within P% of its final value). Commonly used measures are the 5% settling time and the
2% settling time. Exact expressions for these measures are found to be

td = τ ln 2 t5% = τ ln 20 t2% = τ ln 50 (A.29)

A smaller time constant τ implies a faster rise time and a larger bandwidth. The phase delay and group
delay of the RC lowpass filter are given by

tp = −θ(f)
2πf

=
1

2πf
tan−1(2πfτ) tg = − 1

2π

d θ(f)
df

=
τ

1 + 4π2f2τ2
(A.30)

REVIEW PANEL A.12
Frequency Response of an RC Lowpass Filter with Time Constant τ = RC

f3dB =
1

2πτ
Hz 10%-90% Rise-Time: τ ln 9. Time-Bandwidth Product: ≈ 0.35

A.6.8 A Second-Order Lowpass Filter

A second-order lowpass filter with unit dc gain may be described by

H(s) =
ω2

p

s2 + ωp

Q s + ω2
p

(A.31)

Here, ωp is called the undamped natural frequency, or pole frequency, and Q represents the quality
factor and is a measure of the losses in the circuit. The quantity ζ = 1/2Q is called the damping factor.
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Frequency Domain Performance

If Q > 0.5, the poles are complex conjugates, and lie on a circle of radius ωp in the s-plane. The higher
the Q, the closer the poles are to the jω-axis. For Q < 1/

√
2, the magnitude |H(ω)| is monotonic, but for

Q > 1/
√

2 it shows overshoot and a peak near ωp, and the peaking increases with Q as shown in Figure A.10.
The phase delay and group delay of second-order filters are given by

θ(ω) = − tan−1

[
(ω/ωp)/Q

1− (ω/ωp)2

]
tg(ω) =

2(ωp/Q)(ω2
p + ω2)

(ω2
p − ω2)2 + (ω2

p/Q2)ω2
(A.32)

< 0.707Q

ω

1

Monotonic spectrum

ωpk

Hpk

> 0.707Q

ω

1

Peaked spectrum

Figure A.10 Frequency response of a second-order system

Time-Domain Performance

The step response of second-order lowpass filters also depends on Q, as shown in Figure A.11. If Q < 0.5,
the poles are real and distinct, and the step response shows a smooth, monotonic rise to the final value
(overdamped) with a large time constant. If Q > 0.5, the poles are complex conjugates, and the step
response is underdamped with overshoot and decaying oscillations (ringing) about the final value. This
results in a small rise time but a large settling time. The frequency of oscillations increases with Q. For
Q = 0.5, the poles are real and equal, and the response is critically damped and yields the fastest
monotonic approach to the steady-state value with no overshoot.

tp

jω

σ

jω

σ

jω

t

Underdamped

1

Period of oscillations

Peak overshoot

t

0.9
1

0.1

Critically damped

Rise time

t
Delay

Overdamped

1

0.5

σ

2

Figure A.11 Step response of a second-order system

EXAMPLE A.11 (Results for Some Analog Filters)
The step response and impulse response of the filters shown in the following figure are summarized below.
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3
1

1F

+

−

+

−

x(t) y(t)

H

Second-order Bessel filter

1Ω
x(t) 1F

+

−

1H
+

−

y(t)
Ω2

Second-order Butterworth filter

y(t)x(t) 1F

1Ω

1F 1Ω

+

−

2H
+

−
Third-order Butterworth filter

Figure EA.11. Filters for Example A.11.

(a) (A Second-Order Bessel Filter)

H(s) =
3

s2 + 3s + 3
Differential equation: y′′(t) + 3y′(t) + 3y(t) = 3x(t).

Step response: s(t) = u(t)− e−3t/2[cos(
√

3t/2) +
√

3 sin(
√

3t/2)]u(t).

Impulse response: h(t) = 2
√

3e−3t/2 sin(
√

3t/2)u(t).

(b) (A Second-Order Butterworth Filter)

H(s) =
1

s2 +
√

2s + 1
Differential equation: y′′(t) +

√
2y′(t) + y(t) = x(t).

Step response: s(t) = u(t)− e−t/
√

2[cos(t/
√

2) + sin(t/
√

2)]u(t).

Impulse response: h(t) = y′(t) =
√

2e−t/
√

2 sin(t/
√

2)u(t).

(c) (A Third-Order Butterworth Filter)

H(s) =
0.5

s3 + 2s2 + 2s + 1
Differential equation: y′′′(t) + 2y′′(t) + 2y′(t) + y(t) = 1

2x(t).

Step response: s(t) = 1
2u(t)− 1√

3
e−t/2 sin(

√
3t/2)u(t)− 1

2e−tu(t).

Impulse response: h(t) = e−t/2[ 1
2
√

3
sin(

√
3t/2)− 1

2 cos(
√

3t/2)]u(t)− 1
2e−tu(t).

A.7 Bode Plots
Bode plots allow us to plot the frequency response over a wide frequency and amplitude range by using
logarithmic scale compression. The magnitude or gain is plotted in decibels (with HdB = 20 log |H(f)|)
against log(f). For LTI systems whose transfer function is a ratio of polynomials in jω, a rough sketch
can be quickly generated using linear approximations called asymptotes over different frequency ranges to
obtain asymptotic Bode plots. The numerator and denominator is factored into linear and quadratic
factors in jω with real coefficients. A standard form is obtained by setting the real part of each factored
term to unity A summary appears in the following review panel.

REVIEW PANEL A.13
Some Asymptotic Plots. Note: 20 dB/dec = 6 dB/oct
Term = jω: Straight line with slope = 20 dB/dec for all ω with HdB = 0 at ω = 1 rad/s.
Term = 1 + j ω

α : For ω ≤ α, HdB = 0. For ω ≥ α, straight line with slope = 20 dB/dec.
If repeated k times: Multiply slopes by k. If in denominator: Slopes are negative.
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The frequency α where the slope changes is called break frequency. For a first order filter, the break
frequency is also called the 3-dB frequency (or the half-power frequency) because the true value differs from
the asymptotic value by 3 dB at this frequency.

For H(ω) = ωj For H(ω) = (ω/α)j1+
HdB

For H(ω) = 
HdB HdB HdB

ωj For H(ω) = (ω/α)j1+

20

101
Slope

ω (log)

20 dB/dec -20

1

Slope

10
ω (log)

-20 dB/dec
20

10αα

Slope
20 dB/dec

ω (log) -20
Slope

-20 dB/dec

α 10α
ω (log)

1 1

Figure A.12 Asymptotic Bode magnitude plots for for some standard forms

Figure A.12 shows asymptotic magnitude plots of various first order terms. The decibel value of a constant
H(ω) = K is HdB = 20 log |K| dB, a constant for all ω. The Bode magnitude plot for a transfer function
with several terms is the sum of similar plots for each of its individual terms. The composite plot can be
sketched directly using the guidelines of the following review panel.

REVIEW PANEL A.14
Guidelines for Sketching a Composite Asymptotic Magnitude Plot for H(ω)
Initial slope: 20 dB/dec (with HdB = 0 at ω = 1 rad/s) if a term jω is present; 0 dB/dec if absent.
At a break frequency: The slope increases by 20k dB/dec due to a (repeated by k) numerator term
and decreases by 20k dB/dec due to a denominator term.

EXAMPLE A.12 (Bode Magnitude Plots)

(a) (Linear Factors) Let H(ω) =
40(0.25 + jω)(10 + jω)

jω(20 + jω)
.

We write this in the standard form

H(ω) =
5(1 + jω/0.25)(1 + jω/10)

jω(1 + jω/20)

The break frequencies, in ascending order, are:

ω1 = 0.25 rad/s (numerator) ω2 = 10 rad/s (numerator) ω3 = 20 rad/s (denominator)

The term 1/jω provides a starting asymptote −20 dB/dec whose value is 0 dB at ω = 1 rad/s. We
can now sketch a composite plot by including the other terms:

At ω1 = 0.25 rad/s (numerator), the slope increases by (by +20 dB/dec) to 0 dB/dec. At ω2 = 10
rad/s (numerator), the slope increases to 20 dB/dec. Finally, at ω3 = 20 rad/s (denominator), the
slope decreases to 0 dB/dec.

Finally, the constant 5 shifts the plot by 20 log 5 = 14 dB. Its Bode plot is shown in Figure EA.12(a).
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Figure EA.12 Bode magnitude plots for Example A.12(a and b)

(b) (Repeated Factors) Let H(ω) =
(1 + jω)(1 + jω/100)

(1 + jω/10)2(1 + jω/300)
.

Its Bode plot is sketched in Figure EA.12(b). We make the following remarks:

The starting slope is 0 dB/dec since a term of the form (jω)k is absent.

The slope changes by −40 dB/dec at ωB = 10 rad/s due to the repeated factor.

A.8 Classical Analog Filter Design
Classical analog filters include Butterworth (maximally flat passband), Chebyshev I (rippled passband),
Chebyshev II (rippled stopband) and elliptic (rippled passband and stopband) as shown in Figure A.13. The
design of these classical analog filters typically relies on frequency specifications (passband and stopband
edge(s)) and magnitude specifications (maximum passband attenuation and minimum stopband attenua-
tion) to generate a minimum-phase filter transfer function with the smallest order that meets or exceeds
specifications.
Most design strategies are based on converting the given frequency specifications to those applicable to
a lowpass prototype with unit radian cutoff frequency, designing the lowpass prototype and converting to
the required filter type using frequency transformations. We only concentrate on the design of the lowpass
prototype. Table A.9 describes how to obtain the prototype specifications from given filter specifications, the
design recipe for Butterworth and Chebyshev filters, and frequency transformations to convert the lowpass
prototype back to the required form.

For bandpass and bandstop filters, if the given specifications [f1, f2, f3, f4] are not geometrically
symmetric, one of the stopband edges must be relocated (increased or decreased) in a way that the new
transition widths do not exceed the original. The quadratic transformations to bandpass and bandstop
filters yield transfer functions with twice the order of the lowpass prototype.

The poles of a Butterworth lowpass prototype lie equispaced on a circle of radius R = (1/ε)1/n in the
s-plane while the poles of a Chebyshev prototype lie on an ellipse. The high-frequency attenuation of an
nth-order Butterworth or Chebyshev lowpass filter is 20n dB/dec.
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Table A.9 Analog Filter Design

NOTES: For LP filters, νs = Stopband edge
Passband edge For HP filters, νs = Passband edge

Stopband edge

For BP and BS filters, with band edges [f1, f2, f3, f4] in increasing order: νs = f4−f1
f3−f2

If f0 is the center frequency, we require geometric symmetry with f1f4 = f2f3 = f2
0 .

Butterworth Chebyshev

Ripple ε2 = 100.1Ap − 1 ε2 = 100.1Ap − 1

Order n =
log[(100.1As − 1)/ε2]1/2

log(νs)
n =

cosh−1[(100.1As − 1)/ε2]1/2

cosh−1(νs)

3-dB Frequency ν3 = (1/ε)1/n = R ν3 = cosh
[

1
n

cosh−1(1/ε)
]

Poles of H(s)

pk = −R sin θk + jR cos θk

θk = (2k − 1)π/2n

k = 1, 2, . . . , n

pk = − sin θk sinh(α) + j cos θk cosh(α)

θk = (2k − 1)π/2n α = 1
n sinh−1( 1

ε )

k = 1, 2, . . . , n

Denominator QP (s) (s− p1)(s− p2) . . . (s− pn) (s− p1)(s− p2) . . . (s− pn)

K for unit peak gain K = QP (0) =
n∏

k=1

pk K =





QP (0)/
√

1 + ε2 n even

QP (0) n odd

For transformation of the LPP transfer function H(s) to other forms, use:

To LPF s ⇒ s/ωp To HPF s ⇒ ωp/s To BPF s ⇒ s2+ω2
0

sBBP
To BSF s ⇒ sBBS

s2+ω2
0

where ω0 = 2πf0 and BBP = 2π(f3 − f2) for bandpass, BBS = 2π(f4 − f1) for bandstop

NOTE: For numerical computation, cosh−1(x) = ln[x + (x2 − 1)1/2], x ≥ 1

EXAMPLE A.13 (Analog Filter Design)

(a) (Butterworth Lowpass Filter) Design a Butterworth filter to meet the following specifications.

Ap ≤1 dB for f ≤ 4 kHz As ≥ 20 dB for f ≥ 8 kHz

From the design equations, νs = fs/fp = 2 and

ε2 = 100.1Ap − 1 = 0.2589

n =
log[(100.1As − 1)/ε2]1/2

log(νs)
=

log[(102 − 1)/ε2]1/2

log(2)
= 4.289 ⇒ n = 5

ν3 = (1/ε)1/n = 1.1447 = R

We have θk = (2k − 1)π/2n = 0.1(2k − 1)π k = 1, 2, . . . , 5

This gives θk = 0.1π, 0.3π, 0.5π, 0.7π, 0.9π rad

The pole locations pk = −R sin(θk) + jR cos(θk) are then
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pk = −1.1447, −0.3537± j1.0887, −0.9261± j0.6728

The denominator Q(s) may be written as:

Q(s) = s5 + 3.7042s4 + 6.8607s3 + 7.8533s2 + 5.5558s + 1.9652

The numerator is given by K = Q(0) = 1.9652

The transfer function of the analog lowpass prototype is then

H(s) =
K

Q(s)
=

1.9652
s5 + 3.7042s4 + 6.8607s3 + 7.8533s2 + 5.5558s + 1.9652

(b) (Butterworth Bandstop Filter) Design a Butterworth bandstop filter with 2-dB passband edges
of 30 Hz and 100 Hz, and 40-dB stopband edges of 50 Hz and 70 Hz.

The band edges are [f1, f2, f3, f4] = [30, 50, 70, 100] Hz. Since f1f4 = 3000 and f2f3 = 3500,
the specifications are not geometrically symmetric. Assuming a fixed passband, we relocate the upper
stopband edge f3 to ensure geometric symmetry f2f3 = f1f4. This gives f3 = (30)(100)/50 = 60 Hz.

The lowpass prototype band edges are νp = 1 rad/s and νs =
f4 − f1

f3 − f2
= 7 rad/s.

We compute ε2 = 100.1Ap − 1 = 0.5849 and the lowpass prototype order as

n =
log[(100.1As − 1)/ε2]1/2

log νs
⇒ n = 3

The pole radius is R = (1/ε)1/n = 1.0935. The pole angles are θk = [π
6 , π

2 , 5π
6 ] rad.

Thus, pk = −R sin θk + jR cos θk = −1.0935, 0.5468± j0.9470, and the lowpass prototype becomes

HP (s) =
1.3076

s3 + 2.1870s2 + 2.3915s + 1.3076

With ω2
0 = ω1ω4 = 4π2(3000) and B = 2π(f4 − f1) = 2π(70) rad/s, the LP2BS transformation

s → sB/(s2 + ω2
0) gives

H(s) =
s6 + 3.55(10)5s4 + 4.21(10)10s2 + 1.66(10)15

s6 + 8.04(10)2s5 + 6.79(10)5s4 + 2.56(10)8s3 + 8.04(10)10s2 + 1.13(10)13s + 1.66(10)15

The linear and decibel magnitude of this filter is sketched in Figure EA.13B.
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Figure EA.13B Butterworth bandstop filter of Example A.13(b)

(c) (Chebyshev Lowpass Filter) Design a Chebyshev filter to meet the following specifications.

Ap ≤1 dB for f ≤ 4 kHz As ≥ 20 dB for f ≥ 8 kHz

From the design equations:

ε2 = 100.1Ap − 1 = 0.2589

n =
cosh−1[(100.1As − 1)/ε2]1/2

cosh−1(fs/fp)
=

cosh−1[(102 − 1)/ε2]1/2

cosh−1(2)
= 2.783 → n = 3

ν3 = cosh
[

1
n cosh−1(1/ε)

]
= 1.0949

To find the poles, we first compute:

α = (1/n) sinh−1(1/ε) = 0.4760

θk = (2k − 1)π/2n = (2k − 1)π/6 k = 1, 2, 3

The poles pk = − sinh(α) sin(θk) + j cosh(α) cos(θk) then yield:

pk = −0.4942, −0.2471± j0.966

The denominator Q(s) equals:

Q(s) = s3 + 0.9883s2 + 1.2384s + 0.4913

Since n is odd, the numerator is K = Q(0) = 0.4913 for unity peak gain.

The transfer function of the analog lowpass prototype is then

H(s) =
K

Q(s)
=

0.4913
s3 + 0.9883s2 + 1.2384s + 0.4913

(d) (Chebyshev Bandpass Filter) Let us design a Chebyshev bandpass filter for which we are given:

Passband edges: [ω1, ω2, ω3, ω4] = [0.89, 1.019, 2.221, 6.155] rad/s

Maximum passband attenuation: Ap = 2 dB Minimum stopband attenuation: As = 20 dB

The frequencies are not geometrically symmetric. So, we assume fixed passband edges and compute
ω2

0 = ω2ω3 = 1.5045. Since ω1ω4 > ω2
0 , we decrease ω4 to ω4 = ω2

0/ω1 = 2.54 rad/s.
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Then, B = ω3 − ω2 = 1.202 rad/s, νp = 1 rad/s, and νs = ω4−ω1
B = 2.54−0.89

1.202 = 1.3738 rad/s.

The value of ε2 and the order n is given by

ε2 = 100.1Ap − 1 = 0.5849 n =
cosh−1[(100.1As − 1)/ε2]1/2

cosh−1νs

= 3.879 ⇒ n = 4

The half-power frequency is ν3 = cosh[ 13 cosh−1(1/ε)] = 1.018. To find the LHP poles of the prototype
filter, we need

α = (1/n)sinh−1(1/ε) = 0.2708 θk(rad) =
(2k − 1)π

2n
=

(2k − 1)π
8

, k = 1, 2, 3, 4

From the LHP poles pk = − sinhα sin θk + j cosh α cos θk, we compute p1, p3 = −0.1049± j0.958 and
p2, p4 = −0.2532± j0.3968. The denominator QP (s) of the prototype HP (s) = K/QP (s) is thus

QP (s) = (s− p1)(s− p2)(s− p3)(s− p4) = s4 + 0.7162s3 + 1.2565s2 + 0.5168s + 0.2058

Since n is even, we choose K = QP (0)/
√

1 + ε2 = 0.1634 for peak unit gain, and thus

HP (s) =
0.1634

s4 + 0.7162s3 + 1.2565s2 + 0.5168s + 0.2058

We transform this using the LP2BP transformation s −→ (s2 +ω2
0)/sB to give the eighth-order analog

bandpass filter H(s) as

H(s) =
0.34s4

s8 + 0.86s7 + 10.87s6 + 6.75s5 + 39.39s4 + 15.27s3 + 55.69s2 + 9.99s + 26.25

The linear and decibel magnitude of this filter is shown in Figure EA.13D.
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Figure EA.13D Chebyshev I bandpass filter for Example A.13(d)
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